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Abstract: This paper proposes a multi-quantile approach for solving open-loop continuous-variable
discrete-time stochastic dynamic programming problems insystems with non-standard probability
distribution functions. Instead of using the expected value of the objective function for building the
optimization criterion, the decision maker performs a choice on the decision variables over the objective
function value quantiles. The proposed procedure relies ona Monte Carlo simulation of the unknown
process input outcomes, associated with an open-loop multiobjective optimization. The optimal control
comes from a trade-off analysis that considers, for instance, the risk associated with each policy versus
its yield.
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1. INTRODUCTION

Stochastic dynamic programming problems are usually formu-
lated as the multi-period optimization of the expected value of
an objective function that is additive over time, constrained by
a stochastic dynamic system [Bertsekas (1995)]. This proce-
dure makes sense when the stochastic variables that drive the
dynamic system are endowed with properties that allow some
kind of “certainty-equivalence” [Bertsekas (2005)].

The present paper considers stochastic dynamic systems driven
by variables with arbitrary probability distribution. Inspired in
the stochastic dominance concept [Levy (1992)], and using
Monte Carlo simulation of the stochastic variables, a multiob-
jective optimization is performed taking into account the quan-
tiles of the objective function. This allows trade-offs between
the risk and the expected yield to be considered in the decision-
making. The dynamic system input variables are chosen in
an open-loop scheme. Both the dynamic constraint and the
end-point constraint are described by an inequality considering
the pre-image of a closed set around the pre-established goal
[Bertsekas and Rhodes (1971)]. This procedure is similar tothe
model predictive control technique – which has been shown to
present suboptimal dynamic programming behavior [Camacho
and Bordons (2004); Bertsekas (2005)].

This article is structured as follow: Section 2 states the prob-
lem. The proposed methodology is explained in Section 3.
⋆ This work was supported by Brazilian Agencies CNPq, CAPES and
FAPEMIG, and the Portuguese Agency FCT.

The inventory control, a classical case study, is considered in
Section 4. Finally, Section 5 presents the final discussions, the
conclusions and topics for future research.

2. PROBLEM STATEMENT

Define the cost functionJ as:

J =

N−1
∑

k=0

gk

(

x[k], u[k]
)

+ gN

(

x[N ]
)

. (1)

The dynamic optimization problem is stated here as:

min
u[0],...,u[N−1]

Qα (J) (2)

subject to:



















x[k + 1] = f
(

x[k], u[k], w[k]
)

,

k = 0, 1, . . . , N − 1;

x[0] = x0 and||x[N ]− x∗||∞ ≤ ǫ

(3)

in which: k = 0, . . . , N are the time stages;N is the horizon;
x[k] is the state variable at stagek with dimensionn; u[k] is
the decision variable at stagek with dimensionp; w[k] is the
random disturbance variable at stagek with dimensionq. The
probability distribution function ofw[k] is denoted byψ(k),
and is supposed to be known. The functionQα(·) represents the
α-quantile of its stochastic argument. The constraintx[N ] = x∗



is called theend-point constraint, with x∗ a given goal that the
state vector should reach. As in Bertsekas and Rhodes (1971),
it is supposed that the end-point constraint is relaxed through a
square-ball of radiusǫ around the given goal.

Other constraints may be considered:
hi(x[0], . . . , x[N ], u[0], . . . , u[N − 1]) ≤ 0, (4)

with eachhi : R
(N+1)×n+N×p 7→ R, for i = 1, . . . ,m.

Denote byF the feasible set of decision variablesU =
[u[0], · · · , u[N − 1]] that obey (3) and (4).

