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Abstract— The uncapacitated fixed-charge network flow (UFNF) problem results from the combination of the
Steiner problem in graphs and the minimum cost network flow (MCNF) problem. It is a very important mixed-
integer programming problem with many applications for the real world. In this paper, we investigate the use of
an additional constraint that enforces the presence of a minimum number of arcs in the set of feasible solutions.
Computational results and statistical analysis are presented showing that our approach is quite promising.
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1 Introduction

Network design and planning in engineering sys-
tems requires policy decisions, analysis of in-
vestment strategies, technical and development
plans, in order to guarantee service performance
and quality at minimal cost. Telecommunica-
tion, transportation and electrical system network
planning must satisfy the expected demand for
new services and upgrade and improve the exist-
ing network. The aim is to explore the hierar-
chical organization of each network and propose
integrated network models as a decision support
system. In this context, we have focused solu-
tions for basic urban mapping data capture and
the analysis of data, using a Geographic Informa-
tion System (GIS), and systems for network opti-
mization (Mateus et al., 1996).

The uncapacitated fixed-charge network flow
(UFNF) problem is a network model that raises
optimization aspects of dimensioning, topological
design, routing and location of facilities. In this
sense, 1t can be applied in network planning to
explore the design aspects in the different levels
of an hierarchical modeling approach.

We define the UFNF problem on a digraph
D = (N, A), where N is the set of nodes and A
is the set of arcs. One of the costs involved is the
fixed cost of using an arc to send flow and the
other is a variable cost dependent on the amount
of flow sent through the arc. The objective is
to determine a minimum cost arc combination
that provides flows from certain nodes, the supply
nodes, to the demand nodes, possibly using inter-
mediate Steiner or transshipment nodes. Figure 1
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Figure 1. The UFNF Problem.

illustrates an instance of the problem.

This problem is clearly NP-hard since it gen-
eralizes the Steimer problem in graphs (Beasley,
1984), which is known to be A"P-hard (Garey and
Johnson, 1979). The model has applications for
distribution, transportation, and communication
problems and it is also useful for certain routing
problems.

In the field of distribution systems, a prob-



lem of designing offshore natural-gas pipeline sys-
tems was treated by Rothfarb et al. (1970), using
this model. In the problem, the central separation
plant is located on land and typically serves mul-
tiple offshore under-water gas wells. The problem
i1s how to transport gas from the offshore wells to
the separation plant at minimum cost. An im-
portant characteristic of gas pipelines systems is
that the construction cost consists of fixed compo-
nents that are independent of the amount of flow
and variable components which are proportional
to the amount of flow.

In the work of Luna et al. (1987), the switch-
ing center network problem was solved using a
similar model. The switching center network de-
sign problem consists of looking for a topology on
the urban street network that minimizes the to-
tal cost of cables and subterranean piping infras-
tructure necessary to link a telephone center and
its subscribers. The fixed cost models the subter-
ranean infrastructure and the flow-dependent cost
models the cables.

The UFNF model is also useful in those cases
where the network topology exists. Important
routing problems emerge in existing networks.
Suppose for example that one specific node in the
network has to send messages at minimum cost
addressed to a specific collection of other nodes
in the network. The UFNF model is applicable
since it is a reasonable assumption that an initial
set up cost i1s associated with each link selected
independent on the flow as well as a variable cost
dependent on how much information has to be
sent.

The main purpose of this paper is to investi-
gate possible performance improvements, in the
context of exact branch-and-bound algorithms,
caused by enforcing a minimum number of arcs
to be present in all feasible solutions of the UFNF
problem.

The paper is outlined as follows. In Section 2,
we present a mathematical programming formu-
lation for the UFNF problem, discuss some algo-
rithms studied previously, and propose a new one.
In Section 3 and 4, computational results and sta-
tistical analysis are presented and discussed. Sec-
tion 5 closes the paper with the presentation of
open questions and final remarks.

