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Abstract: This paper proposes a multi-quantile approach for solvipgneloop continuous-variable
discrete-time stochastic dynamic programming problemsyistems with non-standard probability
distribution functions. Instead of using the expected &adfi the objective function for building the
optimization criterion, the decision maker performs a chain the decision variables over the objective
function value quantiles. The proposed procedure reliea btonte Carlo simulation of the unknown
process input outcomes, associated with an open-loopohjdttive optimization. The optimal control
comes from a trade-off analysis that considers, for ingathe risk associated with each policy versus
its yield.
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1. INTRODUCTION The inventory control, a classical case study, is consilare
Section 4. Finally, Section 5 presents the final discussitres
Stochastic dynamic programming problems are usually fermgonclusions and topics for future research.
lated as the multi-period optimization of the expected gaifi
an objective function that is additive over time, consteairy 2. PROBLEM STATEMENT
a stochastic dynamic system [Bertsekas (1995)]. This proce
dure makes sense when the stochastic variables that dave Befine the cost functiod as:
dynamic system are endowed with properties that allow some

kind of “certainty-equivalence” [Bertsekas (2005)].

N—-1
J = gk (K], ulk]) + gn (z[N]). (1)
The present paper considers stochastic dynamic systevesidri ,;) k( Kol D N( [ ])

by variables with arbitrary probability distribution. fpised in ; PRI ; .
the stochastic dominance concept [Levy (1992)], and usin-[ghe dynamic optimization problem s stated here as:
Monte Carlo simulation of the stochastic variables, a roblki min Qu () @)
jective optimization is performed taking into account theu- wl0],.u[N=1] °&
tiles of the objective function. This allows trade-offs Wween
the risk and the expected yield to be considered in the agEisi
making. The dynamic system input variables are chosen in
an open-loop scheme. Both the dynamic constraint and the
end-point constraint are described by an inequality camsid
the pre-image of a closed set around the pre-establishdd goa
[Bertsekas and Rhodes (1971)]. This procedure is similtrgo - X
model predictive control technique — which has been shown to (0] = zo and||z[N] — a™||oc <€
present suboptimal dynamic programming behavior [Camachid Which: & = 0,..., NV are the time stagesy is the horizon;
and Bordons (2004); Bertsekas (2005)]. x[k] is the state variable at stagewith dimensionn; u[k] is

i o i the decision variable at stagewith dimensionp; wl[k] is the
This article is structured as follow: .Sect|on_2 states tmi?pr random disturbance variable at stdgwith dimensiong. The
lem. The proposed methodology is explained in Section 3ropability distribution function ofw[k] is denoted by (k),
* This work was supported by Brazilian Agencies CNPg, CAPES® anand is supposed to be known. The functi@g(-) represents the
FAPEMIG, and the Portuguese Agency FCT. a-quantile of its stochastic argument. The constraji] = =*

subject to:
zlk + 1] = f ([k], ulk], w[k]),

k=0,1,...,N—1; (3)




is called theend-point constraintwith * a given goal that the For a disturbance sequence fixed in the expected values
state vector should reach. As in Bertsekas and Rhodes (197{p[0], ..., w[N — 1]}, the constraint (3) is:
it is supposed that the end-point constraint is relaxeditinea

square-ball of radius around the given goal. eI (AN o + Zg;()l AFBu[N — 1]+

Other constraints may be considered: +ZkN=’01 AFCWIN —i — 1] — (x* + eie)) <0,
hZ(I[O],,I[N],U[O],,U[N*H)SQ (4) T( AN Ne1 4k

with eachh; : RIN+tDxn+Nxp R fori=1,...,m. —e; (AVmo+3 g A"BulN —k — 1]+

=1 Ak i _ * < (9)
Denote by F the feasible set of decision variablés = + Xkmo ANCUN —i 1] = (27 — €i6)) <0,

[u[0],- -+ ,u[N — 1]] that obey (3) and (4).

1=1,...,n;
The problem (2) becomesraultiobjective optimization prob- .
lem (MOP) when the simultaneous minimization of several zo andz™ are given
quantiles. (/) is considered, for = {a1, ..., ar}: with e; denoting the-th canonical basis vector.
min Qo (J)=(Qay(J),...,Qu,.(J (5)
u[0],...,u[N—1] (1) = (@) ) 3. THE PROPOSED APPROACH

Consider the vectorial functiod” () = Q. (J(U)), F

F +— R". For defining the solution of MOPs, define the
dominanceelation, U/, < U, (U, dominated/,), which means - S S
that given two different déc(ision variable \l;gzctom and 4, (5). This procedure fits in thenodel predictive contro[Ca-

