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The optimal buffer allocation problem in real-life systems is a difficult optimization problem. Besides being
non-linear, different objectives conflict with each other: maximize the throughput and minimize the number
of buffers allocated. In this paper, we present a solution methodology for the buffer allocation problem in
single server general queueing networks based on a multi-objective approach. The complete set of all best
solutions is derived by a genetic algorithm (GA), resulting in the Pareto set. The GA proves to be suitable
for multi-objective problems because of the availability of a well-known formulation for dealing with these
problems. Preliminary results attest for the efficacy and efficiency of the methodology proposed.
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1. Introduction
An important trade-off in practice is between the amount of buffer space versus the desired through-
put. As buffer space is expensive, one would like to minimize the amount of buffers as much
as possible. On the other hand, we would also like to maximize the throughput in the network.
This throughput is affected by the buffers allocated, i.e. more buffers leads to a higher through-
put. This latter shows the trade-off: minimize buffers and maximize throughput. From a modeling
point of view, this problem can be formulated as a multi-objective optimization problem, with
two objectives: buffers and throughput. This paper will present the first step into the direction
of multi-objective optimization applied to the buffer allocation problem for general, single server
queueing networks. In other words, we focus in this paper on networks of M/G/1/K queues1,
which in Kendall’s notation means Markovian arrivals, generally distributed service times, a single
server, and a total capacity of K items, including the item in service.

This paper builds on a number of recent articles on the Buffer Allocation Problem (BAP).
Both Cruz et al. (2007) and Smith and Cruz (2005) formulated the BAP as a single-objective
optimization problem in which buffers are minimized subject to a minimum throughput constraint.
More specifically, the BAP was defined by the following formulation with integer decision variables
xi ≡K, for the ith M/G/1/K queue:

Z = min
∑

i

xi, (1)

1 Multi-servers queueing networks will be dealt in future research as this results in a three-objective problem: through-
put, buffers, and servers.
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s.t.:

Θ(x) ≥ Θmin, (2)
xi ∈ N, ∀i, (3)

which minimizes the total buffer allocation to the network,
∑

i
xi, subject to providing a minimum

total throughput Θmin. In this formulation, Θmin was some threshold throughput, not superior to
the total external arrival rate, Λ =

∑

i
Λi, and xi is the buffer K allocation to the ith M/G/1/K

queue, including those in service.
It should be clear that in the above formulation the throughput is modeled as a constraint rather

than as an objective. In Cruz et al. (2007) and Smith and Cruz (2005) this constraint is then
relaxed via a Lagrangian relaxation technique, but some factors like the threshold throughput Θmin

still needs to be determined beforehand. Setting this threshold throughput in a correct way is not
a trivial task. Moreover, it might be perfectly well possible that a small decrease in throughput
might result in a significant gain in terms of buffers used. This trade-off is not visible in the above
formulation. In general, it shows that mono-objective optimization techniques may be arbitrary.
More specifically, defining the weights for composing a single-objective function over different
objectives, λ, and other parameters such as the acceptable error, ǫ, minimum throughput, Θ (see
Smith and Cruz 2005, Cruz et al. 2007) is difficult.

Rather than working with, say, objectives f1(x) and f2(x) simultaneously, researchers usually try
to solve the problem with some reasonable algorithm to generate an approximation to the Pareto
set of solutions for the two objectives, as shown in Fig. 1. Starting from an initial hyperplane h
whose inclination is defined by the given weights λ for each one of the objectives, that is, defining
the objective funtion z(x) = λ1f1(x) + λ2f2(x), some mono-objective optimization algorithm will
find a sequence of parallel hyperplanes to h converging to the support hyperplane h∗, with only
one intersection point y∗ that belongs to the Pareto set Y ∗.
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Figure 1 Pareto set and an approximate solution by means of a mono-objective algorithm.

In this article, we will do differently and determine the whole Pareto-optimal set, which is the
set of optimal solutions for more than one objective in the objective functions (Chankong and
Haimes 1983). This means that the decision maker will be able to better evaluate the effect of
replacing one solution by another. The multi-objective approach allows for evaluating the loss in
one objective (e.g. throughput) compared to a simultaneous enhancement in another objective (e.g.
buffer allocation).

