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Abstract: In this paper, we address a model for population evacuation during a congested 

emergency event. The model employs cellular automata for space modeling and the 

Schadschneider model to derive the transition probabilities for the motion of the 

pedestrians. We describe an extension of the transition probability model that includes a 

component to take into account the intuitive idea that speed can be considered a direct 

function of population density in the modeled environment. A simulation program was 

encoded in C++ because of the efficiency, portability, and robustness of the programming 

language; the program is available from the authors upon request for educational and 

research purposes. A real situation was modeled and simulated with the program. All the 

data generated were analyzed to show the efficiency and accuracy of the new approach. 

Interesting new insights emerged from this analysis; notably, the results obtained are 

consistent with a well-known extreme value distribution. 
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1. Introduction 

mergency traffic computational models have drawn much attention from researchers 

in several areas, mainly because of the widespread availability of inexpensive and 

powerful computers needed to successfully address the sophistication of these models and 

also because of the obvious practical applications in many real-life situations. Usually, the 

metric used to assess the quality of a practical scenario is evacuation time (Zarboutis & 

Marmaras, 2007). Estimating evacuation time involves situations in which people must 

evacuate an environment in the shortest time possible because of natural or man-made 

emergency events such as hurricanes, floods, wildfires, and chemical spills. 

The models that have been developed in the past to study evacuation problems use a 

variety of different methods, including Monte Carlo simulations (Kirchner & 

Schadschneider, 2002a; Smith et al., 2009; Guo & Tang, 2012), queueing (Stepanov & 

Smith, 2009), network theory (Cruz et al. 2005; Zheng & Liu, 2010), and hydraulic 

analogy (Hughes, 2002; Tian et al., 2009; Jiang et al., 2010; Li et al., 2012), being the 

latter very powerful and convenient for analyzing density waves in traffic flow. 

Simulations can be considered in either a macroscopic or a microscopy way. Examples of 

the microscopy way include the multi-agent cellular automata method (Hamagmi & 

Hirata, 2003; Song et al., 2006; Rinaldi et al., 2007), which is the focus of this paper. 

Among the main advantages of the automata approach we could mention the ease of use 

and understanding, the possibility of simulating virtually any real environment, with and 

without obstacles, without the need of including complex mathematical equations (say, 

e.g., as for the hydrodynamical models), and the possibility of real-time visualization in 

the plan of the environment under study. In comparison to the hydrodynamical models, 

however, the main drawback is the difficulty to directly relate speed and density as a 

continuous function. 

The main objective of this paper is to propose a new simulation model to analyze the 

traffic of people under emergency situations based on Schadschneider’s (2002) model. 

The importance of this study arises from the importance of determining the best options 

or strategies for escape when site sheltering is not a preferred option, such as when 

infrastructure is damaged by hurricanes, floods, and fire. 

E 



3 

 

The rest of this paper is organized as follows. In Section 2, we provide an overview of 

cellular automaton models, present some recent publications in the area, and introduce the 

proposed model. Some experiments that were performed are described and discussed in 

Section 3. Finally, in Section 4, we close the paper by summarizing our findings and 

discussing topics for future research in the area. 

2. Theory 

2.1. Overview 

Modeling the space floor by means of cellular automata is convenient especially because 

of the ease with which this approach models the location of doors, corridors, and barriers, 

which may be crucial in an emergency evacuation. Traffic flow usually occurs in an 

environment (such as rooms, corridors, and stairs) in which there is only a limited amount 

of space available. Each individual occupies a certain area in that space, and therefore, the 

movement of people depends on the existence of obstacles, the density of people and the 

location of doors. We assume that each person is contained in a cell. According to 

Wolfram (1994), the idea behind these models is to consider each position (or region) of 

the space as a cell, which is assigned a state. The state of each cell is changed according 

to its state and its neighbors in the previous time step through a set of rules that attempt to 

mimic the biological and/or physical laws governing the real-life system. Figure 1 shows 

a cell in the environment and is represented by the central square. The arrows indicate all 

possible movement of a person in that cell. We assume that an environment can be fully 

distributed, so that each resulting area may contain just one person. A reasonable estimate 

for this area would be a square of size 2.0 meters because at a density of 5 ped/m
2
, 

forward movement essentially comes to a halt (Tregenza, 1976). Notice that this value is 

somewhat in agreement with the cell size of 40 cm x 40 cm suggested by Kirchner et al. 