- . macho and Bordons (2004); Bertsekas (2005)], a technique
m:r;cr\lvfaﬁa@??g“)/eI);to;,hé{:;mtvv iCtzgjf);ndF?(nug)n)a which has been developed in the field of automatic control

Fy(U,) < Fi(Uy), for somei — 1.2  inwhichris the N the 1980's [Garcia et al. (1989)], and whose applications

total number of objectives of the problem. MOPs are stated §87'¢ mainly from the field of chemical engineering. The main

problems of finding a solution inside a $2f defined as the set istinctive features of the proposed procedure are:

of all decision vectors that are not dominated by any other on e Arbitrary probability distribution functions are allowed
PL{UecF| BU, € Fsuchthatd, <U}. (6) for the stochastic disturbances, instead of the usual as-

The setP is called thePareto-optimal setThe image-set of the sumption of specific pdf's (in most of the cases, Gaussian

ot tocti | i pdf's);
;ng;?e?gﬂ?oﬁlt SeP by the objective functiorf”, or F(P), is e The trade-off analysis between risk and yield is explic-

itly delivered as the outcome of the proposed algorithm,
It should be mentioned that a relation of dominance between instead of the traditional outcome that delivers the con-
the probability distribution functions of two stochastiariv trol sequence that maximizes the “expected value” of the
ables has been defined as ttechastic dominanceelation yield.
[Levy (1992)]. Conside€),, (F') eQ., (G) representing the;-
guantile of the accumulated distributioAisandG, respectively.
Itis said that functiorf’ has stochastic dominance over functiorE
G if Qu,(F) > Q.,(G), foralli, with the strict inequality
holding for at least one;. The comparison considering a finite
number of quantiles, as in (5), can be considered an appeoxi
tion of the comparison by the stochastic dominance.

This paper proposes a computationally tractable scheme for
stochastic dynamic programming problems formulated as in

Using this scheme, the proposed strategy has to be run once
y time stage, in order to account for the new informatior tha
ecomes available each time a stochastic variable is istan
ated. An implicitfeedback effecin this case, comes from: for
ach stagé = 0,..., N — 1, as soon as the actual statf]
ecomes known, run the optimization procedure, obtairtieg t
sequence of control actions:[k],...,u[N — 1]}, and apply
In multi-objective dynamic programming problems, each-norjust the actual decision variablgk]. This means that, although
dominated solution corresponds to a non-dominated pdtmy. generating open-loop control actions, the proposed glydte-
instance, Li and Haimes (1989) presented a survey on muldemes virtually closed-loop with the step-by-step updatifh
objective dynamic programming and Trzaskalik and Sitarthe empirically observed problem variables feeding a naw ru
(2007) proposed a procedure that considers a partiallyedde at each step.
criteria structure in dynamic programming. However, the a
proach proposed here is out of the traditional multi-olyect
discrete-time dynamic programming methods.

ﬂt is known that open-loop procedures can deal with rathar ge
eral shapes of objective function and constraints on thesta
or decision variables [Bertsekas (1995)], since mathemmlati

2.1 The linear case programming techniques or evolutionary algorithms arel-ava
able for different problems with different features. Thisi-a
An important case occurs when the dynamics is linear: cle proposes considering the stochastic disturbancé/lviate
Carlo simulationsobtainable within a quite reasonable amount
xzlk + 1] = Az[k] + Bulk] + Cwlk], (7) of computational effort [Ross (2002)]. Monte Carlo simidat

in which A, B andC are matrices with appropriate dimensionsiS @ well-known and useful method to determine probabsiitie
Because the dynamic optimization is performed here in opeRY using highly intensive computational experiments. Smha

loop, each state[k] in (1), (3) and (4) can be re-written as: dynamic programming problem by means of simulation isnota
novelty though. Indeed, neuro-dynamic programming is dwel

k=1 known dynamic programming approach that employs Monte
z[k] = 2[0] + Z AV (Bulk — j —1] + Cw[k — j — 1]) .(8)  Carlo sampling in stochastic settings [Bertsekas and iKksts
=0 (1996)], among other ones.



Thehproposed scbheme for the galcglus of the control action @ijgorithm 1 Pseudocode for Multiobjective Genetic Algorithm
each stage may be summarized as: 1: e A set of initial tentative solutions is generated randomly.

Proposed Scheme:

2:
3:

For each stagk =0,..., N — 1:
1. Generate randomly several sequences of disturbances

{wlk],...,w[N — 1]} with the given probability distri-
bution function;

. As soon as the empirical stat¢k] becomes known, per- 4
form the multiobjective optimization (5) in open-loop.
Different quantiles of objective function are taken as dif-
ferent objective functions, and non-dominated control se-

quencequlk],...,u[N — 1]} are selected. The objective
function is evaluated using all disturbances generated in
step 1.