Here, we use a genetic algorithm (GA) approach in combination with the generalized expansion
method, a well-known method to obtain the performance measures of the network. The GA is
particularly suitable for multi-objective problems because they have been performing well in dealing
with this type of problems (see e.g. Carrano et al. 2006, and the references therein).

The main contributions of this paper can be listed as follows:
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1. The Buffer Allocation Problem is treated in a multi-objective approach, explicitly taking into
account buffer space and throughput as decision variables. Both variables are optimized simulta-
neously resulting in the Pareto set of optimal solutions, which results in interesting insights with
regards to the optimal configuration of the network.

2. We embed the BAP into a problem-specific GA. We show that the GA solves the multi-
objective BAP in reasonable computation times.

3. The results show that the GA combined with the BAP gives the complete Pareto set. More-
over, the results obtained in Cruz et al. (2007) are shown to be on these Pareto sets.

Highlight of results

The main results obtained include the proposition of a multi-objective formulation that has the
advantage of being less arbitrary than the mono-objective optimization techniques allowing the
decision maker to choose among quite different trade-off solutions. Additionally, with regards to
the GA, we show that a simple cross-over and mutation scheme handled the problem properly.
Moreover, a straightforward peeling-off scheme solved the problem of selecting the correct Pareto
set. Finally, the results obtained in the previous paper (Cruz et al. 2007) are shown to be special
cases of the results presented here.

Structure of the paper

The organization of this paper is as follows. In Sec. 2, we present the buffer allocation and its
multi-objective mathematical programming formulation. The GA specially developed for the buffer
allocation problem is presented in detail in Sec. 2.1. The generalized expansion method as perfor-
mance evaluation methodology is discussed in Sec. 2.2. In Sec. 3, preliminary computational results
are presented to show the efficiency of the approach. Finally, we close the article with conclusions
and topics for future research in the area (Sec. 4).

2. The Multi-Objective Buffer Allocation Problem
In this section, we define the buffer allocation problem for single-server general service queueing
networks and present the multi-objective mathematical programming formulation used in this
paper. The BAP is concerned with minimizing the buffer spaces while maximizing the number
of users served per time unit, known as the throughput. The BAP is perhaps best formulated as
a non-linear multiple-objective programming problem in which the decision variables, the buffer
space, are the integers.

The Multi-Objective Buffer Allocation Problem (MOBAP) can be formulated by the following
mathematical programming formulation:

optimize Z =
{

f1(x), f2(x)
}

(4)

s.t.:

xi ∈ {1,2, . . .}, ∀i, (5)

in which

f1(x) =
∑

i
xi, the total buffer size,

f2(x) = Θ(x), the throughput profit,

and with integer decision variables xi ≡K, which are the total capacity (including those in service)
for the ith M/G/1/K queue.

The above formulated MOBAP is solved using a powerful class of optimization heuristic methods,
the GA’s. In Sec. 2.1, we describe the GA used in more detail. After this, we briefly discuss in
Sec. 2.2 the Generalized Expansion Method which is used to find the performance measures for
the considered finite queueing network.
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2.1. A genetic algorithm

The GA’s are suitable for the MOBAP because of their well-established efficiency for dealing with
multi-objective problems in general (Fonseca and Fleming 1995, Coello 2000). The instance of
multi-objective GA used in this article is shown in Fig. 2, adapted from Carrano et al. (2006).
The GA’s are optimization algorithms to perform an approximate global search relaying on the
information obtained from the evaluation of several points in the search space and obtaining a
population of these points that converges to the optimum through the application of the genetic
operators mutation, crossover, selection, and elitism (Takahashi et al. 2003). Each one of these
operators may be implemented in several different ways, each one of them characterizing an instance
of the GA.

algorithm

read graph, G(V,A)
read arrival and service rates, λv, µv, ∀ v ∈ V

P0←∅
P1←GenerateInitialPopulation(popSize)
O1←ExtractParetoSet(P1)
for i = 1 until numGen do

Rt← Pt ∪Pt−1

Pt+1←FitnessCrossoverMutation(Rt)
Ot+1←ExtractParetoSet(Pt+1)

end for

write OnumGen+1

end algorithm

Figure 2 Multi-objective genetic algorithm - NSGA-II.