(2003).  

As such, it is possible to describe the location of a person in terms of rows and columns 

(x, y). Therefore, we can represent an environment as an n x n array in which each 

position is a physical area of 0.2 m
2
 that contains only one cell. This array is called an 

environment matrix. Each position (x, y) of this matrix has a value that is equal to 1 when 

filled by a person and 0 when empty. It provides an aerial view of an environment 

simulation of people occupying (or not) a particular area. Moving from position (x, y) to 



4 

 

position (x, y+1) indicates that a change of state (or position) of a person has occurred, 

which represents his/her displacement in the environment one step further. 

For purposes of simulation, another matrix called the auxiliary matrix is necessary. This 

matrix has the same dimensions as the environment matrix described above but only 

includes environmental information such as the location of doors, fixed or moving 

obstacles (such as chairs or tables), and physical limits (i.e., walls). A numeric code is 

assigned to these obstacles, and during the simulation, this information constrains the 

modeled persons, who obviously cannot occupy space with these obstacles. The auxiliary 

matrix is provided by the user through an ASCII file. 

 

Figure 1: Representation of a cell and its possible shifts 

To move through space, the probabilities of each person moving (or not) to a close, 

unoccupied neighborhood must be set. The transition probabilities have the same 

structure as that presented by Kirchner and Schadschneider (2002b), with several 

components that are used to represent the interactions between people, barriers, 

knowledge of the area, and the speed model (Frank & Dorso, 2009). A speed model 

dependent on the congestion status is a novelty introduced by the present paper into 

Schadschneider’s (2002) model, as we will show below. 

Regarding the interactions between people, the model allows for a trail to be left by other 

people who have followed the same path as the present person. This trail models the 

movement of people who are in an unknown place and would thus have to follow 

somebody else who already had found her/his way. For the automaton, such behavior 
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could indicate the most visited areas, which have a higher probability of being chosen in 

the next step, especially for those who have not passed through this particular area. This 

component of the model is what we call a dynamic force because this probability is 

changed each time someone crosses the area. This dynamic force is more evident at the 

beginning and should have a steady decline because it is assumed that over time, people 

will have their own particular path rather than use somebody else’s path. The interaction 

between people and obstacles in the field is called a static force because this force 

remains constant throughout the simulation. In fact, the static force is determined by the 

configuration of the environment that has been under analysis, which is considered static 

along time. This force is higher for the paths that lead to safe areas and smaller for areas 

that are close to walls, obstacles, and counter areas outside (Kirchner & Schadschneider, 

2002b). 

A new component of the model (and a main contribution of this paper) involves the 

assumption that the mean speed of a person decreases as the number of people increases 

and approaches the capacity of the environment under analysis. In other words, the speed 

of a user should be reduced if the neighborhoods two steps ahead are partially or fully 

occupied. Likewise, speed can increase when there is no occupation at least two steps 

forward. 

Notice that panic situations are taken into account by the model. Indeed, as considered in 

here, the speed of each automaton may be as much as double of the speed in studies to 

simulate the natural walk. It is supposed that the speed used in here applies to non-typical 

situations in which people must run away. Notice also that all automata move without 

stopping until they will find a way out. They all have their only goal to exit the 

environment and interact to each other in such a way that those who do not know the way 

out follow the ones that know it. This situation applies to emergencies and not to usual 

behavior, when persons have their own objective inside the environment, following their 

own track. Besides, all individuals tend to approach the exit as much as they can at the 

same time forming congestion. They move around seeking the way out, even under 

congestion. 
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As a final note, it is clear that the ideas discussed here do not apply exclusively to 

pedestrian traffic applications. See, for instance, Schadschneider (2006) for an interesting 

application to vehicular traffic. 