. A trade-off analysis is performed, considering a deci-
sion criterion, for instance, a risk measure of the non-
dominated decision variables, evaluated from the differen 5:

The tentative solutions are thiedividualsand the whole

set is thepopulation

while (not stop criteriondo
e The objective functions are evaluated, and the dom-
inance relations among all individuals are computed.
“Fitness values” are assigned to all individuals in the
population, with the greater values assigned to the non-
dominated individuals.
e Individuals of the population are chosen randomly for
composing a new population, with the relative “chances”
depending on their fitness values. In this way, the indi-
viduals that are dominated by a smaller number of other
individuals have greater probabilities to be chosen. This
selectionmechanism finishes when the new population
becomes of the same size of the former one (at the end,
some individuals will have been chosen several times,
and others will have not been chosen at all).
¢ The individuals of the population receive disturbances

that are callednutationsin the case of one individual
being perturbed for generating another one, and are
calledcrossoversvhen two individuals are combined in
order to generate other ones.

6: end while

guantiles. Choose the next step which optimizes the deci-
sion criteria. Apply just the next decision varialg: +1].
4. Makek «— k + 1, and return to step 1.

It is remarkable that(i) the convergence of the proposed 4. SIMULATION RESULTS

scheme depends on the convergence of the Monte Carlo si

lations [Ross (2002)], and on the chosen open-loop mukisbj "1 Problem Statement

tive optimization procedure _[Chankong and Peng (19%))];_ This case study is intended to show a simple applicationef th
the optimal open-loop cost is an upper bound for the optimalnsed methodology in a classical example of stochagtic d
closed-loop cost [Bertsekas (2005)]. namic programmingthe inventory contro[Bertsekas (1995)].
The problem consists in placing orders over a vector of itains
discrete-time stages so as to meet a stochastic demandn For a
inventory problem, the variables are inherently discrétees
items are counted, but the range of levels for an item is too
In this work, a multiobjective genetic algorithm [Fonsecala large to be practical for a discrete-variable dynamic paogr
Fleming (1995)] is employed for the open-loop optimizationming solution. Then, the variables, or their relaxation] i

An algorithm of this class has been chosen due to some nicensidered as real numbers.

characteristics that those algorithms present:

3.1 The optimization engine

This paper studies a multiproduct case with a warehousing

e They do not require “strong properties” of the objectiveconstraint, as in Beyer et al. (2001). That paper has shown
functions, like convexity, smoothness or unimodality. Inthat if the cost functions are stationary and separable, the
stead, the only requirement is usually stated as that the adlemands are independent, and the feasible set is descybed b
jective functions present “weak locality” (which roughly linear constraints, a myopic ordering policy [Ignall andndt
means that the function values should present autocqd969)] is optimal for this problem, when optimizing acciogl
relation that decreases with the distance in the decisida the expected value of the objective function.
variable space).

e They deliver an entire set of estimates of the Paret
optimal set in a single run.

(;I:he variables considered here are: the intdgés the index
corresponding to the time interval stagé;is the horizon; the
problem vector size corresponds to the number of commodi-
Multiobjective genetic algorithms work according to thé-fo ties to be considered; each component of the state vegtor
lowing general scheme delineated in Algorithm 1. is either the inventory level (the stock available) or thekbag
level (the postponed quantity) of the corresponding conitpod
at the beginning of stagk; each control action vectou[k]
is the amount to be ordered at the beginning of stagend
each disturbance vecterk] is the stochastic customer demand
rbluring stagek. It is supposed that the probability distribution
function of each commodity is known. The initial inventory
ositionz[0] = x¢ is given, as well as the goaf*, which is

1e requested inventory level at the final stage.

The specific version of multiobjective genetic algorithm-em
ployed in this work was théNondominated Sorting Genetic
Algorithm (NSGA-II), presented in [Deb et al. (2002)]. As
distinctive features, the NSGA-II has introduced a fast-no
dominated sorting procedure, an elitism-preserving selec
and a parameterless niching operator for diversity preserv
(crowding distance comparison operator), leading to an e
hanced computational complexity. NSGA-II also incorpesat
simple and efficient penalty-parameterless approach feingp  The surplus balance equation is defined by the differenca-equ
constraints. tion:



zlk + 1] = z[k] + ulk] — w[k]. (10) ordered betweef and B, = 500, for all k. The warehouse

