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The identification of multiple change point is a problem shared by many subject areas,
including disease and criminality mapping, medical diagnosis, industrial control, and
finance. An algorithm based on the Product Partition Model (PPM) is developed to solve
the multiple change point identification problem in Poisson data sequences. In order to
attack the PPM a simple and easy to implement Gibbs sampling scheme is derived. A
sensitivity analysis is performed, for different prior specifications. The algorithm is then
applied to the analysis of a real data sequence. The results show that the method is quite
effective and provides useful inferences.
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1. Introduction

The identification of multiple change points is a problem encountered in many sub-

ject areas, ranging from criminality and disease mapping to finance and industrial

control. Given a time series (or a data sequence), as the one seen in Figure 1, the

problem is to know whether or not change points occurred in its level (or variance).

Certainly, multiple change point identification is not a brand new problem. Indeed,

many tools were already considered to tackle it, including Bayesian [1, 12, 14] and

non-Bayesian approaches [9, 11, 21]. In particular, this paper is concerned about a

Bayesian approach to the multiple change point identification problem in Poisson

data sequences, based on the Product Partition Model (PPM).

The PPM was introduced originally by Hartigan [8] and it may be seen as a

generalization of several previously developed models such as the model by Smith

[20], Menzefricke [16], or Hsu [10], for instance. Advantages of the PPM over other

popular methodologies, such as the threshold model of Chen & Lee [3], include
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Fig. 1. Poisson data sequence with one change point.

the flexible number of change points in the sequence, which is random instead of

a predefined number. Later, the PPM was applied to the identification of multiple

change points in normal means by Barry & Hartigan [1] and Crowley [4]. After-

wards Loschi & Cruz [12] extended the PPM and applied the method to identify

multiple change points both in the means and variances of normal data, developing

a Gibbs sampling scheme to compute new important measures besides the product

estimates, including the posterior distributions for the number of change points and

for the instants when changes occurred [14], and admitting a prior specification for

the probability of having a change, p [13].

The aim of this paper is twofold. First, we derive an original version of the PPM,

suitable for identifying multiple change points in the means of Poisson data sets,

θ. A gamma prior distribution was assumed for the parameter θ and a beta prior

distribution was assumed for the probability of having a change, p. The algorithm

developed provides (i) the product estimates for θ, (ii) the posterior distributions for

the number of change points, (B−1), and for p, and (iii) the posterior probabilities

of each instant to be a change point. Second, a sensitivity analysis for the above

estimates is presented, for different prior specifications for p.

The paper is organized as follows. Section 2 reviews the parametric approach
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for the PPM, presents inferential solutions to identify change points for Poisson

random variables, and details a Gibbs sampling scheme to implement the PPM.

In Section 3, some computational results are presented and discussed. Section 4

presents the case study. Section 5 concludes the paper with final remarks and topics

for further investigation in the area.

2. Product Partition Model

The PPM is a Bayesian model. For the interest reader, details on Bayesian statis-

tics can be found easily in the literature (see, for instance, the book by Migon &

Gamerman [17]).

In the parametric approach of the PPM it is considered that the sequence of

random variables X1, . . . , Xn has marginal densities f1(X1|θ1), . . . , fn(Xn|θn), con-

ditional on θ1, . . . , θn. It is assumed that given a partition ρ = {i0, . . . , ib} of the

set I ∪ {0}, for I = {1, . . . , n} and b ∈ I, such that 0 = i0 < i1 < · · · < ib = n,

one has that θi = θ[i(r−1)ir ] for every ir−1 < i ≤ ir, for r = 1, . . . , b, and that

θ[i0i1], . . . , θ[i(b−1)ib] are independent, with θ[ij] having (block) prior density π[ij](θ),

in which θ ∈ Θ[ij], and Θ[ij] is the parameter space that corresponds to the common

parameter, say, θ[ij] = θi+1 = · · · = θj , which indexes the conditional density of

