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Abstract — A number of recent research stud-

ies have applied queueing theory as an approximate

modeling tool to mathematically describe industrial

systems, which include manufacturing, distribution,

and service, for instance. Among the main observ-

able characteristics in queues, the number of users in

the system can be controlled to keep waiting times as

minimal as possible. The design of efficient control

charts is an attempt to monitor and control such sys-

tems. Control charts are proposed to monitor infinite

queues with Markovian arrivals, exponential service

times, and s identical parallel servers. The proposed

charts monitor traffic intensities, which are the ratio

between the arrival rate and the service rate, esti-

mated through the number of users in the queueing

system at random epochs. The effectiveness and ef-

ficiency of the proposed approaches in terms of the

average run lengths are established by a comprehen-

sive set of Monte Carlo simulations.

Keywords — Quality control; attribute control charts; Marko-

vian queues; average run length.

1 Introduction

T
he use of queueing models has been the subject of
a number of research studies [10, 29, 36], mainly

due to their ability to approximately represent indus-
trial systems [9, 12, 34]. In general, basic queueing mod-
els are applied as approximations for complex computer
and telecommunication networks [25, 30], manufacturing
and service systems [11, 16, 28, 39], and, more recently,
healthcare systems [2, 3, 47], among others. In partic-
ular, M/M/s queues are one of the most basic queue-
ing models [18], which, in Kendall notation, stand for
Markovian arrivals with rate λ, exponential service times
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with average 1/µ, and s parallel identical servers. De-
spite their simplicity, these models may find application
in real-life systems [11].
Queueing models in general and M/M/s queues in

particular are especially useful when predicting perfor-
mance measures from the systems they model, such as
the empty system probability (P0), expected number of
customers in the systems (L), expected number of cus-
tomers in the queue (Lq), expected time in the sys-
tem (W ), and expected time in the queue (Wq). The
first three previous performance measures can be derived
from the traffic intensity, defined as the ratio ρ = λ/sµ,
and ρ can be simply estimated by observing the number
of users in the systems at random epochs [11]. Given the
importance of the traffic intensity, this paper addresses
the challenge of monitoring its values through a control
chart.
In other words, the goal is to propose control charts to

efficiently monitor changes in traffic intensity ρ. Thus, let
us suppose that the process under analysis requires the
identification of a reduction or an increase in ρ from ρ0
to another unknown value ρ1 6= ρ1 after a random time,
which is equivalent to the following hypothesis testing:

{

H0 : ρ = ρ0,
H1 : ρ 6= ρ0,

after a random time. To justify the use of ρ 6= ρ0 as
an out-of-control case, it is considered that low and high
values of ρ mean, respectively, that a greater or a lower
number of servers than necessary are in use, consequently
leading to system settings that are too expensive or too
slow. That is, ρ0 is acceptable to customers in terms of
short waiting times and is economically viable in terms
of the low number of servers s.

The problem of designing a control chart for ρ involves
fixing the type I error α, that is, the probability of false
alarms that indicate that H0 should be rejected, deter-
mining the lower control limits (LCL) and upper control
limits (UCL) such that

P (LCL < ρ̂ < UCL)| ρ = ρ0) = α, (1)

in which ρ̂ is some estimate for ρ based on a sample
X = {X1, X2, . . . , Xn} from the number of customers in
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Figure 1: Control chart for ρ (phase I, 1–20; phase II, 21–60).

the M/M/s queueing system at n random epochs. In
other words, the control limits LCL and UCL are such
that

∫ UCL

LCL

f(ρ|H0)dρ = α, (2)

in which f(ρ|H0) is the probability density function of
the estimator.
Note that a traditional Shewhart-type 6σ control chart