This is a linear system as in (7), in whichand B are the iden- capacity isM = 1000.
tity matrix andC is its opposite. Note that[k] > 0 represents In all simulations, the program has genera2éd)00 sequences
an inventory level and k] < 0 represents a backlog level. Theof disturbance vectors|k]. However, sometimes, the conver-
system must reach arradius sphere around the targétatthe gence was reached with only000 simulations (convergence
final stage. Thus, the inventory level might evolve througho considering the median of the objective function). The epen
the stages according to the open-loop equations presemteddop optimization problem has been solved using NSGA-II,
(9). with real encoding, selection by binary tournament and paly
mial mutation. The algorithm parameter values are listdolvine
Slitnber of generations: 200, population size: 150, crossove
rate: 0.70, index of distribution for crossover: 10, mutatiate:
0.05, index of distribution for mutation: 10. All algorittsave
uilk] = 0; been coded in MATLAB and are available from the authors
upon request. Its functionsandn andquant i | e have been
used to generate normal disturbance and to estimate qg&ntil

Since disposals are not allowed and the warehouse spac
limited, the constraints of this problem are:

2oi(@ilk] + wilk]) < M;

(11) respectively. Each complete run of NSGA-II for solving the
k=0,...,N—1, problem in this setting has spent abait 000 seconds in a
. Intel(R) Core(TM)2 Duo 2.5 GHz. The time scale is of the
i=1...,m, order of 10 hours, which ismuch smalletthan the time scale
in which M is the warehouse space capacity. of a stage between two control actions, which is of the ordler o

: " . . one month.
Consider an additive cost-function as in (1). A V-shapedfun

tion per stagey; (x[k], u[k]) is used, composed by: a purchas-

ing cost, represented by a row vectéy, per unit that was 4.2 Analysis of Results

ordered, added to a fixed cd3f, whenu[k] # 0; and a penalty

for a positive stocks (interpreted as a holding cost), remmeed  For instance, take commodity 1. Figure 1 shows the objective
by a row vectorc;”, per unit that was held, added to a penaltyfunction values that have been found (in the vertical axenf

for a backlogs (interpreted as a backorder cost), repregdayt  pottom to up) for each one of the final non-dominated solution
a row vectore,, per unit that was backordered. Each decisiofin the horizontal axis). For a better analysis, all solhgihave
variable may be less than a known constapt been sorted by quantil®, 50. The lines corresponding to the

Due to the use of an open-loop deterministic approach, the ifu@ntilesio, 10 andQo 25 have been overlapped, and appear as

ventory level in each stagek] on the expressions of the objec-& Single line (the lowest one) in the graphic. This meansafat
tive function (1) and in the constraints (11) must be reeritas cases between these quantiles have lead to the same abjectiv
a function just of the initial state and of the sequence otrabn function values.

variables, as in (8). Thus, the dynamic programming problemhe lines corresponding to quantil€k, -5 and Qo follow

can be formulated as in (5). Five quantiles have been cheserg tendency that is similar to the quantifk s,. Note that the
compose the optimization criteria vect@py 10, Qo,25, Qo50,  first solution (that will be called aBolicy A corresponds to a
Qo,75 andQo,90- policy that optimizes both quantilés5, 0.75 and0.9, and the

In order to illustrate the ability of the proposed methogglo @St solution (that will be called aolicy B) corresponds to a

for dealing with arbitrary pdf’g, this stﬁdypconsidezs: a{%i policy that optimizes both quantilésl and0.25.

products, each of them with a customer demand following a bpolicy A presents a range of objective function value betwee
modal probability distribution function. The bi-modal ttibu- 2.1 and3.5x 10° between quantile§o 10 andQo o0, and Policy

tion arises as a result of a process that picks the stochastic B presents objective function value betwelefiand4.1 x 10°

able from two distinct Gaussian distributions, with thegfie  petween the same quantiles. Policy A seems to be more robust

distr!bution b(_eing chosen as a result of a bin_omi_al ProcAss. than Policy B (with lower variability and lower quanti@y o),
distribution with meari00 and standard deviatiott) is chosen \yhjch fits better to a more conservative decision maker. @n th

The optimization horizon isV = 12, and each stagé cor- Qo5 an(:jQ())g.o cost v_alues. Because of this, it might fit better
responds to a month. The initial stock is assumed to be nift & optimistic decision maker.