The problem (2) becomes amultiobjective optimization prob-
lem (MOP) when the simultaneous minimization of several
quantilesQα(J) is considered, forα = {α1, . . . , αr}:

min
u[0],...,u[N−1]

Qα (J) = (Qα1
(J), . . . , Qαr

(J)) (5)

Consider the vectorial functionF (U) = Qα (J(U)), F :
F 7→ R

r. For defining the solution of MOPs, define the
dominancerelation,Ua ≺ Ub (Ua dominatesUb), which means
that given two different decision variable vectors,Ua andUb

(which lead respectively to the cost vectorsF (Ua) andF (Ub)),
then we haveFi(Ua) ≤ Fi(Ub), ∀ i = 1, 2, . . . , r and
Fi(Ua) < Fi(Ub), for somei = 1, 2, . . . , r, in which r is the
total number of objectives of the problem. MOPs are stated as
problems of finding a solution inside a setP, defined as the set
of all decision vectors that are not dominated by any other one:

P , {U ∈ F | 6 ∃ Ua ∈ F such thatUa ≺ U} . (6)
The setP is called thePareto-optimal set. The image-set of the
Pareto-optimal setP by the objective functionF , or F (P), is
thePareto-front.

It should be mentioned that a relation of dominance between
the probability distribution functions of two stochastic vari-
ables has been defined as thestochastic dominancerelation
[Levy (1992)]. ConsiderQαi

(F ) eQαi
(G) representing theαi-

quantile of the accumulated distributionsF andG, respectively.
It is said that functionF has stochastic dominance over function
G if Qαi

(F ) ≥ Qαi
(G), for all i, with the strict inequality

holding for at least oneαi. The comparison considering a finite
number of quantiles, as in (5), can be considered an approxima-
tion of the comparison by the stochastic dominance.

In multi-objective dynamic programming problems, each non-
dominated solution corresponds to a non-dominated policy.For
instance, Li and Haimes (1989) presented a survey on multi-
objective dynamic programming and Trzaskalik and Sitarz
(2007) proposed a procedure that considers a partially ordered
criteria structure in dynamic programming. However, the ap-
proach proposed here is out of the traditional multi-objective
discrete-time dynamic programming methods.

2.1 The linear case

An important case occurs when the dynamics is linear:

x[k + 1] = Ax[k] +Bu[k] + Cw[k], (7)
in whichA,B andC are matrices with appropriate dimensions.
Because the dynamic optimization is performed here in open-
loop, each statex[k] in (1), (3) and (4) can be re-written as:

x[k] = x[0] +

k−1
∑

j=0

Aj (Bu[k − j − 1] + Cw[k − j − 1]) .(8)

For a disturbance sequence fixed in the expected values
{ŵ[0], . . . , ŵ[N − 1]}, the constraint (3) is:























































eT
i

(

ANx0 +
∑N−1

k=0 AkBu[N − 1]+

+
∑N−1

k=0 AkCŵ[N − i− 1]− (x∗ + eiǫ)
)

≤ 0,

−eT
i

(

ANx0 +
∑N−1

k=0 AkBu[N − k − 1]+

+
∑N−1

k=0 AkCŵ[N − i− 1]− (x∗ − eiǫ)
)

≤ 0,

i = 1, . . . , n;

x0 andx∗ are given;

(9)

with ei denoting thei-th canonical basis vector.

3. THE PROPOSED APPROACH

This paper proposes a computationally tractable scheme for
stochastic dynamic programming problems formulated as in
(5). This procedure fits in themodel predictive control[Ca-
macho and Bordons (2004); Bertsekas (2005)], a technique
which has been developed in the field of automatic control
in the 1980’s [Garcia et al. (1989)], and whose applications
come mainly from the field of chemical engineering. The main
distinctive features of the proposed procedure are:

• Arbitrary probability distribution functions are allowed
for the stochastic disturbances, instead of the usual as-
sumption of specific pdf’s (in most of the cases, Gaussian
pdf’s);

• The trade-off analysis between risk and yield is explic-
itly delivered as the outcome of the proposed algorithm,
instead of the traditional outcome that delivers the con-
trol sequence that maximizes the “expected value” of the
yield.

Using this scheme, the proposed strategy has to be run once
by time stage, in order to account for the new information that
becomes available each time a stochastic variable is instanti-
ated. An implicitfeedback effect, in this case, comes from: for
each stagek = 0, . . . , N − 1, as soon as the actual statex[k]
becomes known, run the optimization procedure, obtaining the
sequence of control actions{u[k], . . . , u[N − 1]}, and apply
just the actual decision variableu[k]. This means that, although
generating open-loop control actions, the proposed strategy be-
comes virtually closed-loop with the step-by-step updating of
the empirically observed problem variables feeding a new run
at each step.