X[ij] = (Xi+1, · · · , Xj)
′. Denote by c[ij], i, j ∈ I ∪ {0}, i < j, the prior cohesion

associated with the block [ij], which can be seen as the transition probabilities in

the Markov chain defined by the endpoints of the blocks in ρ. That is, the prior

cohesion c[ij] denotes the probability of having a change in j, given that a change

took place in i. Thus, (X1, . . . , Xn, ρ) follows the PPM if

(i) the prior distribution of ρ is the following product distribution

P (ρ = {i0, . . . , ib}) =

∏b

j=1 c[i(j−1)ij ]
∑

C

∏l

j=1 c[i(j−1)ij ]

, (1)

in which C is the set of all possible partitions of the set I into l contiguous

blocks with endpoints i1, . . . , il, satisfying the condition 0 = i0 < i1 < · · · <

il = n, for all l ∈ I;

(ii) conditional on ρ = {i0, . . . , ib}, the sequence X1, . . . , Xn has the joint den-

sity

f(X1, . . . , Xn|ρ = {i0, . . . , ib}) =
b

Y

j=1

Z

Θ[ij−1ij ]

f(X[ij−1ij ]|θ)π[ij−1ij ](θ)dθ,

in which Θ[ij] denotes the parametric space of θ[ij].

In the PPM, the posterior expectations of θk (also called the product estimates)

are given by

E(θk|X1, . . . , Xn) =

k−1
∑

i=0

n
∑

j=k

(

r∗[ij]E(θk|X[ij])
)

, k = 1, . . . , n, (2)
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in which r∗[ij] is the posterior relevance for the block [ij], given by

r∗[ij] =
λ[0i]c

∗

[ij]λ[jn]

λ[0n]
, (3)

with c∗[ij] = c[ij]f[ij](X[ij]) and λ[ij] =
∑

Πl
k=1c

∗

[i(k−1)ik], and the summation is over

all partitions of {i + 1, . . . , j} into l blocks with endpoints i0, i1, . . . , il, satisfying

the condition i = i0 < i1 < · · · < il = j.

Another parameter of interest is the number of blocks B in ρ (or the number

of change points, B − 1). Let X[0n] be the vector (X1, . . . , Xn). In the PPM, the

posterior distribution of B is given by

P (B = b|X[0n]) ∝
∑

Cb

Πb
j=1c

∗

[i(j−1)ij ]
.

in which Cb ⊆ C is the set of all partitions of I into b contiguous blocks.

The posterior distribution of ρ has the same form as its prior distribution and

it is obtained by using the posterior cohesions c∗[ij] in Eq. (1). However, since each

value of ρ usually receives low mass, the posterior distribution of ρ does not provide

a good idea about when changes occurred, as much as the posterior probability for

each instant to be a change point would do. Thus, to obtain the posterior probability

of each observed data time point to be a change point, consider Ck a subset of C,

which contains all partitions that include the kth instant as a change point. That

is, each partition in Ck assumes the form {i0, . . . , il−1, il = k, il+1, . . . , ib}, for any

l ∈ I. Let us denote by Ak the event that the kth instant is a change point, for

k = 2, . . . , n. Thus [13]

P (Ak|X[0n]) =
∑

Ck

P (ρ = {i0, . . . , il−1, il = k − 1, il+1, . . . , ib}|X[0n])

∝
∑

Ck

Πl−1
j=1c

∗

[i(j−1)ij ]c
∗

[i(l−1)(k−1)]c
∗

[(k−1)i(l+1)]
Πb

j=l+1c
∗

[i(j−1)ij ].

2.1. Poisson Case

For the Poisson case, given θ1, . . . , θn, it is assumed that X1, . . . , Xn are independent

and that Xk|θk,∼ P(θk), for k = 1, . . . , n. It is also assumed that the common

parameter θ[ij], related to the block [ij], has the conjugate gamma prior distribution

denoted by θ[ij] ∼ G(τ1[ij] + 1, τ0[ij]), with density function given by

f(θ[ij]|τ0[ij], τ1[ij]) =

(

τ0[ij]

)τ1[ij]+1

Γ(τ1[ij] + 1)

(

θ[ij]

)τ1[ij]

exp(−τ0[ij]θ[ij]).

in which τ0[ij] > 0 and τ1[ij] > −1.
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Consequently, the random vector X[ij] follows a distribution with density func-

tion given by

f(X[ij]) =

j
∏

k=i+1

1

Xk!

