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Abstract— In this paper, we examine the optimal routing problem in acyclic finite general-service queueing
networks. The optimization is done by means of a heuristics based on Powell algorithm coupled with a known
approximate performance evaluation method. The proposed algorithm is then applied to determine the opti-
mal routing probability vector that maximizes the throughput of the queueing network. We show preliminary
numerical results to quantify the quality of the routing vector approximations obtained.
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1 Introduction and Motivation

There are several distinct network design opti-
mization problems associated with finite queueing
networks. Following Daskalaki and MacGregor
Smith (2004) the optimal network design prob-
lem can be split up into three related optimization
problems below.

1. The optimal topology problem (OTOP) deals
with decisions of the design of the network it-
self, that is, the number of nodes (e.g. work-
stations, warehouses, delivery points, etc.)
and arcs (e.g. corridors, conveyors, escala-
tors, etc.) and the general configuration of
these two components;

2. The optimal routing problem (OROP) deals
with determining the routing probabilities in
the network defined by the first problem;

3. Finally, the optimal resource allocation prob-
lem (ORAP) deals with the optimal alloca-
tion of the scarce resources in the network,
e.g. the number of buffers (i.e., the buffer al-
location problem, BAP) and the number of
servers (i.e., the server allocation problem,
CAP).

These three problems are challenging and dif-
ficult optimization problems. For an arbitrary
topology, the OTOP is shown to be NP-hard
(Garey and Johnson, 1979). The same NP-
hardness is conjectured for the general ORAP
(MacGregor Smith and Daskalaki, 1988).

Previous work focused mainly on the ORAP
in open finite acyclic queueing network settings.
Both BAP and CAP are probably one of the most
well-known optimal resource allocation problems
(Dallery and Gershwin, 1992). For instance, Mac-
Gregor Smith et al. (2010b) looked into the BAP,

both in a single and in a multiserver setting, and
MacGregor Smith et al. (2010a) proposed algo-
rithms to solve the CAP. However, the routing
probabilities are usually assumed to be known be-
forehand for BAP and CAP.

In this paper the focus is specifically in solving
the OROP being the overall objective to maximize
the system throughput by optimizing the rout-
ing probabilities through the queueing network.
A similar research question has been tackled by
Daskalaki and MacGregor Smith (2004) in which
the joint effect of buffer allocation and routing
on the throughput was evaluated. Earlier, Gosavi
and MacGregor Smith (1997) focused on the rout-
ing optimization problem related to the overall ob-
jective of throughput maximization. The common
ground of both papers is that they used queueing
networks with single servers while in this paper
we examine the OROP for multiserver queues.

The algorithm presented here is a heuristic
based on the Powell method (Himmelblau, 1972).
Notice that the Powell technique is not the unique
but just a first approach for the multiserver OROP
and a basis for further improvements in the area.
The algorithm is specific for acyclic networks
of M/G/c/K queues, which in Kendall notation
means a queueing system with Markovian arrival
rates, General service times, c parallel servers,
and a total capacity of K items (including those
in service). Practical applications to M/G/c/K

queueing networks include manufacturing and ser-
vice systems (MacGregor Smith, 2008) and trans-
portation and material handling systems (Bedell
and MacGregor Smith, 2012).

This paper is organized as follows. In Sec-
tion 2 we describe in detail the mathematical
model formulation for the routing problem. The
optimization algorithm is presented in Section 3
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when we elaborate further on both the optimiza-
tion procedure and the performance evaluation
tool. Section 4 gives preliminary computational
results for some test networks. Finally, Section 5
closes the paper with some conclusions and final
remarks.