It is known that open-loop procedures can deal with rather gen-
eral shapes of objective function and constraints on the states
or decision variables [Bertsekas (1995)], since mathematical
programming techniques or evolutionary algorithms are avail-
able for different problems with different features. This arti-
cle proposes considering the stochastic disturbance viaMonte
Carlo simulations, obtainable within a quite reasonable amount
of computational effort [Ross (2002)]. Monte Carlo simulation
is a well-known and useful method to determine probabilities
by using highly intensive computational experiments. Solving a
dynamic programming problem by means of simulation is not a
novelty though. Indeed, neuro-dynamic programming is a well-
known dynamic programming approach that employs Monte
Carlo sampling in stochastic settings [Bertsekas and Tsitsiklis
(1996)], among other ones.



The proposed scheme for the calculus of the control action of
each stage may be summarized as:

Proposed Scheme:

For each stagek = 0, . . . , N − 1:

1. Generate randomly several sequences of disturbances
{w[k], . . . , w[N − 1]} with the given probability distri-
bution function;

2. As soon as the empirical statex[k] becomes known, per-
form the multiobjective optimization (5) in open-loop.
Different quantiles of objective function are taken as dif-
ferent objective functions, and non-dominated control se-
quences{u[k], . . . , u[N − 1]} are selected. The objective
function is evaluated using all disturbances generated in
step 1.

3. A trade-off analysis is performed, considering a deci-
sion criterion, for instance, a risk measure of the non-
dominated decision variables, evaluated from the different
quantiles. Choose the next step which optimizes the deci-
sion criteria. Apply just the next decision variableu[k+1].

4. Makek ← k + 1, and return to step 1.

It is remarkable that:(i) the convergence of the proposed
scheme depends on the convergence of the Monte Carlo simu-
lations [Ross (2002)], and on the chosen open-loop multiobjec-
tive optimization procedure [Chankong and Peng (1983)];(ii)
the optimal open-loop cost is an upper bound for the optimal
closed-loop cost [Bertsekas (2005)].

3.1 The optimization engine

In this work, a multiobjective genetic algorithm [Fonseca and
Fleming (1995)] is employed for the open-loop optimization.
An algorithm of this class has been chosen due to some nice
characteristics that those algorithms present:

• They do not require “strong properties” of the objective
functions, like convexity, smoothness or unimodality. In-
stead, the only requirement is usually stated as that the ob-
jective functions present “weak locality” (which roughly
means that the function values should present autocor-
relation that decreases with the distance in the decision
variable space).

• They deliver an entire set of estimates of the Pareto-
optimal set in a single run.

Multiobjective genetic algorithms work according to the fol-
lowing general scheme delineated in Algorithm 1.

The specific version of multiobjective genetic algorithm em-
ployed in this work was theNondominated Sorting Genetic
Algorithm (NSGA-II), presented in [Deb et al. (2002)]. As
distinctive features, the NSGA-II has introduced a fast non-
dominated sorting procedure, an elitism-preserving selection,
and a parameterless niching operator for diversity preservation
(crowding distance comparison operator), leading to an en-
hanced computational complexity. NSGA-II also incorporates
simple and efficient penalty-parameterless approach for solving
constraints.

Algorithm 1 Pseudocode for Multiobjective Genetic Algorithm
1: • A set of initial tentative solutions is generated randomly.

The tentative solutions are theindividuals and the whole
set is thepopulation.

2: while (not stop criterion)do
3: • The objective functions are evaluated, and the dom-

inance relations among all individuals are computed.
“Fitness values” are assigned to all individuals in the
population, with the greater values assigned to the non-
dominated individuals.

4: • Individuals of the population are chosen randomly for
composing a new population, with the relative “chances”
depending on their fitness values. In this way, the indi-
viduals that are dominated by a smaller number of other
individuals have greater probabilities to be chosen. This
selectionmechanism finishes when the new population
becomes of the same size of the former one (at the end,
some individuals will have been chosen several times,
and others will have not been chosen at all).