In the special case of the multi-objective optimization problems, the operators selection and
elitism must be specially structured to correctly identifying the best individuals. Operators muta-

tion and crossover are independent on the multi-objective nature of the problem (Takahashi et al.
2004). The multi-objective GA evolves the whole population toward the Pareto set, instead of a
single point and in a single run the whole Pareto set, or a large portion of it, will be found. This
explains the superiority of the GA’s over the deterministic algorithms, which are able to find only
one Pareto point for each run (Fonseca and Fleming 1995, Coello 2000). Critical to the convergence
of the GA are the population size, popSize, and the number of generations, numGen, among other
parameters. Further details on the GA will be postponed to the full paper.

2.2. Performance Evaluation

In order to solve the MOBAP optimization problem, we need an estimate for the throughput,
Θ(x). An algorithm available is the Generalized Expansion Method (GEM), successfully used in
the past to estimate performance measures for arbitrarily configured finite queueing networks. Well
described in many articles, in particular in the article by Kerbache and Smith (2000), the GEM is
basically a combination of node-by-node decomposition and repeated trials, in which each queue is
analyzed separately and then corrections are made in order to take into account the interrelation
between the queues in the network. The GEM uses type I blocking, that is, the upstream node gets
blocked if the service on a customer is completed but it cannot move downstream due to the queue
at the downstream node being full. This is sometimes referred to as blocking after service, which
is prevalent in most production and manufacturing, transportation, and similar systems. Further
details will not be given in this article.

Following Kerbache and Smith (2000), the GEM creates for each finite queue, represented by
vertex j, an auxiliary vertex hj, modeled as an M/G/∞ queue (see Figure 3). When an entity
arrives to the system, vertex j may be blocked with probability pKj

, or unblocked, with probability
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Figure 3 Generalized expansion method.

(1− pKj
). Under blocking, the entities are rerouted to vertex hj for a delay while node j is busy.

Vertex hj helps to accumulate the time an entity has to wait before entering vertex j and to

compute the effective arrival rate to vertex j. The interested reader is referred to Cruz and Smith

(2007).

3. Computational results and discussion
All algorithms were implemented in C and are available upon request. The experiments were run

for tandem, split, and merge queues. The complete results were generated using the following

experimental design: the arrival rates considered were λ = {1.0,2.0,4.0}, the service rates, µi = 10.0,

∀ i, resulting in a system utilization ρ = {0.1,0.2,0.4}, combined with several values for the squared

coefficient of variation, c2

s = {0.5,1.0,2.0}, and number of nodes, |V | = {3,7,15}. In Figure 4, we

give a small selection of representative results obtained. The complete results will be available

in the full paper. Each of the three Pareto curves for the specific settings contained the original

optimal solution found in the mono-objective approach as presented in Cruz et al. (2007). In Figure

4, this solution is circled. Extra insights are provided now because based on the Pareto curves the

decision maker could choose to reduce a bit in throughput but to gain a significant number of

expensive buffer spaces, or vice versa. Of course, the exact decisions made are highly dependent

upon the underlying cost structure.

4. Conclusions and Future Research
In this paper we developed a Multi-Objective Buffer Allocation Problem (MOBAP) for single server

general queueing networks. Combining the Generalized Expansion Method as the performance

evaluation tool with a GA gives insightful Pareto curves. These curve explicitly show the trade-off

between buffer spaces and throughput. Experimental results confirm optimal solutions found in

earlier papers and show the merits of the approach. Future research involves the multi-objective

optimization applied to zero-buffer systems and to the joint buffer and server allocation problem.
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Figure 4 Selection of tested topologies.
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