2 Model Formulation

Mathematically the optimal routing problem can
be formulated on a digraph D = (V,A) as follows,
in which V is the set of vertexes (finite queues)
and A is the set of arc (connections between the
queues). Each vertex (queue) is characterized by
Poisson arrivals, general service, and multiservers.
The mathematical programming formulation is as
follows.
(OROP):

maxΘ(α), (1)

subject to:

0 ≤ αi,j ≤ 1, ∀ (i, j) ∈ A, (2)
∑

∀j∈δ(i)

αi,j = 1, ∀ i ∈ V, (3)

in which Θ(α) is the throughput, which is the
objective that must be maximized, α the opti-
mal routing probability matrix, α ≡ [αi,j ], i.e.

the matrix that maximizes the objective func-
tion of this predefined network, and δ(i) is the
set of succeeding vertexes of vertex i, that is,
δ(i) ≡ {j| (i, j) ∈ A}.

The throughput will thus be affected by the
effective routing of jobs through the network, the
variability of the service distribution, the number
of servers, and the number of buffers. It should be
clear that the above described model is a highly
difficult stochastic optimization problem to handle
due to the inherent non-linearity of the objective
function combined with the absence of any closed-
form expression for the throughput Θ(α).

3 Proposed Algorithm

3.1 Optimization Procedure

The algorithm to solve the OROP is presented in
Figure 1. The initial routing probability vector is
conveniently set to the inverse of the number of
nodes after a split,

α
(init)

i,j =
1

ni

, ∀(i, j) ∈ A,

in which ni is the number of succeeding nodes to
node i, that is, the cardinality of set δ(i) as de-
fined earlier. The optimization step itself is an
iteration in which new solutions are generated fol-
lowing Powell (1964) logic until convergence, that

is, until the difference in Θ, ∆Θ ≡ (Θ(k)
−Θ(k−1)),

is less than a predefined tolerance ε.

algorithm

/* Step 1: Initialization */

1.1 read D(V,A)
/* initialize the routing probabilities */

1.2 k ← 0

1.3 α
(k)

i,j = α
(init)

i,j , ∀(i, j) ∈ A

/* evaluate with GEM */

1.4 Θ(k)
← Θ(α(k))

/* Step 2: Optimization & Evaluation */

/* generate new solution using Powell */

2.1 k ← k + 1

2.2 α
(k)

i,j ← Powell
(

α
(k−1)

i,j ,Θ(k−1)
)

, ∀(i, j) ∈ A

/* evaluate with GEM */

2.3 Θ(k)
← Θ(α(k))

2.4 if |Θ(k)
−Θ(k−1)

| > ε then goto 2.1
/* Step 3: Print Results */

3.1 print α
(k) and Θ(k)

end algorithm

Figure 1: Optimization algorithm

Powell (1964) algorithm can be described
as an unconstrained optimization procedure that
does not require the calculation of first derivatives
of the function. Numerical examples has shown
that the method is capable of minimizing a func-
tion with up to twenty variables (Himmelblau,
1972). Powell algorithm locates the minimum
of a non-linear function f(x) by successive uni-
dimensional searches from an initial starting point
x(k) along a set of conjugate directions. These
conjugate directions are generated within the pro-
cedure itself. Powell algorithm is based on the
idea that if a minimum of a non-linear function
f(x) is found along p conjugate directions in a
stage of the search, and an appropriate step is
made in each direction, the overall step from the
beginning to the p-th step is conjugate to all of
the p sub-directions of the search. We have seen
a remarkable success with Powell algorithm cou-
pled with a well-known approximate algorithm for
performance evaluation of the finite queueing net-
works, namely the generalized expansion method
(GEM). We will describe it in detail now.

3.2 Performance Evaluation

Described in many papers (Kerbache and Mac-
Gregor Smith, 1987; Kerbache and MacGregor
Smith, 1988), the GEM has been successfully used
to evaluate the performance measures of finite
queueing networks. The method is a robust and
effective approximation technique that is basically
a combination of repeated trials and node-by-node
decomposition in which each queue is analyzed
separately and then corrections are made in or-
der to take into account the interrelation between

Anais do XX Congresso Brasileiro de Automática 
Belo Horizonte, MG, 20 a 24 de Setembro de 2014

242



the queues in the network. The method is com-
posed by three stages, Network Reconfiguration,
Parameter Estimation, and Feedback Elimination.