2 Formulation and Solution

One possible mixed-integer mathematical pro-
gramming formulation for the UFNF problem is:

(M):

min Z (cijeij + fijuij) (1)

(i,j)€A
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s.t.:
_ Z dn, Vi€ S,
Z Ty — Z Ty = k€D vieT, (2)
JE6~(4) JE6F(4) d; Vie D,
wij < (Z dk) vis W(ir5) € A, 3)
keD
x5 > 0,Y(i,5) € A, (4)
Yiy € {071}7V(i7j) € A, (5)

where ¢;; is the variable cost per unit of flow on
arc (7, j), fi;j is the fixed cost of having flow on arc
(i,9), 5+(3) = {il (i) € AY, 6=() = (] (3. 1) €
A}, d; is the demand at node 7, S is the set of
supply nodes, T 1s the set of Steiner nodes, and
D is the set of demand nodes.

Of course, multiple supply nodes are possible
with the model but, for the sake of the argument,
only one supply node is treated in this paper. We
also assume the fixed costs f;; are non-negative
and the variable costs ¢;; are unconstrained. How-
ever, to make sure that the objective function 1s
bounded from below, we assume that there are no
negative-cost direct cycles with respect to ¢;;.

2.1 Previous Algorithms

Some experimental work concerning approximate
and exact solutions for the UFNF problems and
their special cases has been done previously. An
analysis of offshore natural-gas systems was done
in Rothfarb et al. (1970), with the cost model
being simplified including only fixed costs. In
Luna et al. (1987), the model studied was even
more complex than the UFNF problem, present-
ing some additional features. However, only
heuristic procedures and local optimization tech-
niques were considered.

The special case without Steiner nodes was
treated by Magnanti et al.  (1986), and by
Hochbaum and Segev, (1989). In the former, an
exact branch-and-bound algorithm combined with
Benders cuts was studied and, in the latter, a set
of heuristic procedures based on Lagrangean re-
laxation techniques (Geoffrion, 1974) was devel-
oped. Some other special cases were solved ex-
actly by Barr et al. (1981), Cabot and Erenguc
(1984), and Suhl (1985), by means of fractional
cutting-plane algorithms.

Concerning the general UFNF problem, we
have noticed contributions on approximate and
exact methods. Tn Mateus et al. (1994), ADD
and DROP heuristic approaches were studied. In
Cruz et al. (1994), a Lagrangean relaxation based
heuristics was proposed. In another work of Cruz
et al. (1998), a successful exact branch-and-bound
algorithm was developed. The exact algorithm
proposed by them employs the Lagrangean relax-
ation of constraints (3) to compute the lower and



upper bounds of model (M).

Indeed, defining Ky C A as the set of arcs
that have been positively identified, by some re-
duction method, as not-present in an optimal solu-
tion, K1 C A as the set of arcs that have been pos-
itively identified as present in an optimal solution,
and K = A\ Ko\ K as the set of free or undefined
arcs, and dropping the capacity constraints (3) by
means of dual variables w;; > 0,V(4,j) € K, the
following Lagrangean function results:

Lx,y;w)= > (cijaij+ fijyij) +
(Zv]>EA

(i,j)eK keD

(6)

Consequently, the Lagrangean relaxation of
the model (M) may be written:

(LRw):
L(w) = min{L(x,y; w) s.t.: (2),(4),(5), w > 0']%.

For any feasible Lagrangean multiplier vec-
tor, w > 0, the solution of (7) is a lower
bound for the original problem since the quan-
tity Z(lﬁ]’)EK w7 — (ZkeD dr)y;;*] is always
non-positive, considering L(w) = L(x*,y*;w)
(Fisher, 1985). Thus, the lower bound compu-
tations reduce to solving two easy (polynomial)
subproblems: (i) a minimum cost network flow
(MCNF) problem in x and (ii) a set-selection
problem in y.