5: • The individuals of the population receive disturbances
that are calledmutationsin the case of one individual
being perturbed for generating another one, and are
calledcrossoverswhen two individuals are combined in
order to generate other ones.

6: end while

4. SIMULATION RESULTS

4.1 Problem Statement

This case study is intended to show a simple application of the
proposed methodology in a classical example of stochastic dy-
namic programming:the inventory control[Bertsekas (1995)].
The problem consists in placing orders over a vector of itemsat
discrete-time stages so as to meet a stochastic demand. For an
inventory problem, the variables are inherently discrete since
items are counted, but the range of levels for an item is too
large to be practical for a discrete-variable dynamic program-
ming solution. Then, the variables, or their relaxation, will be
considered as real numbers.

This paper studies a multiproduct case with a warehousing
constraint, as in Beyer et al. (2001). That paper has shown
that if the cost functions are stationary and separable, the
demands are independent, and the feasible set is described by
linear constraints, a myopic ordering policy [Ignall and Veinott
(1969)] is optimal for this problem, when optimizing according
to the expected value of the objective function.

The variables considered here are: the integerk is the index
corresponding to the time interval stage;N is the horizon; the
problem vector sizen corresponds to the number of commodi-
ties to be considered; each component of the state vectorx[k]
is either the inventory level (the stock available) or the backlog
level (the postponed quantity) of the corresponding commodity
at the beginning of stagek; each control action vectoru[k]
is the amount to be ordered at the beginning of stagek; and
each disturbance vectorw[k] is the stochastic customer demand
during stagek. It is supposed that the probability distribution
function of each commodity is known. The initial inventory
positionx[0] = x0 is given, as well as the goalx∗, which is
the requested inventory level at the final stage.

The surplus balance equation is defined by the difference equa-
tion:



x[k + 1] = x[k] + u[k]− w[k]. (10)

This is a linear system as in (7), in whichA andB are the iden-
tity matrix andC is its opposite. Note thatx[k] > 0 represents
an inventory level andx[k] < 0 represents a backlog level. The
system must reach anǫ-radius sphere around the targetx∗ at the
final stage. Thus, the inventory level might evolve throughout
the stages according to the open-loop equations presented in
(9).

Since disposals are not allowed and the warehouse space is
limited, the constraints of this problem are:































ui[k] ≥ 0;

∑

i(xi[k] + ui[k]) ≤M ;

k = 0, . . . , N − 1,

i = 1, . . . , n,

(11)

in whichM is the warehouse space capacity.

Consider an additive cost-function as in (1). A V-shaped func-
tion per stage:gk

(

x[k], u[k]
)

is used, composed by: a purchas-
ing cost, represented by a row vectordk, per unit that was
ordered, added to a fixed costDk whenu[k] 6= 0; and a penalty
for a positive stocks (interpreted as a holding cost), represented
by a row vectorc+k , per unit that was held, added to a penalty
for a backlogs (interpreted as a backorder cost), represented by
a row vectorc−k , per unit that was backordered. Each decision
variable may be less than a known constantBk.

Due to the use of an open-loop deterministic approach, the in-
ventory level in each stagex[k] on the expressions of the objec-
tive function (1) and in the constraints (11) must be rewritten as
a function just of the initial state and of the sequence of control
variables, as in (8). Thus, the dynamic programming problem
can be formulated as in (5). Five quantiles have been chosen to
compose the optimization criteria vector:Q0,10, Q0,25, Q0,50,
Q0,75 andQ0,90.

In order to illustrate the ability of the proposed methodology
for dealing with arbitrary pdf’s, this study considersn = 10
products, each of them with a customer demand following a bi-
modal probability distribution function. The bi-modal distribu-
tion arises as a result of a process that picks the stochasticvari-
able from two distinct Gaussian distributions, with the specific
distribution being chosen as a result of a binomial process.A
distribution with mean100 and standard deviation10 is chosen
with probability 0.3, and a distribution with mean200 and
standard deviation10 is chosen with probability0.7.

The optimization horizon isN = 12, and each stagek cor-
responds to a month. The initial stock is assumed to be null
(x0 = 0), and the inventory level at the final stagex[N ] must
be close to zero (x∗ = 0). This assumption corresponds to the
case of products that are subject to design cycles of one year:
each year a new model is launched, and the last year model
becomes “obsolete”.