The first stage involves a network reconfigu-
ration. That is, an artificial vertex hj is added
preceding each finite vertex j in the network. The
artificial vertex is added to register the blocked
customers at node j and is modeled as anM/G/∞

queue, as shown in Figure 2, for two queues in tan-
dem.

λi

✲ ♥✲i

M/G/ci/Ki

λi
✲ ♥✲i

M/G/ci/Ki

✲
pKj

(1− pKj
)

✲ ♥✲hj

M/G/∞

❄

p′Kj

✲ ♥✲j

M/G/cj/Kj

✲
(1− p′Kj

)

✻
✲ ♥✲j

M/G/cj/Kj

θj

θj

Figure 2: The generalized expansion method

When an entity, arriving at rate λi, leaves
vertex i, vertex j may be blocked with probabil-
ity pKj

, or unblocked, with probability (1− pKj
).

Under blocking, the entities are rerouted to vertex
hj for a delay while node j is still busy. Vertex
hj helps to accumulate the time an entity has to
wait before entering vertex j and to compute the
effective arrival rate to vertex j. In other words,
the GEM ultimate goal is to provide an approxi-
mation scheme to update the service rates at the
upstream vertex i to take into account all blocking
after service caused by the downstream vertex j:

µ̃
−1

i = µ
−1

i + pKj
(µ′

hj
)−1

, (4)

in which µi is the service rate at vertex i, pKj

is the blocking probability of a finite queue j of
size Kj , µ

′
hj

is the corrected service rate at the

artificial vertex hj , and µ̃i is the updated (that is,
reduced) service rate at vertex i.

In the second stage, the parameter pK (in-
dex j is omitted for simplicity), among others,
must be estimated which is done essentially uti-
lizing known results for queueing theory. Analyti-
cal results from the M/M/c/K queue provide the
following expression for the blocking probability
pK .

pK =
1

c
K−c

c!

(

λ

µ

)K

p0, (5)

in which

p
−1

0
=

c−1
∑

n=0

1

n!

(

λ

µ

)n

+

(λ/µ)c

c!

1− [λ/(cµ)]
K−c+1

1− λ/(cµ)
, (6)

for λ/(cµ) 6= 1.
However, the interest here is on M/G/c/K

queues, for which pK is not known so far in closed
form. Then approximations must be used and
Kimura’s two moment approximation (Kimura,
1996) has proven to be very effective in simi-
lar cases (MacGregor Smith, 2003; MacGregor
Smith, 2008). For example, let us fix c = 2 and
the following closed form expression can be de-
veloped from Eq. (5), for the optimal buffer size
BM = K−2 for Markovian M/M/2/K queues, as
a function of the blocking probability:

BM =
ln

(

1

2

pK(2µ+λ)

2µ−λ+pKλ

)

ln(ρ)
− 2. (7)

The following Kimura’s two moment approx-
imation can be used to approximate the optimal
buffer size Bǫ(s

2) of a general service M/G/2/K
queue:

Bǫ(s
2) = BM +NINT

(

s
2
− 1

2

√

ρBM

)

, (8)

in which s
2 is the squared coefficient of varia-

tion of the service time distribution at the queue,
ρ ≡ λ/(cµ) is the traffic intensity, BM is the exact
buffer size for a respective Markovian system, and
NINT(x) is the nearest integer to x. Now, if we
invert Eq. (8) to solve for pK we achieve:

pK =
2ρ

2

(√
ρ
e
s2−

√
ρ
e
+K

2+

√
ρ
e
s2−

√
ρ
e

)

(2µ− λ)

−2ρ
2

(√
ρ
e
s2−

√
ρ
e
+K

2+

√
ρ
e
s2−

√
ρ
e

)

λ+ 2µ+ λ

. (9)

This is a process that can be extended for
c > 2. In fact, expressions for pK of up to c = 500
are available (MacGregor Smith, 2003). Other ex-
pression for c = 3, . . . , 10, are included in the soft-
ware so that we have a complete set of blocking
probabilities for c ∈ {1, . . . , 10}.