Γ(τ∗

1[ij])

Γ(τ1[ij] + 1)

(

τ0[ij]

τ∗

0[ij]

)τ1[ij]+1(

1

τ∗

0[ij]

)

j
∑

k=i+1

Xk

, (4)

in which
{

τ∗

0[ij] = τ0[ij] + j − i,

τ∗

1[ij] = τ1[ij] +
∑j

k=i+1Xk + 1,

for all i = 0, . . . , n− 1, and j = i + 1, . . . , n.

Given X[ij], the conditional distribution of θ[ij] is a gamma distribution with

parameters τ∗

0[ij] and τ∗

1[ij], that is

θ[ij]|X[ij] ∼ G
(

τ∗

1[ij], τ
∗

0[ij]

)

.

Consequently, the blocks estimates are given by

θ̂[ij] = E(θ[ij]|X[ij]) =
τ∗

1[ij]

τ∗

0[ij]

, (7)

and, from Eq. (2) and Eq. (7), it follows that the product estimates for θk are

θ̂k = E(θk|X1, . . . , Xn) =

k−1
∑

i=0

n
∑

j=k

r∗[ij]θ̂[ij], k = 1, . . . , n.

The posterior relevancies r∗[ij] can be obtained from Eq. (3), taking into considera-

tion the density given in Eq. (4).

Remark: Notice that in this model we only admit simultaneous changes in the

means and variances. Suppose, now, that only a shift in the mean is presented in

the data. A possible way to treat the one-change-point problem is to assume, for

example, that

Yi ∼ P(λ), for i = 1, . . . k;

Yi = Z + µ, for i = k + 1, . . . n;

with Z ∼ P(λ). Notice that, in this case, the variance does not change at the instant

k but there is a change in the mean, from λ to λ + µ. Moreover, after the instant k

the distribution of the Yi, given λ and µ, is

f(y) =
exp{−λ}λy−µ

(y − µ)!
,

which clearly is not the regular Poisson distribution. However, the PPM still can be

used to identify k because the method also admits changes in the distribution.
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2.2. A Gibbs Sampling Scheme Applied to the PPM

An extraordinary array of problems in Bayesian inference has been solved by Markov

chain Monte Carlo (MCMC) methods since the seminal paper by Gelfand & Smith

[6] illustrated how easily a variety of intractable problems could be approximately

solved. Such ease of use led to an explosion of research on complex Bayesian models

without analytical solution, which could be now treated by the MCMC methods.

Recent research results and overviews of the research in this area includes the papers

by Besag et al. [2] and Robert [19], to cite just a few. The purpose here is to use

the Gibbs sampling [7] as a posterior distribution generation scheme.

In this paper, Yao’s [22] prior cohesions will be considered. Thus, let p be the

probability of a change to occur at any instant in the sequence. Therefore, the prior

cohesion for the block [ij] is given by

c[ij] =

{

p(1− p)j−i−1, if j < n,

(1− p)j−i−1, if j = n,
(8)

for all i, j ∈ I, and i < j. Notice that c[ij] corresponds to the probability of a new

change to take place after j − i instants, given that a change took place at the

instant i.

Remark: Notice that the prior cohesions are subjective choices and should dis-

close the similarity among the observations into the same block. For instance, con-

sidering c[ij] = 1, for all i, j ∈ I, i < j, we are admitting a discrete uniform

distribution for ρ. As another possibility, Quintana & Iglesias [18] had elicted a

prior cohesion depending on the number of observation in the block. By their side,

the Yao’s cohesions shown in (8) are appropriate whenever it is reasonable to as-

sume that the past change points are noninformative about the future change points

and that each instant has the probability p of being a change point. Large values for

p should be assigned if it is believed that many change points will take place in the

sequence. Finally, if it is believed that different instants have different probabilities

of being a change point, the Yao’s cohesions become c[ij] = pjΠ
j−1
l=i+1pl, where pl de-

notes the probability of the instant l being a change point. Notice that in the latter

the calculations involved in the PPM become considerably more complex.