2.2. The Proposed Model 

All components previously mentioned are part of a model that predicts the final 

movement probability, that is, the probability that a person moves to a position (x, y). The 

initial information is provided by the state matrix M of dimensions 3 x 3, which informs 

the initial probabilities, i.e., the prior probabilities of movement for a person in the 

environment to a position (x, y). An example of matrix M may be seen in Figure 2-a, in 

which the probabilities of moving from cell to cell as well as the likelihood of non-

movement (i.e., the probability of maintaining the same position) are determined. The 

values in matrix M should be defined by the analyst based on all available information on 

the phenomenon under analysis. 

The posterior probabilities are calculated using Schadschneider’s (2002) model, which 

provides a way to update prior probabilities according to the following equation: 

      .1expexp xyxyxyxysxydxy nMSkDkNP     (1) 

  

a) matrix M1 (3x3) b) matrix M2 (5x5) 

Figure 2: Examples of matrix M, which contains the prior probability of moving from one cell to another 

Note that, Pxy is the posterior probability that a person moves to position (x, y). Mxy 

represents the priori probability that a person moves to position (x, y), obtained from 

matrix M (see examples in Figure 2). Dxy is a numeric value that represents the strength of 

the dynamic field for position (x, y), which is obtained from a matrix D of equal size of 

the environment matrix. Finally, Sxy is a numeric value that represents the strength of the 

static field for position (x, y), which is also obtained from matrix D. Matrix Sxy is a 

numerical value (or weight) that is determined beforehand and remains fix. Generally, 

high weights are assigned to positions in the array environment that are close to the exits 
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or located in more central areas. The closer to obstacles or walls is the position (x, y), the 

lower are the values of Dxy. A constant ks represents the contribution of this weight. Note 

that if ks equals zero, it means that the influence of the static force is eliminated from the 

posterior probability Pxy. The constant N is simply a normalizing constant that ensures 

that x,yPxy = 1. The number of people in cell (x, y) is represented by nxy, but because 

each cell only holds at most one person at a time, the possible values are only 0 or 1. 

Finally, xy is a factor that takes into account obstacles and barriers such that it is 0 if 

there is an obstacle at position (x, y) and 1 otherwise. 

Note that there is an internal counter for each position (x, y) in the environment matrix 

that accumulates points each time a position is visited by a cell that is stored in the same 

position (x, y) of matrix D. The more times a position (x, y) is visited, the greater is the 

probability of it being visited again from another person. Thus, matrix D contains the 

weights for each position (x, y) of the environment matrix, which can change each step. It 

is possible to decrease or increase the contribution of the weight of Dxy by means of kd 

Note that if kd is equal to zero, we eliminate the influence of the dynamic force on the 

outcome of the model. Notice that for simulations in which the influence of a trail is more 

evident, as in a colony of insects, we can use high kd values. However, for simulations of 

traffic flow, the trail should be strong so as to conveniently simulate environments in 

which the knowledge of persons of that environment is not as high (for example, 

shopping malls, fairs, and other events) as when people tend to follow the crowd in 

emergency events. 

A rather straightforward assumption is that the trail effect decreases in most cases as time 

goes by. We assume that at some time, the effect of the trail will be reduced because 

people will be aware already about the best directions to follow, and as a result, the flow 

of movement will become almost independent of the trail effect. In Schadschneider’s 

(2002) model, this effect is included by means of the following equation: 

,)1()( Qkk t

d

t

d          (2) 

where kd
(t)

 represents the value at the current step t, and kd
(t-1)

 represents the value at the 

previous step t-1 such that PxyMxy, when t∞. Factor Q (0≤ Q ≤1) represents the 

decay rate associated with kd. 
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Note that the usual 3x3 matrix M (Fig. 2-a) only provides the probabilities of moving to 

an immediate neighboring cell. However, if matrix M is extended to dimension 5x5 (Fig. 