The remaining details of the second and third
stages will not be given here since they are eas-
ily found in the literature (Kerbache and Mac-
Gregor Smith, 1987; Kerbache and MacGregor
Smith, 1988). As a final note, an important point
about this process is that we do not physically
modify the networks, only represent the expan-
sion process through the software.

4 Numerical Results

The software is implemented in fortran and is
available from the authors upon request for re-
search purposes. In our implementation, we set
ε = 10−3, which was proved to be effective based
on the experiments. We first discuss the shape
of the objective function. Secondly, we will give
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more insights for a number of split structures. We
remind that the range of possible experiments is
exponential itself and we have determined a select
sample to present.

4.1 Shape of the Objective Function

It is interesting to analyze the shape of the ob-
jective function for the OROP. The case discussed
here is defined as follows. We have a three-node
network with a split into two branches, as seen
in Figure 3. The general parameters for the base
case are c1 = 4, K1 = 20, and ci = 2 and Ki = 2,
for i = 2, 3. The number of servers c1 and the to-
tal capacity K1 of node 1 is larger than the others
as to prevent it of becoming a bottleneck.

λ1

✲
✍✌
✎☞

✲1

M/G/4/20

θ2
✲

✍✌
✎☞

✲2

M/G/2/2

θ3
✲ ✍✌

✎☞
✲3

M/G/2/2

✂
✂
✂
✂
✂✍

❇
❇
❇
❇
❇◆

α1,2

α1,3

Figure 3: Basic split network B1

We are particularly interested in the relation-
ship between the overall throughput Θ = θ1 + θ2,
the routing probability α1,2, the arrival rate λ1,
and the squared coefficient of variation of node 2,
s
2

2
. Consequently, we set µi = 2, for all nodes,

and s
2

1
= s

2

3
= 1. The sensitivity of these settings

on the throughput is not analyzed. Next, we enu-
merate all possible combinations for λ1, α1,2, and
s
2

2
, and then analytically obtain the corresponding

throughput Θ, which is shown in Figure 4 (always
on the vertical axis), as a function of λ1, α1,2, and
s
2

2
.
Figure 4-(a) clearly shows that the arrival rate

is interacting with the routing probability. For low
arrival rates, the network has low utilization. Con-
sequently, different routing probabilities do not re-
sult in large changes in throughput Θ. On the
other hand, for large arrival rates, λ1 > 5, one
clearly sees an optimal point in regard to the rout-
ing probability. Figure 4-(b) looks into the joint
effect of changing the squared coefficient of vari-
ation, s

2

2
, together with the routing probability

α1,2.
Again the inverted U-shape effect with a max-

imum around the 50% routing probability is vis-
ible. Next to this, it is clear that increasing the
squared coefficient of variation from 0 to 2 reduces
the overall throughput Θ but it has a smaller im-
pact on throughput than the routing probability.

(a) effect of λ1 versus α1,2 on throughput Θ

(b) effect of s2
2
versus α1,2 on throughput Θ

Figure 4: The shape of the objective function

Concluding, based on this simple network struc-
ture, it is evident that correctly setting the routing
matrix α leads to significant gains in the through-
put.

4.2 Basic Split Networks

In this section, we analyze further some basic split
networks. We are interested in assessing for the
OROP the influence of the number of servers ci,
the total capacities Ki, the service rates µi, and
the squared coefficient of variation of the service
times s

2

i , ∀i ∈ V . The nodes after the splits are
the ones of interest here.

Split with Two Branches

Firstly, we will analyze the two-branch network
from Figure 3. The total capacity of node 1 is
larger (K1 = 20) than for nodes 2 and 3 (both
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(a) µ = (2, 1, 2)T

(b) µ = (2, 2, 2)T

(c) µ = (2, 3, 2)T

Figure 5: Results for two-branch split networks

are equal to 2), as to prevent node 1 to become
a bottleneck. The arrival rate λ1 is set equal to
the values {3, 5, 7}. Figure 5 gives the results for
balanced and unbalanced service rates µ and dif-
ferent squared coefficients of variation s2. In these
cases the service rate of node 2 is made either rel-
atively lower (µ2 = 1 versus µ3 = 2), either equal
(µ2 = 2 versus µ3 = 2), or higher than the service
rate of node 3 (µ2 = 3 versus µ3 = 2).