The problem in x, model (LR;) below, is solv-
able in polynomial time applying the O(|N| |A|)
shortest simple paths algorithm for arbitrary costs

developed by Glover et al. (1985):
(LRl):
min Z Ci]'l‘i]', (8)
(1,j)EA
s.t.:

_ Z dy, Vi€ S,

Do D wu=q  keP vier, )
jes= (i) JE8F(H) d Vi€ D,

zi; > 0,Y(4,j) € K, (10)
zi; < Z dy,¥(4,7) € K1, (11)

keD
x> 0,Y(i,5) € K1, (12)
z; = 0,Y(i,) € Ko, (13)

where
g, V(ij)ER

Cii = L 2o U oo (14
ij { Cijs V(Z,j)eA\[\( )

The problem in y, model (LRs) below, is also
polynomially solvable employing an O(|A]) algo-
rithm, since all we need to do is to set to 1 all y;;’s

for which Fj; < 0 holds:

(LRQ):

min Z Fi]'yi]', (15)
(Zv]>EA
s.t.:

vij €40,1},  V(i,j) €K, (16)
vij =1,  V(i,j) € Ky, (17)
yi; =0, Y(i,j) € Ko, (18)

where

) f e (D dy) VY(i,j) € K,

B _{ f o Ter V(i) ek, (19

2.2  Proposed Algorithm

Our proposal is based on the algorithm developed
by Cruz et al. (1998). As noted by them, the
lower bounds obtained by the Lagrangean relax-
ation (L Ryw) are usually poor and the objective of
this work 1s to present computational experiments
in which the modified set-selection problem is ap-
plied instead:

(LRL):

min Z Fijui;, (20)
(1,j)EA
s.t.:

vij €40,1}, V(i j) € K, (21)
vi=1, (i j) €K, (22)
yi; =0, Y(i,j) € Ko, (23)
V>, (24)

where Y = {(4, j)| yi;; = 1} and = is the minimum
number of arcs that must be present in the solu-
tion, 7.e. the minimum cardinality of set Y.

For small values of v, the added constraint
(24) is clearly redundant. Tts inclusion does not
change the optimum of the original model (M).
This new problem in y, (LR}), although compu-
tationally harder, can also be solved polynomially,
O(]A| log|A|). That increment in the complexity
is caused by a sorting step that must be included
in the solution algorithm.

An important question is whether or not con-
straint (24) can tighten up the lower bounds con-
sequently improving the performance of branch-
and-bound algorithms.

3 Experimental Results

A preliminary version of the algorithms described
here were coded in C. The implementations are
available from the authors upon request. All
tests presented were performed using a worksta-
tion Sun® Ultra 1 Model 140, RAM 128 MB, run-
ning the SunOS (Sun operating system), Release

2Sun Microsystems, Inc.



Table 1. Computational Results (|N| = 16, |4| = 60, and |D| = 6).

Algorithms Based on Model (LRL)