2-b), we can assign probabilities of moving to a neighborhood within a two-step distance 

of the current position in any direction. In this case, we derive a speed that is twice as 

high for such a person. The 3x3 matrix M is called M1, and M2 represents the 5x5 matrix 

M (see Fig. 2-b). Thus, a modified equation for the posterior probabilities is derived as: 

      ,1expexp
)1(

21 xyxy

VV

xysxydxy nMMSkDkNP xy

xy

xy

xy



  (3) 

where M1xy and M2xy represent the numerical values of position (x, y) of the matrices M1 

and M2, respectively. The term Vxy only assumes the values of 0 or 1 to indicate which of 

the matrixes M1 and M2 are used to compute Pxy for position (x, y). The term Vxy assumes 

a value of 0 if the entire neighborhood two steps away is unoccupied, whereas the term 

assumes a value of 1 if there is any occupation within two steps surrounding the position 

(x, y). Note that matrices M1 and M2 may not occur simultaneously. 

Based on this procedure, the average speed of a person should double if there is available 

space to move (which is determined by matrix M2). Otherwise, the mean speed decreases. 

3. Results and Discussion 

The two models Eq. (1) and Eq. (3) were encoded in C++; the software is available 

directly from the web
2
 or from the authors upon request for educational and research 

purposes. In the simulations performed in this paper, we assign Q = 0.99 to represent a 

slow reduction of the trail effect. This value is usually arbitrary; further analysis of this 

issue should be undertaken in future studies. Note that matrix M (i.e., M1 or M2) must be 

rearranged during the simulation. The numerical values of the array are rearranged 

according to the position occupied by the cell. Each division of the space contains a 

numeric code ranging from 1 to 8 that determines the preferred direction of a cell given 

its position in time. This scheme is depicted in Figure 3. These codes are provided by the 

analyst before simulation based on a table in ASCII format. This process represents 

human vision in the artificial world, as it is through vision that we recognize the preferred 

directions of displacement. Fig. 3 shows the arrows indicating the preferred direction for 
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each code. Note that the values of probabilities in the matrix M turn as we turn the 

direction. 

 

Figure 3: Configuration of matrix M for each cell location 

The example we show here is the simulation of a rather complex environment presented 

in Fig. 4. For the sake of the argument, the example has only one floor. However, the 

methodology is applicable to multi-store environments, by accordingly considering the 

differences in the speed in ramps and stairs (which must be slower than in flat surfaces). 

In the figure, the doors are identified by traces of darkness. We remark that such an 

environment can be remodeled without requiring any changes in C++ code. Any 

configuration or reconfiguration of the environment may be performed by the user with 

the help of a program such as Microsoft® Excel. Fig. 4 shows snapshots at two crucial 

moments, i.e., right after the beginning of the simulation (Fig. 4-a) and approximately 

halfway through the simulation (Fig. 4-b). 

  

a) at the beginning of simulation b) approximately halfway through the simulation 

Figure 4: Simulation shots at two different times 

To study overall evacuation time, we must establish some relationship between the time 

in minutes and number of steps of the simulation. We know that the movement of a 
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person follows a discrete process in which displacement is rendered frame by frame. Each 

step of the movement represents a step in the simulation. According to Tregenza (1976), 

the average walking speed of a lone occupant in an environment may be assumed to be 

about 1.5 m/s. Thus, some person that covers the distance of 2.0  meters (that is, a 

simple shift on the 0.2 m
2
 grid that discretizes the environment) would take about 0.298 

seconds to complete, resulting in Eq. (4), which provides the total evacuation time. 

Variable nsim represents the total number of discrete steps performed in the simulation 

before the latest cell leaves the environment. 

.
60

298.0
 (min.)  timeevacuation total


 simn

    (4) 

All simulations were carried out until all persons leave the environment, and then Eq. (4) 

was applied to provide the estimates of the total evacuation time in minutes. Table 1 

shows the results of 1,000 replications for the models described by Eq. (1) and Eq. (3) 

with 5% and 10% occupation of the total space capacity. These densities were obtained 

from empirical studies (results not shown) regarding the maximum capacity of an 

environment in normal working conditions. 

Table 1: Mean evacuation time (min) as a function of the occupation, for models (1) and (3) 

Density  Eq. (1) Eq. (3) p-value (t-test) 

5% 
Mean 1.3927 min. 0.7955 min. 