Figure 5-(b) shows that the routing probabil-
ity is roughly equal to 0.50 when the nodes after
the split are identical (that is, same number of
servers, capacities, service rates, and squared co-
efficient of variation). Moreover, these results ap-
pear to be insensitive to changes in the squared co-
efficient of variation of both nodes after the split.

As we are now focusing on the small scale net-
works, this conclusion does not mean that the
squared coefficient of variation has little effect in

general though. Of course, the throughput Θ is
reduced due to the increase in the service variabil-
ity (results not shown).

Secondly, changing the service rate of node 2
(and keeping all the other parameters equal), it
shows clearly that the fast nodes receive prefer-
ence over the slow nodes. In Figure 5-(a), for ex-
ample, when node 2 is slower than node 3, a lower
routing probability is set to node 2 (0.3334) than
to node 3 (0.6666). This is a confirmation of what
we have observed when evaluating the objective
function earlier in the previous section.

For the two-branch split networks, we evalu-
ated a number of routing vectors around the opti-
mal routing obtained. Figure 6-(a) shows that the
algorithm seems to have reached the 50%-50% op-
timal allocation for the routing probabilities into
nodes 2 and 3. Of course, one might argue that the
optimization is rather easy due to the symmetric
setting of the parameters. Therefore, we did the
same analysis for the same parameter settings but
with a network with unbalance in the service rates.
As seen in Figure 6-(b), the 33%-67% optimal al-
location seems to be reached by the algorithm.
Concluding, we have observed that the optimiza-
tion algorithm tries to balance out the flow taking
into account the differences (in service rates and
squared coefficient of variation) among the two
nodes after the split, which is intuitively logical
as this strategy leads to the highest throughput.

Split with Three Branches

It would be interesting to see to what extent
the optimization algorithm balances the flow over
three nodes after the split and to what extent this
is affected by the characteristics of the different
nodes after the split. Then we have include in
our analysis the three-branch network seen in Fig-
ure 7. The first total capacity is K1 = 20, which
is larger than the other nodes (that is, Ki = 2, i =
2, 3, 4). As mentioned earlier, this settings pre-
vents the first queue to becoming a bottleneck and
to blur the analysis. The other parameters used
were c1 = 4, and ci = 2, ∀i = 2, 3, 4. The exter-
nal arrival rates at node 1 were λ1 ∈ {5, 7}. The
results are presented in Figure 9.

For the complete symmetric case, that is,
Figure 9-(a) and -(b), s2 = (1.0, 1.0, 1.0, 1.0)T,
it is shown that again the routing probabilities
are symmetric, i.e. αi,j = 0.3334,∀ (i, j) ∈ A.
For the unbalanced cases in the squared coeffi-
cient of variation, that is, s2 = (1.0, 0.0, 1.0, 1.0)T,
s2 = (1.0, 0.5, 1.0, 1.0)T, s2 = (1.0, 1.5, 1.0, 1.0)T,
and s2 = (1.0, 2.0, 1.0, 1.0)T, it can be observed
that the routing probability into the two identical
nodes (α1,3 and α1,4) are close to each other.
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(a) set µ = (2, 2, 2)T and s2 = (1.0, 1.0, 1.0)T (b) set µ = (2, 1, 2)T and s2 = (1.0, 1.0, 1.0)T

Figure 6: Perturbations around the optimal solution α
∗
1,2 for the two-branch split networks

λ1

✲
✍✌
✎☞

✲1

M/G/c1/20

θ2
✲ ✍✌

✎☞
✲2

M/G/c2/2

θ3
✲

✍✌
✎☞

✲3

M/G/c3/2

θ4
✲ ✍✌

✎☞
✲4

M/G/c4/2

✂
✂
✂
✂
✂✍

❇
❇
❇
❇
❇◆

✲

α1,2

α1,3

α1,4

Figure 7: Basic split network B2

For the remaining asymmetrical cases, Fig-
ure 9-(c) and -(d), again the same conclusion
holds. The faster (high number of servers) or more
reliable (low squared coefficient of variation) are
the nodes, more favored they are, resulting in high
routing probabilities into these nodes.