Supposing that p has the prior distribution π(p) and assuming that, given ρ,

θk ∈ [ij], for k = 1, . . . , n, for i, j ∈ I, and i < j, we have that the full conditional

distributions of p, ρ, and θk are given, respectively, by

π(p|ρ, θ,X[0n]) ∝ pb−1(1 − p)n−bπ(p),

π(ρ|p, θ,X[0n]) ∝
(

Πb
j=1f[ij−1ij ](X[ij−1ij ])

)

pb−1(1− p)n−b,

π(θk|ρ, p, θ−k,X[0n]) ∝ (θ[ij])
τ1[ij]∗ exp(−τ∗

0[ij]θ[ij]), k = 1, . . . , n,

in which X[0n] = (X1, . . . , Xn), θ = (θ1, . . . , θn), θ−k denotes the vector

(θ1, . . . , θk−1, θk+1, . . . , θn) and f(X[ij]) is given in Eq. (4).

Notice that it is not easy to sample directly from the full conditional distribution

of ρ in the Poisson case. In order to estimate the posterior relevance of each block
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[ij], the posterior distribution of B, and the posterior distribution of ρ, we will use

the auxiliary random quantity Ui, which reflects whether or not a change point

occurred at the time i, that is

Ui =

{

0, if θi 6= θi+1,

1, if θi = θi+1,

for i = 1, . . . , n − 1. Notice that given any particular vector (U1, . . . , Un−1), the

corresponding ρ is immediately identified.

In order to generate the vectors Uk’s considering a beta prior distribution for

the probability p of change, denoted by p ∼ B(α, β), it is sufficient to consider the

ratio given by the expression

Rr =
f[xy](X[xy])

f[xr](X[xr])f[ry](X[ry])
Γ(n + β − b + 1)Γ(b + α− 2)

Γ(b + α− 1)Γ(n + β − b)
,

in which x denotes the last change point before r and y denotes the next change

point following r. The rth element at the kth step, Uk
r , is generated from the

conditional distribution

Uk
r |U

k
1 , . . . , Uk

r−1, U
k−1
r+1 , . . . , Uk−1

n−1 ; X1, . . . , Xn; p, θ,

for r = 1, . . . , n − 1, starting from an initial vector U0 = (U0
1 , . . . , U0

n−1). Notice

that in the Poisson case f[ij](X[ij]) is the distribution given in Eq. (4).

Consequently, the criterion for choosing the values Uk
r becomes

Uk
r =

{

1, if Rr ≥ (1− u)/u,

0, otherwise,

in which u is a random variable uniformly distributed, u ∼ U(0, 1).

Notice that the posterior relevance of the blocks used in Eq. (2) to estimate θk

can be obtained by

r̂∗[ij] =
M

T
,

in which M is the number of vectors Uk’s for which it is observed that Uk
i = 0,

Uk
i+1 = . . . = Uk

j−1 = 1, and Uk
j = 0, and T is the total number of vectors generated

in the Gibbs sampling scheme.

As mentioned earlier, the corresponding random quantity ρ is immediately iden-

tified from the vector Uk. Consequently, one can estimate the posterior probability

for each particular partition ρ = {i0, i1, . . . , ib} into b contiguous blocks. Also notice

that it is possible to estimate the number of blocks in ρ by

B = 1 +

n−1
∑

i=1

(1− Ui),
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algorithm

read X1, . . . , Xn

read all prior specifications τ0[ij], τ1[ij], α, β

for k = 1 to SAMPLES do

generate Uk

Bk = 1 +
∑n−1

i=1 (1− Uk
i )

pk ∼ B(α + Bk − 1, n + β −Bk)

end for

for all i, j ∈ {0, . . . , n} such that i < j do

r∗[ij] ← proportion of samples such that

Uk
i = 0, Uk

i+1 = · · · = Uk
j−1 = 1, Uk

j = 0

τ∗

0[ij] ← τ0[ij] + j − i

τ∗

1[ij] ← τ1[ij] +

j
∑

k=i+1

Xk + 1

θ̂[ij] ← τ1[ij]/τ0[ij]

end for

for k = 1 to n do

E(θk| X1, . . . , Xn)←
k−1
∑

i=0

n
∑

j=k

r∗[ij]θ̂[ij]

compute P (Ak)

end for

write Bk, pk, E(θk), P (Ak)

end algorithm

Fig. 2. PPM Gibbs sampling algorithm.