0.0001 
StdDev 0.0731 min. 0.0536 min. 

10% 
Mean 1.6401 min. 0.9721 min. 

0.0002 
StdDev 0.0914 min. 0.0546 min. 

It is clearly shown in Table 1 that both models, i.e., the traditional model (Eq. (1)) and the 

new model (Eq. (3)), result in significantly different estimates (p-value < 0.05) for the 

mean evacuation time. This result reinforces the significant effect of adding a new 

component to the model. As such, there may be some bias in the estimation of evacuation 

time if one does not take into account the changes in the average walking speed persons 

may experience in crowded environments. We see that variability is lower in the case in 

which we use the model described in Eq. (3). This result can be explained by the fact that 

Eq. (3) assumes that people who are away from the crowd will have an almost entirely 

clear way ahead of them so that they develop a higher speed until they reach an 
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overcrowded area and, consequently, develop a lower speed. This phenomenon is 

noticeable during real-time simulation. 

Another aim of this study is to compare the variable obtained in the simulations, that is, 

evacuation time (or the elapsed time until the latest person vacates the environment), with 

a particular probability distribution function. The idea is to use some extreme value 

distribution, which is used to describe the distribution of maximum values in many 

practical situations, such as height of floods, temperatures, the age of oldest person to die 

in a city, and so on (Tomazella & Achcar, 1996.). This distribution would be most 

appropriate for a study about evacuation times. An acceptable fit to some extreme value 

distribution for the data obtained from the simulation model would be an indication that 

the simulation model may represent the real-life phenomenon. A random variable that 

follows the distribution of the maximum extreme values has the following probability 

density function: 
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where  ( > 0) is a scale parameter, and  (-∞ <  < ∞) is a location parameter. 
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Figure 5: Simulated total evacuation time (min.), fitted curve, and error bars 

A histogram of the total evacuation time, the fitted curve according to the extreme value 

distribution, and the error bars are shown in Fig. 5, which is based on a 2,000 step 

simulation performed under the same conditions used to obtain the results in Table 1 

(results not shown are similar for other configurations). The model appears to show good 
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fit. In fact, a 
2
 goodness-of-fit test shows that the model is suitable to describe the set of 

data obtained in the simulations (for details on 
2
 goodness-of-fit tests and an interesting 

application in fraud detection, see Geyer & Williamson, 2004). 

Mean-square errors (SQE) were computed for the extreme value distribution and some 

other common probability density functions. The results can be seen in Table 2. Notice 

that from an analysis of SQE, the extreme value distribution produced the lowest value 

among all distributions tested. This value is an indication that the extreme value 

distribution may be one of the most appropriate models for adjusting evacuation times 

estimated from a simulation of the model described by Eq. (3). 

Table 2: Mean-square errors for simulated data on evacuation time and four probability density functions 

Distribution Mean Square Error 

Gama 379.0 

Lognormal 273.1 

Weibull 656.5 

Extreme Value 183.9 

 

4. Conclusions and Final Remarks 

This paper discusses improvements in a multi-grid model for pedestrian dynamics based 

on bionics-inspired cellular automata. The newly-added feature is useful to model 

congestion effects, which include a well-known reduction in the average pedestrian 

walking speed and an increase in the number of people in an environment (for recent 

studies that also explore congestion, see van Woensel & Cruz, 2009, Cruz et al., 2010ab). 

A program was encoded and made available for research and educational purposes. 

Computational results have shown that the proposal is quite promising. After analyzing 

the data generated by the simulation model, we conclude that the inclusion of the new 

features seems to contribute significantly to making the evacuation simulations more 

realistic. In fact, adjusting the model to an extreme value distribution indicates a close 

similarity between the simulation results and the theoretical probability model. 

The program developed here is useful for future studies, such as the investigation of the 

effect of environmental settings at the time of evacuation. Indeed, the effect of the 
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population density in conjunction with environmental settings is known to be very 

important, as the evacuation time may be strongly affected by the location of exits and 

obstacles. Additionally, it should be worthwhile to analyze methods to search for ideal 

evacuation routes in order to optimize evacuation times. The topics mentioned above are 

examples of interesting topics for future research in this area. 
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