Based on (LR>) vy =10 ~ =|D] vy =[Y]*
fij/ei; Block |Y|* Nodes CPU(s) Gap* Nodes CPU(s) Gap* Nodes CPU(s) Gap* Nodes CPU(s)
100 B1 10 3,875 110.00 71.00 3,875 170.00 60.00 6,053 270.00 42.00 2,231 110.00
B 9 201 8.10 69.00 201 12.00 56.00 215 14.00 38.00 65 5.00
Bs 7 157 6.70 75.00 157 11.00 50.00 283 17.00 39.00 135 7.70
By 7 359 12.00 62.00 359 17.00 38.00 255 12.00 31.00 55 3.40
Bs 8 683 21.00 73.00 683 33.00 60.00 831 41.00 50.00 519 25.00
10 B1 10 2,533 71.00 62.00 2,533 110.00 53.00 4,201 180.00 36.00 1,431 69.00
B 9 183 7.00 61.00 183 10.00 48.00 183 11.00 31.00 49 3.40
Bs 7 97 4.40 66.00 97 6.90 44.00 263 15.00 36.00 131 7.30
By 7 119 4.20 52.00 119 6.40 32.00 63 3.40 26.00 15 1.10
Bs 8 497 15.00 65.00 497 23.00 53.00 565 26.00 44.00 347 17.00
1 B1 10 245 7.70 28.00 245 12.00 24.00 369 18.00 17.00 147 7.00
B 9 59 2.50 29.00 59 3.90 27.00 133 8.30 20.00 31 2.20
Bs 8 25 1.60 32.00 25 2.50 22.00 45 2.90 13.00 3 0.48
By 7 33 1.10 22.00 33 1.70 15.00 29 1.30 12.00 9 0.73
Bs 8 7 2.90 32.00 7 4.50 27.00 7 4.20 23.00 49 2.40
0.1 B1 10 7 0.52 4.30 7 0.77 3.70 11 0.96 2.60 5 0.55
B 9 61 1.70 5.60 61 2.70 4.60 71 3.10 3.40 25 1.30
Bs 8 1 0.20 5.10 1 0.29 3.50 1 0.28 2.10 1 0.27
By 7 9 0.46 4.00 9 0.70 2.80 9 0.66 2.50 9 0.70
Bs 8 1 0.22 5.60 1 0.32 5.30 13 0.82 4.70 1 0.35
0.01 B1 10 1 0.20 0.45 1 0.28 0.39 1 0.28 0.27 1 0.31
B 8 25 0.73 0.73 25 1.10 0.63 25 1.10 0.55 1 0.31
Bs 8 1 0.20 0.55 1 0.29 0.38 1 0.28 0.22 1 0.27
By 7 1 0.19 0.42 1 0.26 0.30 1 0.26 0.27 1 0.26
Bs 8 1 0.20 0.65 1 0.29 0.57 1 0.28 0.50 1 0.28
fGap (in the first node) = 100% x [(Best Upper Bound) — (Best Lower Bound)]/(Best Upper Bound)
Table 2. Analysis of Variance (Balanced Design).
Source Degrees of Freedom Sum of Squares Mean Square F p-value
Problems 4 268.195 67.049 17.45 0.000
Blocks (Problems) 20 76.835 3.842 42.37 0.000
Algorithms 3 8.261 2.754 30.37 0.000
Problem X Algorithm 12 1.494 0.125 1.37 0.204
Error 60 5.440 0.091 - -
Total 99 360.226 - - -

5.5.1. All test problems are single-supply-node
Euclidean graphs randomly generated using a pro-
cedure similar to one presented by Aneja (1980).
According to this procedure, node positions, arc
extremities, arc weights ;;, supplying node, and
demand nodes are randomly chosen using a uni-
form distribution. Interested readers are encour-
aged to look at Aneja’s (1980) paper for further
details.

The problems actually solved were the di-
rected version of the graph generated, each edge
being substituted by two opposite arcs with the
same weight. All demands were considered uni-
tary. The costs f;; and ¢;; were derived from the
weights €2;; using the constant factors 1, 10, and
100. All CPU times reported are the elapsed time,
in seconds, to solve the instance, excluding all /O
operations and considering that only a single pro-
cess was running on the machine.

Table 1 presents the results of all computa-
tional experiments. For each of the 25 different
problems tested, Table 1 shows the ratio f;;/¢;;,
the number of arcs present in the optimal solu-
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tion, which was denoted by |Y|*. Tt also shows,
for each of the 4 algorithms tested, the gap in
the first node of the branch-and-bound search
tree (the gaps for the first two algorithms are the
same), the total number of explored nodes and
the CPU time, in seconds, spent by the algorithm
before optimality was reached. The first class
uses the ratio fj;/¢;; = 100, resulting in almost
Steiner problems, which are known to be N7P-
hard. On the other hand, the last class uses the
ratio fi;j/ci; = 0.01, being almost MCNF prob-
lems which are polynomially solvable. However,
we remind the reader that both classes still are
UFNF problems which are A'P-hard!

For each of these 25 problems, 4 different algo-
rithms were considered. The first one corresponds
to solve the problem using model (LRs), meaning
that the cardinality of set Y was let free. The sec-
ond uses model (LR%) and also let the cardinality
free?. These two cases are meant only to demon-
strate, in practice, the impact of model (LRY)
in the overall computation time. We remind the

bTo ensure free cardinality, we must set v = 0.
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reader that (LRY) is a problem computationally
harder than (LR3). In the remaining cases, the
minimum cardinality was fixed to different values
up to the value from which constraint (24) is no
longer redundant and could change the optimal
solution of the original UFNF problem®.