and to estimate the posterior distribution of B (or the posterior distribution of the

number of change points, B − 1) by

P (B = b|X[0n]) =

∑T

s=1 1{Bs = b}

T
,

in which 1{D} is the indicator function of the event D. Additionally, for a beta prior

distribution for the probability p of change, each sample of the posterior distribution

of p may be generated from the following beta distribution

pk|X[0n] ∼ B(α + Bk − 1, n + β −Bk),

in which Bk is the number of blocks in the kth vector Uk. Similarly, estimates of

the posterior probability of each instant k to be a change point are

P (Ai|X[0n]) =
N

T
, i = 2, . . . , n,
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in which N is the number of vectors for which it is observed that Uk
i−1 = 0. Figure 2

shows the complete algorithm in pseudo-code.

3. Computational Experiments

Because of its computationally intensive nature, the algorithm presented in Figure 2

was coded in C++. The code is available upon request. All tests were performed in a

PC, Pentium processor 400 MHz, 256 MB RAM, taking less than one minute of CPU

time. In order to estimate the posterior relevancies r∗[ij], the posterior distribution of

B (or the number of change points, B−1), and the posterior distribution of p, 4,600

samples of 0–1 values were generated with the dimension of the time series, starting

from a sequence of zeros. The initial 100 iterations were discarded for burn-in and

a lag of one was selected to get stable results independent on the starting point

(discussion about the number of iterations to be discarded and the lag to be taken,

can be found easily in the literature [5]).

3.1. Prior Specifications and the Data set

In order to verify the accuracy of the approach, computational experiments were

conducted with the simulated data sequence shown in Figure 1. The observations

were assumed to be conditionally independent and distributed according to the

Poisson distribution with rate θ. Additionally, one change point occurred at the

26th observation, such that

Xi|θi ∼ P(1.0), i = 1, . . . , 25,

Xi|θi ∼ P(4.0), i = 26, . . . , 50.

For the analysis, the natural conjugate prior distribution was considered for

the parameters θ[ij], which is in this case a gamma distribution. This assumption

is not too restrictive, since the gamma distribution is rich enough to describe the

uncertainty about the parameters under many practical circumstances, as seen in

Figure 3-a. Three different prior distributions for θ[ij], shown in Table 1 (see also

Figure 3-a), were considered. Notice that if θ[ij] ∼ G(2, 1), the prior estimates for

the rate is 2.0, for the squared error loss penalty function.

Table 1. Parameters of the prior distributions for θ[ij].

Prior τ1 τ0 Mode Mean Variance

θ[ij] ∼ G(2, 1) 1.0 1.0 1.0 2.0 2.0

θ[ij] ∼ G(2, 1/2.5) 1.0 1/2.5 2.5 5.0 12.5

θ[ij] ∼ G(2, 1/4) 1.0 1/4.0 4.0 8.0 32.0

The truncated geometric distribution with parameter p was considered as prior

cohesions because it was assumed that the past change points were non-informative
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Fig. 3. Probability densities.

about the future change points. One last decision that had to be made concerned the

probability p of having a changing point. Thus, it was assumed that p ∼ B(2, 8),

plotted in Figure 3-b. That is, a small number of changes was expected in the

data sequence. Notice that for the squared error loss penalty function, the prior

estimate for the probability p of a change is 0.2 and the variance is 0.0145. Other

similar settings for B(α, β) were considered but the results (not shown) did not

differ significantly.

3.2. Numerical Results

For the sake of conciseness, only results for the simulated data sequence presented in

Figure 1 are shown. Additional simulations were carried out with similar simulated

series but the results (not shown) did not differ significantly. The main advantage

of this analysis is that we could can control for errors in the method since the actual

(unobservable) means were known.