4.3 Complex Networks

The simple networks discussed so far are interest-
ing as they make it possible to show the behavior
and logic of the optimization model in the pres-
ence of one split. In this section, we will evaluate a
more complex topology in regard to their routing
probabilities. The network considered is an exten-
sion of the two- and three-branch split networks,
as depicted in Figure 8.

Figure 10 gives an overview of a selected
set of experiments for structure C1. The
base setting is again a balanced case, that is,
K = (20, 2, 2, 2, 2, 2, 2)T, µ = (2, 2, 2, 2, 2, 2, 2)T,
s2 = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)T, and c =
(5, 2, 2, 2, 2, 2, 2)T. Additional set of experiments
involves unbalancing the number of servers ci and
the service rates µi. With these experiments, we
evaluate whether and how the methodology takes
the characteristics of the complete sub-network af-
ter the split into account in determining the opti-
mal routing vector.

We set up the experiments in such a way

λ1

✲ ❧✲1

M/G/c1/K1

✲ ❧✲2

M/G/c2/K2

✲ ❧✲3

M/G/c3/K3

θ4
✲ ❧✲4

M/G/c4/K4

θ5
✲ ❧✲5

M/G/c5/K5

θ6
✲ ❧✲6

M/G/c6/K6

θ7
✲ ❧✲7

M/G/c7/K7

✄
✄
✄
✄
✄✄✗

❈
❈
❈
❈
❈❈❲

✁
✁
✁✕

❆
❆
❆❯

✁
✁
✁✕

❆
❆
❆❯

Figure 8: Network structure C1

that either there are slow nodes (Figure 10-
(a) and -(b), experiment c = (5, 2, 2, 5, 1, 5, 1)T,
and Figure 10-(c) and -(d), experiment µ =
(2, 2, 2, 1, 5, 1, 5)T), or slow subsystems consisting
of three connected nodes (Figures 10-(a)–(b), ex-
periment c = (5, 2, 2, 1, 1, 5, 5)T, and Figure 10-(c)
and -(d), experiment µ = (2, 2, 2, 1, 1, 5, 5)T).

From the results, we observe that in general
the slow subsystem of the network tends to receive
less flow due to a low routing probability into the
relevant part. When after the first split in node
1 there is the choice to go to either the fast or
slow subsystem, the faster subsystem is preferred.
This is very clear in experiments, when the routing
probability always favors the fastest downstream
subsystem.

However, if the last nodes are different (ex-
periments c = (5, 2, 2, 5, 1, 5, 1)T and µ =
(2, 2, 2, 1, 5, 1, 5)T), the conclusions are different.
In all these experiments, the first split is just ex-
actly half. The imbalance in the last nodes (i.e.,
node 4 and 5, 6, and 7 are different), is completely
absorbed in the routing probability at the imme-
diately preceding nodes (i.e., nodes 2 and 3). In-
terestingly, this effect did not propagate upstream
and did not affect the routing at the first split.
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(a) set µ = (2, 2, 2, 2)T and λ = 5 (b) set µ = (2, 2, 2, 2)T and λ = 7

(c) set µ = (2, 1, 2, 3)T and λ = 5 (d) set µ = (2, 1, 2, 3)T and λ = 7

Figure 9: Results for three-branch split networks

(a) set µ = (2, 2, 2, 2, 2, 2, 2)T, s2i = 1.0, ∀i, and λ = 5.0 (b) set µ = (2, 2, 2, 2, 2, 2, 2)T, s2i = 1.0, ∀i, and λ = 7.0

(c) set c = (5, 2, 2, 2, 2, 2, 2)T, s2i = 1.0, ∀i, and λ = 5.0 (d) set c = (5, 2, 2, 2, 2, 2, 2)T, s2i = 1.0, ∀i, and λ = 7.0

Figure 10: Results for network structure C1
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5 Conclusions and Final Remarks

In this paper, we examine the optimal rout-
ing problem in finite multiserver queueing net-
works with generally distributed service times in
a given open acyclic topology. We determine sub-
optimal routing probability vectors to maximize
the throughput of the queueing networks, via a
combination of the Powell optimization tool and
the generalized expansion method. We present
numerical results showing the merits of the ap-
proach.