The fixed purchasing costDk is considered to be200, for all k.
Each coordinate of vectordk is 5× (0.99)k. Each coordinate of
the unitary holding costc+k is considered as0.5 × (0.99)k and
each coordinate of the unitary backorder costc−k is supposed to
be5.5× (0.99)k. The radius of the relaxation on the end-point
constraint is supposed to beǫ = 10. Each commodity can be

ordered between0 andBk = 500, for all k. The warehouse
capacity isM = 1000.

In all simulations, the program has generated20, 000 sequences
of disturbance vectorsw[k]. However, sometimes, the conver-
gence was reached with only1, 000 simulations (convergence
considering the median of the objective function). The open-
loop optimization problem has been solved using NSGA-II,
with real encoding, selection by binary tournament and polyno-
mial mutation. The algorithm parameter values are listed below:
number of generations: 200, population size: 150, crossover
rate: 0.70, index of distribution for crossover: 10, mutation rate:
0.05, index of distribution for mutation: 10. All algorithms have
been coded in MATLAB1 and are available from the authors
upon request. Its functionsrandn andquantile have been
used to generate normal disturbance and to estimate quantiles,
respectively. Each complete run of NSGA-II for solving the
problem in this setting has spent about45, 000 seconds in a
Intel(R) Core(TM)2 Duo 2.5 GHz. The time scale is of the
order of 10 hours, which ismuch smallerthan the time scale
of a stage between two control actions, which is of the order of
one month.

4.2 Analysis of Results

For instance, take commodity 1. Figure 1 shows the objective
function values that have been found (in the vertical axis, from
bottom to up) for each one of the final non-dominated solution
(in the horizontal axis). For a better analysis, all solutions have
been sorted by quantileQ0,50. The lines corresponding to the
quantilesQ0,10 andQ0,25 have been overlapped, and appear as
a single line (the lowest one) in the graphic. This means thatall
cases between these quantiles have lead to the same objective
function values.

The lines corresponding to quantilesQ0,75 andQ0,90 follow
a tendency that is similar to the quantileQ0,50. Note that the
first solution (that will be called asPolicy A) corresponds to a
policy that optimizes both quantiles0.5, 0.75 and0.9, and the
last solution (that will be called asPolicy B) corresponds to a
policy that optimizes both quantiles0.1 and0.25.

Policy A presents a range of objective function value between
2.1 and3.5×105 between quantilesQ0,10 andQ0,90, and Policy
B presents objective function value between1.6 and4.1 × 105

between the same quantiles. Policy A seems to be more robust
than Policy B (with lower variability and lower quantileQ0,90),
which fits better to a more conservative decision maker. On the
other hand, Policy B leads to the lowestQ0,10 andQ0,25 cost
function values, although associated with the greatestQ0,50,
Q0,75 andQ0,90 cost values. Because of this, it might fit better
to an optimistic decision maker.

Illustrating another kind of analysis that the proposed method-
ology allows: if the decision maker is able to spend a cost value
of no more than4.0×105, only the solutions up to 170 should be
considered, since these solutions have the quantileQ0,90 under
the allowed level. As a by-product, the risk of application of the
chosen policy can be properly evaluated – which can be used as
a raw information for performing a hedge operation.

Another decision criterion can be built on the basis of the
weighted probability of having inventory or backlog duringthe

1 MATLAB is a trademark of The MathWorks, Inc.
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Fig. 1. Values of the functions (from bottom to up), considering
quantiles:Q0,10, Q0,25, Q0,50, Q0,75 andQ0,90 (in the
vertical axis), for each one of the final non-dominated
solutions (in the horizontal axis). The quantilesQ0,10 and
Q0,25 are represented by a single line (the lowest one).

time horizon. Figure 2 shows this trade-off. Each final non-
dominated solution corresponds in this figure to a point thatrep-
resents the probability of having a positive inventory multiplied
by the sum of the corresponding total amount (considering all
commodities) and the probability of having backlog multiplied
by the sum of the corresponding total amount. It is noticeable
that Policy A is at the left upper side of this graphic, and Policy
B is in the right lower side.