Figure 4 presents the posterior estimates (the product estimates) for the rate, θ,

for the three prior specifications shown in Table 1. The estimates are also contrasted

with the real values of θ at each instant. In spite of the fact that the prior estimates

for θ were very different among themselves, the posterior estimates were very similar

and close to the real values of θ, mainly before the change and after the 35th

observation. It is also noticeable that the product estimates do capture the change

in θ. However, the PPM was not able to do it immediately right after the 26th

observation but 10 observations ahead. On this matter, we could notice that the

length of the time series plays a key role. Longer were the time series, sooner the

changes were identified.

Additional information available through the method include Figure 5, which

presents the posterior distribution for the number of blocks in ρ, B (or for the

number of change points, B − 1). As expected, the posterior distribution of the
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Fig. 4. Product estimates for θ.

number of blocks concentrates most of its mass in small values. For p ∼ B(2, 8), it

can be shown that the prior expected number of change points is 8.8 and variance is

49.9. From Tables 1 and 2, it can be noticed that all posterior estimates were more

precise, that is, for all prior specifications, the posterior variances were reduced. It

can also be observed that surprisingly the best estimate for B − 1 was obtained

for G(2, 1/4), that is, when the least informative prior distribution was considered.

Finally, it is noticeable from Figure 5 that, for G(2, 1/4) and G(2, 1/2.5), the most

probable number of blocks was 2, actually the real value, with probability of ≈ 32%.

Table 2. Descriptive statistics for the posterior distributions of B.

Prior Mean StDev Q1 Median Q3 Min Max

θ[ij] ∼ G(2, 1) 5.28 3.28 3 4 6.25 2 23

θ[ij] ∼ G(2, 1/2.5) 3.49 1.70 2 3 4 2 18

θ[ij] ∼ G(2, 1/4) 2.69 1.01 2 2 3 2 12

Figure 6 shows the prior and posterior distribution for the probability p of having

a change at any instant. In the prior evaluation, the value of p was estimated in 0.2
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Fig. 5. Posterior distribution of B.
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Fig. 6. Prior and posterior distributions for p.

and the standard deviation for the prior distribution of p was 0.12. From Figure 6

and Table 3, it can be noticed that the posterior estimates for p were smaller than 0.2

for all prior specification for θ[ij]. For G(2, 1/4), for example, the posterior estimate

for the probability of a change is more precise and is only 0.0625.

Yet another important observation concerns the most probable partition and

the posterior probability for each point (or instant) to be a change point. Figure 7

shows the probability of each instant to be a change point for all prior specification
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Table 3. Descriptive statistics for the posterior distributions of p.

Prior Mean StDev Q1 Median Q3 Min Max

θ[ij] ∼ G(2, 1) 0.105 0.0663 0.0576 0.0908 0.136 0.00336 0.474

θ[ij] ∼ G(2, 1/2.5) 0.0758 0.0439 0.0437 0.0676 0.0986 0.00192 0.348

θ[ij] ∼ G(2, 1/4) 0.0625 0.0354 0.0368 0.0556 0.0808 0.00198 0.308

for θ[ij]. It is noticeable that no point had probability above 27% of being a change

point. For all models, the 28th observation was identified as the most probable point

to experience a change (the probability of the 28th observation to be a change point

was ≈ 0.26). Also, for all models, the partition ρ = {0, 27, 50} was identified as the

most probable partition. This partition indicates that the 28th observation is the

only change point in the sequence (just two observation away from the real change

point).
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Fig. 7. Posterior probability of a change point.

From Table 4, we notice that the posterior probability of occurrence of the

real partition was very small for all prior specifications. We also observe that the

posterior probability of the 26th observation to be a change point is much smaller
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than 26%.

Table 4. Posterior probabilities.