We have considered here only the through-
put as the main performance measure. It would
also be interesting to evaluate the behavior of the
routing algorithm to minimize the cycle time, or
the work-in-process (WIP), or any another per-
formance measure of interest. Topics for future
research on the area also include the routing in
queueing networks with cycles, e.g., to model
many important queueing systems that have re-
verse streams of items due to re-work, or even the
extension to GI/G/c/K queueing networks.
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dação de Amparo à Pesquisa do Estado de Minas

Gerais).

References

Bedell, P. and MacGregor Smith, J. (2012).
Topological arrangements of M/G/C/K,
M/G/C/C queues in transportation and ma-
terial handling systems, Computers & Oper-

ations Research 39(11): 2800–2819.

Cruz, F. R. B., Duarte, A. R. and van Woensel,
T. (2008). Buffer allocation in general single-
server queueing network, Computers & Op-

erations Research 35(11): 3581–3598.

Dallery, Y. and Gershwin, S. B. (1992). Manufac-
turing flow line systems: A review of mod-
els and analytical results, Queueing Systems

12(1-2): 3–94.

Daskalaki, S. and MacGregor Smith, J. (2004).
Combining routing and buffer allocation
problems in series-parallel queueing net-
works, Annals of Operations Research 125(1-
4): 47–68.

Garey, M. R. and Johnson, D. S. (1979). Comput-

ers and Intractability: A Guide to the The-

ory of NP-Completeness, W. H. Freeman and
Company, New York.

Gosavi, H. D. and MacGregor Smith, J.
(1997). An algorithm for sub-optimal route-
ing in series-parallel queueing networks, In-
ternational Journal of Production Research

35(5): 1413–1430.

Himmelblau, D. M. (1972). Applied Nonlinear

Programming, McGraw-Hill Book Company,
New York.

Kerbache, L. and MacGregor Smith, J. (1987).
The generalized expansion method for open
finite queueing networks, European Journal

of Operational Research 32: 448–461.

Kerbache, L. and MacGregor Smith, J. (1988).
Asymptotic behavior of the expansion
method for open finite queueing net-
works, Computers & Operations Research

15(2): 157–169.

Kimura, T. (1996). A transform-free approxima-
tion for the finite capacityM/G/s queue, Op-

erations Research 44(6): 984–988.

MacGregor Smith, J. (2003). M/G/c/K blocking
probability models and system performance,
Performance Evaluation 52(4): 237–267.

MacGregor Smith, J. (2008). M/G/c/K perfor-
mance models in manufacturing and service
systems, Asia-Pacific Journal of Operational

Research 25(4): 531–561.

MacGregor Smith, J., Cruz, F. R. B. and van
Woensel, T. (2010a). Optimal server alloca-
tion in general, finite, multi-server queueing
networks, Applied Stochastic Models in Busi-

ness & Industry 26(6): 705–736.

MacGregor Smith, J., Cruz, F. R. B. and van
Woensel, T. (2010b). Topological network de-
sign of general, finite, multi-server queueing
networks, European Journal of Operational

Research 201(2): 427–441.

MacGregor Smith, J. and Daskalaki, S. (1988).
Buffer space allocation in automated assem-
bly lines, Operations Research 36(2): 343–
358.

Powell, M. J. D. (1964). An efficient method for
finding the minimum of a function of sev-
eral variables without calculating derivatives,
Computer Journal 7: 155–162.

Anais do XX Congresso Brasileiro de Automática 
Belo Horizonte, MG, 20 a 24 de Setembro de 2014

248