An immediate minimum cardinality for set Y
is | D| because at least one arc must enter into each
demand node. However, as we will shortly show
in the statistical analysis of the data, this bound
is not effective because it does not reduce sub-
stantially the number of nodes or the CPU times.
Finally, using the tightest bound possible (in Ta-
ble 1, see the last three columns) the best perfor-
mance was found. We now move on to the statis-
tical analysis of the data.

4 Statistical Analysis

Looking at Table 1 and considering that the exper-
iments were properly randomized, it is possible to
recognize a two-factor experiment (problems and
algorithms) with repeated measures on one fac-
tor (algorithms). For additional details on this
matter, we recommend e.g. Neter et al. (1990).
In this analysis of variance, both factors, prob-
lems and algorithms, are of equal interest, as is
the possibility that these factors interact.

Now, let us consider a mathematical model
that might describe such a design. The model as-
sumes that the response variable Yj;; (CPU time)
may be represented by the sum of the general
mean g, the factor A (problem) main effect «;,
the factor B (algorithm) main effect 3, the inter-
action effect (@f3);5, and the subject (block) main
effect, denoted by p;(;), recognizing that in this
design the subject effect 1s nested within factor

“Unfortunately, at the present stage of our research, we
are only able to determine these values by the computation
of the original UFNF problem optimal solution.
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A. The model is as follows:
Yijh = p Fpiciy+ o+ Br +(af)jr +e@jr), (25)

where g 1s a constant, pi(j) are independent
N(O,Uz), «; are constants subject to Y «; = 0,
By are constants subject to > 8 = 0, (af)jr
are constants subject to Zj(aﬁ)jk = 0 for all
k and 3" (aB);r = 0 for all j, egjz) are inde-
pendent N(0,0%), and i = 1,...,n, j = 1,...,a,
k=1,...,b.

The response variable actually taken is the
log, of the CPU time which is the transformation
usually applied to situations in which the response
is the time until occurrence of some event of in-
terest (Lawless, 1982). Adjusting the model (25)
and considering that all assumptions associated
with this analysis were validated, we may proceed
with the analysis of variance. With the help of
the package MINITAB? for WINDOWS? | we have
obtained the results presented in Table 2. Regard-
ing the p-value column, we remark that the data
show strong evidence that the problems and the
algorithms have a significant effect in the response
variable and that there is no interaction between
these two factors for the problems tested.

Further, using the Duncan method for mul-
tiple comparison of means (Neter et al, 1990),
we formed the 90% confidence intervals for the
estimated means presented in Figure 2. The
data show some evidence that the algorithm with
v = |Y|* performs better than the others. The
data also confirm what we suspected that prob-
lems with higher f;; /¢;; ratio, which are closer to
the Steiner problems, are significantly harder to
tackle, no matter which algorithm is applied.

4Copyright © 1996, Minitab Inc.
“Copyright © 1981-1996, Microsoft Corp.



5 Conclusions and Final Remarks

Computational experiments concerning the use of
the alternative model (LR%) to solve the UFNF
problem to optimality were presented. This model
fixes the minimum number of arcs that will be
present in the optimum solution of the UFNF
problem. Although the solution process can be
significantly accelerated by model (LR%) when
good bounds for 7 are in use, it was shown that it
is not effective to use poor bounds for . Signif-
icant improvements were reached using tight val-
ues for 4. It is remarkable that the improvements
are closely related to the reduction in the gap
in the first node of the branch-and-bound search
tree. However, some research questions remain
open. Would it be easy to determine a value for
v tight enough to yield further reductions in pro-
cessing time/? Does the behavior observed for
the networks tested here occur in different topolo-
gies with more and less demand points, sparseness,
etc.? A possible extension of this work might in-
clude the investigation of these research questions.
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