based on the normal distribution of the estimator ρ has
a correspondent type I error (false alarm) probability of
α = 0.002699796 and, consequently, an average length
run under H0, ARL0, equal to 1/α ≈ 370.3983, as given
by the geometric distribution. Additionally, such a con-
trol chart would ideally have an average length run under
H1 of ARL1 = 1/(1− β), with β being the type II error
(failure in rejecting H0) probability, which should be as
short as possible. Figure 1 shows a control chart for
ρ for simulated data, using ρ0 = 0.70 and type I error
α ≈ 0.002699796 to yield ARL0 ≈ 370.3983. Phase I
goes from 1 to 20, that is, data from 1 to 20 are col-
lected at in-control state H0, and the upper and lower
control limits are computed. Then, phase II goes from
21 to 60 with data collected at an out-of-control state,
with ρ = ρ1 > ρ0 for data from 21 to 40 and ρ = ρ1 < ρ0
for data from 41 to 60.
The problem of developing control charts specifically

for queues has existed for quite some time. One of the
first times the problem appeared in the literature was
in an attempt to control the traffic intensity in general
single-server M/G/1 and GI/M/1 queues [6]. The prob-
lem appeared in the literature as an example of a gen-
eral control chart for attributes when a new control chart
for the M/M/s queueing model was developed by Shore
[44] for the number of customers in the queueing system
(either being served or waiting). Shore later extended
this control chart to monitor the queue length in a more
general G/G/s queue [45]. Both charts stated their effi-
ciency in terms of the nominal tail areas [44, 45]. Vari-
ants were developed some time later to efficiently mon-
itor the queue length in pure Markovian single-server

queues, M/M/1, and extensions by means of Shewhart-
type control charts [23], control charts using the method
of weighted variances for the random queue length [13],
and a cumulative sum (CUSUM) scheme [7], with the
performance of these charts given by the average run
lengths (ARL) and the false alarm rate α. Markovian
Erlang-serviced single-server queues, M/Ek/1, were the
object of a study [40] in which control charts were pro-
vided to control limits for the random queue length so
that customers could have a prior idea about expected
waiting times, maximum waiting times, and minimum
waiting times based on the central line, the upper con-
trol limit, and the lower control limit of the chart so that
the performance would be improved. Another extension,
Markovian infinite server queues, M/M/∞, was treated
in terms of Shewhart-type control charts to control the
random queue length [38], with the performance com-
pared using the average run length (ARL) as the perfor-
mance measure. However, the random queue length is
not the only control variable that has been used. Marko-
vian single-server queues were also successfully controlled
by means of the traffic intensity [4]. Even sophisticated
schemes were proposed to consider data auto-correlation
by means of control charts based on the weighted likeli-
hood ratio test (WLRT) [42], for which numerical results
and an illustrative example were presented to assess the
performance of the proposed WLRT chart as satisfactory.

Although we have chosen to stop here, as many refer-
ences could easily be added to the above list, to the best
of our knowledge, control charts for controlling the traffic
intensity in Markovian multi-server queues that consider
the problem of estimating the parameters have not been
treated in the literature. Thus, we propose control charts
to control traffic intensity ρ as a way of controlling ρ itself
and indirectly P0, L, and Lq.

The remainder of this paper is organized as follows.
Section 2 details the methods developed. Results from
computer simulations and a detailed discussion to sup-
port the quality of the proposed approach are presented
in Section 3. Finally, Section 4 concludes the paper with
final remarks and some topics for future research in this
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area.

2 Material and Methods

2.1 Inference in M/M/s Queues

Fixing the traffic intensity, 0 < ρ < 1, theM/M/s queue-
ing system has a stationary distribution if it is in equi-
librium. From the theory developed for the birth-death
process (for instance, see Gross et al. [18]; Ross [43];
or Bhat [5]), the stationary distribution of the number
of customers (N) in the system at random epochs is ex-
pressed by

Pn ≡ P (N = n) =



















(sρ)n

n!
P0, 0 ≤ n < s,

ssρn

s!
P0, n ≥ s,

(3)

in which P0 ≡ P (N = 0) is given by the usual boundary
condition that the probabilities must sum to 1 as follows:

P0 =





s−1
∑

j=0

(sρ)j

j!
+

(sρ)s

s!