(zo = 0), and the inventory level at the final staggV] must |jystrating another kind of analysis that the proposedhoet

be close to zerox* = 0). This assumption corresponds to they|ogy allows: if the decision maker is able to spend a costeval
case of products that are subject to design cycles of one yegfno more than.0x 10%, only the solutions up to 170 should be
each year a new model is launched, and the last year mogghsidered, since these solutions have the quagtile under
becomes “obsolete”. the allowed level. As a by-product, the risk of applicatidie

The fixed purchasing cog?,, is considered to b20o, for all k.~ chosen policy can be properly evaluated —which can be used as
Each coordinate of vectalj, is 5 x (0.99)*. Each coordinate of &raw information for performing a hedge operation.

the unitary holding cost; is considered a8.5 x (0.99)* and  Another decision criterion can be built on the basis of the
each coordinate of the unitary backorder agsis supposed to weighted probability of having inventory or backlog duriting
be5.5 x (0.99)F. The radius of the relaxation on the end-point
constraint is supposed to lhe= 10. Each commodity can be ' MATLAB is a trademark of The MathWorks, Inc.




16 Pareto-front the standard optimization criteria. It must be pointed Balicy

A also minimizes the mean of the objective function.
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Fig. 1. Values of the functions (from bottom to up), considgr E U = R
quantiles: Qo 10, Qo,25, Qo.50, Qo7 and Qo.e0 (in the T N AN
vertical axis), for each one of the final non-dominated Same non-dominated solutions

solutions (in the horizontal axis). The quantitgs 1o and . o ) .
Qo.25 are represented by a single line (the lowest one). Fig. 3. Boxplot of the simulated objective function (in the
vertical axis) for 20 final non-dominated solution linearly

time horizon. Figure 2 shows this trade-off. Each final non-  equally picked between policies A and B (in the horizontal
dominated solution corresponds in this figure to a pointrésat axis). The line marks the mean of its simulated objective
resents the probability of having a positive inventory riplikd function.
by the sum of the corresponding total amount (considerihg al
commodities) and the probability of having backlog mulépl For now, consider aecond exampleonsidering no warehouse
by the sum of the corresponding total amount. It is noticeablapacity constraint. The fixed purchasing cbstis 5, for all k.
that Policy A is at the left upper side of this graphic, and€ol Each coordinate of vectat; is 1. Each coordinate of the both
B is in the right lower side. unitary holding and backorder casf is considered ag.1. All

other parameters have been the same.
Trade-off analysis
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Also take commodity 1. Like in Figure 1, Figure 4 shows the
value of the found objective-functions (in the verticalsxiom
bottom to up) for each of final non-dominated solution (in the
‘L horizontal axis). All individuals have also been sorted tsy i
R quantileQ 50. The three lines more below, came from quan-
T, tiles Qo,10, Qo,25, andQ) 5o follow the same tendency, as well

; ) the lines fromQ)o 75 and Qo 90. The central line corresponds
to the mean (the ordinary criterion). Note the most amplified
trade-off: the policy which minimizes the mean (as well the
. three first quantiles), also maximizes the variance, angahe
. icy which minimizes the variance (came from the minimum of
" - | the two last quantiles), maximizes the mean.

.
"
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Weighted probability of final inventory
3

For these data, consider a simulation with tpeen-loop feed-
back schemefor each monthk, for sameb50 sequences of

o o o 20 7o P 70 demand previously generated, as soon as the inventory level
Weighted probability of final backlog becomes available, run the open-loop optimization proeedu
obtaining one ordering sequence for each generated demand
sequence, but applying just the present order, for eachmima

150 L
190 200

Fig. 2. Trade-off between the sum of the total amount mustepl
by the probability of having inventory (horizontal axis)
or backlog (vertical axis), for each final non-dominated-or instance, consider two cases: ordering according ta-qua
solution. tiles Qo.1 (calledPolicy 1) and@y ¢ (calledPolicy 2). Figure 5

shows the boxplot of the objective function value consiugri

A validation simulation has been performed: each non-dateih this two open-loop feedback policies. Comparatively, Fégéi
open-loop policy came from Figure 1 has been applied in ashows the boxplot of the objective function value consiugri
other20, 000 sequences of disturbance vectors. Figure 3 cotthe pure open-loop Policies 1 and 2, for same sequences of
siders the boxplot of the simulated objective function f6r 2 demand which have been already generated. Note that the open
non-dominated policies linearly equally picked betweeli-Po loop feedback cost is lower than the pure open-loop cost, but
cies A and B. To perform a comparison, this figure also showsfallows the same tendency: Policy 1 posses lower mean and
line marking the mean of simulated objective function — this higher variance.
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Fig. 6. Boxplot of the simulated objective function (in the
Fig. 4. Values of the functions (from bottom to top), considg vertical axis) for Policies 1 and 2 (in the horizontal axis)
quantiles:Qo 10, Qo,25, Qo,50, the mean, and quantiles considering the pure open-loop process.
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