Prior most probable partition real partition real change point

θ[ij] ∼ G(2, 1) 0.045 0.0087 0.141

θ[ij] ∼ G(2, 1/2.5) 0.097 0.0129 0.082

θ[ij] ∼ G(2, 1/4) 0.147 0.0182 0.055

4. A Case Study

The case study will focus on the data sequence “Hyde Park purse snatchings in

Chicago”, 28 day periods, from Jan., 69, to Sep. 73, from McCleary & Hay, Jr [15].

The data can be seen in Figure 8, along with the product estimates for the rate θ

of purse snatchings. The goal here is to verify if this rate changes along the time.
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Fig. 8. Data and product estimates.

For the analysis of the data set, it was assumed that θ[ij] ∼ G(1 + 1, 1/14) and
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p ∼ B(2, 8) shown in Figure 3. It should be noticed that the prior distribution for

θ has mean equal to 28 and variance 393, which means that little information is

available for θ.

From Figure 8, it can be noticed that between the 23th and 45th observations,

Hyde Park experienced with a period with high rate of purse snatchings. Immedi-

ately after the 45th observation, the estimate for the rate of purse snatchings in the

park was similar to the estimates obtained before the 23th observation. After the

46th observation the rate of purse snatchings reached its smallest level.

Figure 9 shows the most probable partition and the probability of each instant

to be a change point. It is noticeable that only the observations 15 (with prob-

ability 0.569), 23 (with probability 0.992), 27 (with probability 0.988), 33 (with

probability 0.852), 37 (with probability 0.651), 44 (with probability 0.768), and

57 (with probability 0.569) had probability above 50% of being a change point.

However, the posterior probability of the partition formed by these most probable

change points was only 0.00267. The most probable partition occured with prob-

ability 0.004, which is in agreement with the main changes observed in Figure 8.

Besides the points mentioned above, the most probable partition also included the

12th observation, which had just the probability of 0.386 of being a change point.
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Fig. 9. Posterior probability of a change point and the most probable partition.
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For the squared error loss penalty function, the prior estimate for the number of

blocks in the partition is 14, which means that, in the prior evaluation, 13 change

points were expected in the rate of purse snatchings in the Hyde Park. The variance

for B, in this case, is 81.58. Notice from Figure 10-a and from Table 5 that the

posterior estimates for B are more precise (the standard deviation is 2.39) and

decreases to 11.96.

Figure 10-b shows the prior and the posterior distributions for the probability p

of a change to take place in any instant in the purse snatchings rate. From Table 5,

it is noticeable that the posterior estimate for p is 0.161 (which is smaller than 0.2,

the prior estimate) and the standard deviation for the posterior distribution of p is

smaller than the prior standard deviation.

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Blocks

P
ro

ba
bi

lit
y

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

a) B

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

p

prior p ~ B(2,8)

b) p

Fig. 10. Posterior distributions.

Table 5. Descriptive statistics for the posterior distributions of B and p.

Mean StDev Q1 Median Q3 Min Max

B 11.96 2.39 10 12 13 8 26
p 0.161 0.0506 0.125 0.156 0.193 0.0362 0.378

5. Conclusions and Final Remarks

The problem of identifying multiple change point in Poisson data sequences was

treated by an original version of the Product Partition Model (PPM). The PPM was

described and its importance to change point identification problems was stressed,

particularly in analyzing data sequences. A Gibbs sampling scheme was derived

to implement the PPM, overcoming its inherent computational difficulties. The

algorithm proposed proved to be an efficient and useful tool in analyzing change

point problems in Poisson data sequences.
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In the simulated data sequence to which it was applied, the method performed

satisfactory. It could be noticed that, despite of the prior estimates for the rate

in each instant have not held on the change exactly at the 26th observation, the

PPM successfully identified the change. It is also noticeable that the PPM could

identify the change with some delay. Another important fact to be pointed out is

that the product estimates for the rate are not strongly influenced by different prior

specifications to the rate, which concentrate most of their mass in small values. The

number of blocks (or, equivalently, the number of change points in the sequence),

was correctly identified (the mode of the posterior distribution of B is two) when

the prior specification for the rate had large variance.

Some open research questions remain. How long would the treatable series be?

How well would the methodology be for other subject areas? These and other similar

questions are interesting and relevant topics for future research in this area.
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