1

1− ρ





−1

. (4)

The focus here is on the traffic intensity ρ, which is
somewhat in contrast to several existing studies in which
inferences are performed on λ and µ. Thus, it is neces-
sary to observe the system at sufficiently spaced random
epochs to avoid correlation to generate data ensuring
that the data-generating process is consistent with the
probability distribution in Eq. (3). Then, assuming that
the number of customers found in the queue is xi and
that x = {x1, x2, . . . , xn} constitutes our sample of size
n, the corresponding likelihood function is

L(x|ρ) =
n
∏

i=1

[

(sρ)xi

xi!
P0I{0≤xi<s} +

ssρxi

s!
P0I{xi≥s}

]

,

(5)
where I{•} is the indicator function. Again, to ensure
independence of the sample observations, they must be
sufficiently spaced in time. The value that maximizes the
likelihood function is known as the maximum likelihood
estimator (MLE) for ρ; that is,

ρMLE = argmax0<ρ<1L(x|ρ), (6)

in which ρMLE is the maximum likelihood estimator for ρ.
However, because the likelihood function given by Eq. (5)
is not algebraically simple, it is necessary to conduct a
numerical search to find an estimate for the traffic inten-
sity, ρ̂MLE, given an observed sample x. Among all the
different numerical methods that can be used to compute
its value, the Golden-section method was chosen because
of its efficiency, efficacy, and simplicity [41]. The method
is shown in Figure 2. For an in-depth view on estimation
in M/M/s queues, see Suyama et al. [46]

algorithm
Epsmlemms← 1.0E− 03; % accuracy value
iter← 50; % maximum number of iterations

τ ←
(√

5− 1
)

/2; % golden proportion coefficient
a← 0; b← 1;
c← b− τ(b− a);
d← a+ τ(b− a);
k ← 1;
while abs(d− c) > Epsmlemms and k < iter

if L(x|c) > L(x|d) then
b← d;

else
a← c;

endif
c← b− τ(b− a);
d← a+ τ(b− a);
k ← k + 1;

endwhile
ρ̂MLE ← (a+ b)/2;

end algorithm

Figure 2: Golden section algorithm.

2.2 Control Charts for M/M/s Queues

In the construction of Shewhart-type control charts to
monitor traffic intensity ρ by determining symmetrical
control limits based on the approximate normal distribu-
tion, the desired value of ARL0 = 1/α ≈ 370.3983 may
not be reached depending on the sample size [21, 19, 20].
Thus, different procedures must be proposed. In fact,
Figure 3 shows a histogram for 10,000 maximum likeli-
hood estimates for the traffic intensity, ρ̂MLE, for small
samples of size n = 50 drawn from queueing systems
with known ρ = 0.80. Such approximation by a normal
distribution may not be ideal and may lead to errors.
Thus, to determine the upper and lower control limits,
UCL and LCL, respectively, we propose methods based
on bootstrapping and kernel estimation as follows.

ρ̂MLE

D
en

si
ty

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0
5

10
15

Normal approximation
Kernel approximation (Epanechnikov)

Figure 3: Empirical distribution of ρ̂MLE for ρ = 0, 80,
and n = 50.
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Figure 4: The bootstrap standard deviation method.

2.2.1 Bootstrap Standard Deviation (BSD) Control
Chart

Proposed by Efron [14], bootstrapping is a well-known
computationally intensive technique. The bootstrap
scheme is illustrated in Figure 4, where, in its non-
parametric version, B re-samplings with replacement x(i)

(typically B ≥ 200) are drawn from the original sample
x (collected under H0), and the maximum likelihood es-
timates of the traffic intensity are obtained for each of
them, ρ̂MLE(i). The bootstrap method can be partic-
ularly useful in situations where the distribution of the
parameter of interest is unknown [15], as is the case here.
In fact, the use of the bootstrap method in control charts
goes back to the work of Zhang & Wang [50], where com-
parisons were made with the traditional Shewhart-type
control charts, and the results were encouraging. A close
view of bootstrap control charts can be seen in the work
of Jones & Woodall [22], where extensive computer simu-
lations were provided to assess the performance of boot-
strap control charts in terms of the average run length
(ARL). Since then, several bootstrap control charts have
been developed with successful results, such as control
charts for Weibull percentiles [37], Birnbaum-Saunders
percentiles [31], inverse Gaussian percentiles [32], and au-
tocorrelated process data [33] and bootstrap-based max-
imum multivariate cumulative sum charts [24], among
others.