190 200 210 220 230 240 250 260 270
150

200

250

300

350

400
Trade-off analysis

Weighted probability of final backlog

W
ei

gh
te

d
pr

ob
ab

ili
ty

of
fin

al
in

ve
nt

or
y

Fig. 2. Trade-off between the sum of the total amount multiplied
by the probability of having inventory (horizontal axis)
or backlog (vertical axis), for each final non-dominated
solution.

A validation simulation has been performed: each non-dominated
open-loop policy came from Figure 1 has been applied in an-
other20, 000 sequences of disturbance vectors. Figure 3 con-
siders the boxplot of the simulated objective function for 20
non-dominated policies linearly equally picked between Poli-
cies A and B. To perform a comparison, this figure also shows a
line marking the mean of simulated objective function — thisis

the standard optimization criteria. It must be pointed thatPolicy
A also minimizes the mean of the objective function.
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Fig. 3. Boxplot of the simulated objective function (in the
vertical axis) for 20 final non-dominated solution linearly
equally picked between policies A and B (in the horizontal
axis). The line marks the mean of its simulated objective
function.

For now, consider asecond example, considering no warehouse
capacity constraint. The fixed purchasing costDk is 5, for all k.
Each coordinate of vectordk is 1. Each coordinate of the both
unitary holding and backorder costc+k is considered as0.1. All
other parameters have been the same.

Also take commodity 1. Like in Figure 1, Figure 4 shows the
value of the found objective-functions (in the vertical axis, from
bottom to up) for each of final non-dominated solution (in the
horizontal axis). All individuals have also been sorted by its
quantileQ0,50. The three lines more below, came from quan-
tilesQ0,10,Q0,25, andQ0,50 follow the same tendency, as well
the lines fromQ0,75 andQ0,90. The central line corresponds
to the mean (the ordinary criterion). Note the most amplified
trade-off: the policy which minimizes the mean (as well the
three first quantiles), also maximizes the variance, and thepol-
icy which minimizes the variance (came from the minimum of
the two last quantiles), maximizes the mean.

For these data, consider a simulation with theopen-loop feed-
back scheme: for each monthk, for same50 sequences of
demand previously generated, as soon as the inventory level
becomes available, run the open-loop optimization procedure,
obtaining one ordering sequence for each generated demand
sequence, but applying just the present order, for each demand.

For instance, consider two cases: ordering according to quan-
tilesQ0.1 (calledPolicy 1) andQ0.9 (calledPolicy 2). Figure 5
shows the boxplot of the objective function value considering
this two open-loop feedback policies. Comparatively, Figure 6
shows the boxplot of the objective function value considering
the pure open-loop Policies 1 and 2, for same sequences of
demand which have been already generated. Note that the open-
loop feedback cost is lower than the pure open-loop cost, but
follows the same tendency: Policy 1 posses lower mean and
higher variance.
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lines fromQ0,75 andQ0,90. The central line corresponds
to the mean.

1 2
0

50

100

150

200

250

300

350

400

Boxplot of the objective function values

Policies 1 and 2

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

Fig. 5. Boxplot of the simulated objective function (in the
vertical axis) for Policies 1 and 2 (in the horizontal axis)
considering the open-loop feedback process.

5. DISCUSSION AND CONCLUSIONS

This paper has presented a preliminary study of a multiobjective
approach that deals with stochastic discrete-time real-variable
dynamic programming problems via a multiquantile analysis–
considering some quantiles of the cost function as the objec-
tives to be minimized. The scheme is based on Monte Carlo
simulations coupled with a model predictive control algorithm.
It is motivated by the need of a systematic way for dealing
with problems driven by stochastic variables with arbitrary
probability distributions, taking into account also the variability
and risk as the optimization criteria, instead of just considering
expectations. Doing that, the decision maker can choose a more
risky alternative with better expected objective functionvalue,
a more conservative one with smaller expected yield, or some
other policy between those ones.
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Fig. 6. Boxplot of the simulated objective function (in the
vertical axis) for Policies 1 and 2 (in the horizontal axis)
considering the pure open-loop process.
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