One possible way to determine the upper and lower
control limits UCL and LCL, respectively, is by means of
the bootstrap standard deviation. The average ¯̂ρMLE and
the standard deviation sρ̂MLE

of the MLE obtained from
the B bootstrap samples are calculated. Considering α =
0.002699796, for the traditional 6σ limits, the upper and
lower control limits become

{

UCLBSD = ¯̂ρMLE + 3× sρ̂MLE
,

LCLBSD = ¯̂ρMLE − 3× sρ̂MLE
.

(7)

2.2.2 Percentile Bootstrap (PB) Control Chart

Another option considered here is the use of percentiles
(1−α

2 )×100% and α
2×100% of the B bootstrap estimates

ρ̂MLE(•), that is (for a 6σ control chart and respective
α = 0.002699796),

{

UCLPB = ρ̂MLE(•);(99.86501020),
LCLPB = ρ̂MLE(•);(0.13498980).

(8)

2.2.3 Kernel-based (KB) Control Chart

Because the density probability function f(ρ) of the max-
imum likelihood estimator (represented here for simplic-
ity without the subscript) is unknown, the control limits
cannot be calculated from Eq. (2). A possible way to
address this difficulty is through a kernel estimator, a
tool that can reveal the density behind a sample of m
estimates, ρ̂ = {ρ̂(1), ρ̂(2), . . . , ρ̂(m)}, in which ρ̂(i) is a
bootstrap maximum likelihood estimate as defined ear-
lier. The classical model is the Parzen-Rosenblatt esti-
mator,

f̂h(ρ) =
1

mh

m
∑

j=1

k

(

ρ− ρ̂(j)

h

)

, (9)

in which k(x) is the kernel function, assumed to be a
symmetric probability density function (such as a nor-
mal distribution), ρ̂ is the maximum likelihood estima-
tor, and h is a smoothing parameter called the bandwidth
[48].

Concerning the density function, k(x), although a
Gaussian kernel is typical, the specialized kernel pro-
posed by Zhang et al. [51] is used here to overcome
the problem of estimating a strictly positive function do-
main (that is, 0 < ρ < 1). It is worth mentioning that
other alternatives are possible, including recently devel-
oped kernels [1, 26, 27], but in the past, Zhang et al.’s
method has performed well for inference in queues [12].
The use of this method results in the following estimator
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after a data transformation, g(x) = x+dx2+Adx3, with
A > 1/3 and d = f ′(0)/f(0):

f̂h(ρ) =
1

mh

m
∑

j=1

[

kE

(

ρ− ρ̂(j)

h

)

+ kE

(

ρ+ g(ρ̂(j))

h

)]

,

(10)
in which kE(x) is the Epanechnikov kernel, kE(x) =
3
4 (1 − x2)I{−1≤x≤1}, defined in terms of the indicator
function I{•}.
Concerning the optimal window, hopt, its value may

be estimated by using the mean integrated squared error
(MISE),

MISEm(h) = E

[∫ ∞

−∞

{

f̂h(ρ)− f(ρ)
}2

dx

]

, (11)

which is commonly used to evaluate the performance of
the kernel estimation of the density function. The opti-
mal window is given by the minimum of Eq. (11), that

is, when dMISE(h)
dh

= 0, which produces (see the details
in Chiu [8], for instance)

hopt =







∫∞

−∞
k2(x)dx

{

∫∞

−∞
x2k(x)dx

}2
∫∞

−∞
{f ′′(x)}2dx

1

m







1
5

.

(12)
Note that

∫∞

−∞
k2(x)dx is easily computed once a ker-

nel is chosen,
∫∞

−∞
x2k(x)dx is the variance of the chosen

kernel, and G =
∫∞

−∞
{f ′′(x)}2dx is the only unknown

quantity in the right-hand side of Eq. (12). The plug-in
method proposed by Chiu [8] obtains a bandwidth esti-
mate by replacing G with the following estimate of G:

Ĝ =
1

π

∫ Λ

0

λ4

{

|φ̂(λ)|2 − 1

m

}

dλ. (13)

In Eq. (13), Λ is the first value of λ such that |φ̂(λ)|2 ≤
c/n for some constant c > 1 (after some experimentation,
it was found that c = 3 yields an estimator with the
smallest variance), and φ̂(λ) is the sample characteristic
function

φ̂(λ) =
1

m

m
∑

j=1

exp
(

iλρ̂(j)
)

. (14)

From the definition of the sample characteristic func-
tion, Eq. (14), it follows that

|φ̂(λ)|2 =

[

∑m

j=1 cos(λρ̂(j))

m

]2

+

[

∑m

j=1 sin(λρ̂(j))

m

]2

.

(15)
After finishing the estimation of the probability den-

sity function of the MLE estimator, f̂h, the control limits
can be found by means of Eq. (2) and some numerical
integration method, considering that the upper control

limit (UCL) corresponds to the
(

1− α
2

)

×100% percentile

of f̂h and the lower control limit (LCL) corresponds to

the α
2 × 100% percentile of f̂h, that is,















UCLKB =
{

ρ∗|
∫ ρ∗

−∞

f̂h(ρ)dρ = 1− α

2

}

,

LCLKB =
{

ρ∗|
∫ ρ∗

−∞

f̂h(ρ)dρ =
α

2

}

.

(16)

3 Numerical Results

An implementation in MATLAB [35] has been devel-
oped and used to verify the efficiency of the proposed
approaches. The code is available from the authors upon
request for educational and research purposes. In the fol-
lowing paragraphs, computational results are presented
and discussed.
In production processes, the performance of the con-

trol chart is usually measured in terms of the number of
samples until a signaling is observed. The most com-
monly used metric is the average run length (ARL).
When a process is in-control, ARL0 values as large as
1/α ≈ 370.3983 are desirable, where α = 0.002699796 is
the type I error (false alarm) probability in a 6σ control
chart. On the other hand, when the process is out-of-
control, small values of ARL1, given as 1/(1 − β), are
preferable, where β is the type II error (failure in re-
jecting H0) probability. Table 1 shows the simulation
results for the usual 6σ control charts for queueing sys-
tems with s = 4 servers, three different sample sizes
n = {50, 100, 200}, four different deviations from H0

δ ≡ ρ1 − ρ0 = {−0.10,−0.05, 0.05, 0.10}, B = 100, 000
bootstrap replications, and 100,000 Monte Carlo repli-
cates.
Table 1 shows that the performance of the proposed

control charts presents an expected pattern. In fact, un-
der H0, the average value of ARL0 is around 1/α ≈
370.3983. On the other hand, under H1, the aver-
age run length tends rapidly toward 1 as the distance
|δ| = |ρ1 − ρ0| increases and the sample size increases.
Table 1 is summarized by Figures 5-(a) to -(f). In gen-

eral, the values of ARL0 are the highest on average for
the KB control charts. Although sometimes exceeding
the nominal value 1/α ≈ 370.3983, the KB control charts
provide the longest time between false alarms, as seen in
Figures 5-(a) through -(c). Comparing the BSD charts
with the PB charts, the latter are preferable under low
traffic intensities (i.e., ρ ≤ 0.50) but not under high traf-
fic intensities (that is, ρ > 0.50) considering when the
PB charts outperform the BSD charts in terms of the
ARL0 mean values, as Figure 5-(a) shows. As the sam-
ple size increases, all three control charts present ARL0

values that go to the nominal value on average, as seen
in Figure 5-(b). As expected, the ARL0 values are on
average independent of δ, as presented in Figure 5-(c).
Concerning ARL1, the PB charts present the lowest

mean values and should be preferable if the out-of-control
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Table 1: Performance evaluation.

BSD chart PB chart KB chart

ρ0 sample size ρ1 s ARL0 ARL1 ARL0 ARL1 ARL0 ARL1

0.10 50 0.01 4 416.67 1.00 245.10 1.00 510.20 1.00

0.05 4 413.22 7.54 244.50 2.98 510.20 4.51

0.15 4 411.52 3.90 242.13 3.90 510.20 4.94

0.20 4 408.16 1.18 243.31 1.18 510.20 1.24

100 0.01 4 284.90 1.00 296.74 1.00 366.30 1.00

0.05 4 286.53 1.55 303.95 1.39 374.53 1.39

0.15 4 284.90 1.76 296.74 1.93 367.65 2.14

0.20 4 287.36 1.01 303.03 1.01 371.75 1.01

200 0.01 4 324.68 1.00 295.86 1.00 429.18 1.00

0.05 4 326.80 1.02 297.62 1.01 432.90 1.01

0.15 4 325.73 1.12 296.74 1.14 427.35 1.17

0.20 4 321.54 1.00 293.26 1.00 423.73 1.00

0.30 50 0.20 4 429.18 2.84 262.47 2.11 434.78 2.43

0.25 4 425.53 31.10 262.47 16.26 436.68 22.26

0.35 4 432.90 16.30 263.85 16.29 432.90 20.27

0.40 4 431.03 2.58 265.25 2.58 434.78 2.87

100 0.20 4 411.52 1.22 350.88 1.18 350.88 1.18

0.25 4 404.86 8.79 344.83 7.42 384.62 7.42

0.35 4 401.61 6.94 341.30 6.94 380.23 7.91

0.40 4 404.86 1.33 344.83 1.33 384.62 1.37

200 0.20 4 398.41 1.00 354.61 1.00 389.11 1.00

0.25 4 392.16 2.67 349.65 2.49 434.78 2.67

0.35 4 395.26 2.77 350.88 2.77 384.62 2.94

0.40 4 393.70 1.02 349.65 1.02 384.62 1.02

0.50 50 0.40 4 387.60 3.41 331.13 3.89 395.26 4.49

0.45 4 390.63 23.12 296.74 29.01 400.00 36.87

0.55 4 390.63 42.75 333.33 19.92 396.83 19.92

0.60 4 390.63 4.06 333.33 2.82 396.83 2.82

100 0.40 4 363.64 1.52 318.47 1.58 401.61 1.65

0.45 4 362.32 9.72 318.47 11.00 401.61 12.47

0.55 4 371.75 12.24 321.54 8.61 403.23 9.35

0.60 4 369.00 1.55 318.47 1.40 400.00 1.44

200 0.40 4 406.50 1.03 334.45 1.04 408.16 1.04

0.45 4 403.23 3.54 337.84 3.75 408.16 3.98

0.55 4 406.50 3.89 338.98 3.25 408.16 3.40

0.60 4 408.16 1.04 340.14 1.03 373.13 1.03

0.70 50 0.60 4 212.31 2.04 347.22 3.00 404.86 3.24

0.65 4 211.86 10.33 352.11 21.84 411.52 25.18

0.75 4 213.68 49.85 352.11 8.84 377.36 9.36

0.80 4 214.13 2.21 348.43 1.35 373.13 1.37

100 0.60 4 248.76 1.16 362.32 1.30 383.14 1.30

0.65 4 248.76 4.47 357.14 7.36 398.41 7.92

0.75 4 246.91 7.38 362.32 3.88 362.32 3.88

0.80 4 246.91 1.07 362.32 1.03 362.32 1.03

200 0.60 4 334.45 1.00 362.32 1.01 386.10 1.01

0.65 4 327.87 2.02 362.32 2.40 390.63 2.46

0.75 4 334.45 2.10 367.65 1.69 396.83 1.71

0.80 4 336.70 1.00 361.01 1.00 386.10 1.00

0.90 50 0.80 4 132.63 1.00 369.00 1.01 384.62 1.01

0.85 4 132.63 1.44 369.00 2.32 384.62 2.27

0.95 4 133.51 1.16 362.32 1.01 387.60 1.02

0.99 4 131.93 1.00 355.87 1.00 390.63 1.00

100 0.80 4 188.68 1.00 346.02 1.00 400.00 1.00

0.85 4 188.32 1.04 361.01 1.12 387.60 1.12

0.95 4 189.39 1.00 352.11 1.00 400.00 1.00

0.99 4 189.39 1.00 349.65 1.00 395.26 1.00

200 0.80 4 259.07 1.00 355.87 1.00 418.41 1.00

0.85 4 259.07 1.00 357.14 1.00 420.17 1.00

0.95 4 259.07 1.00 354.61 1.00 413.22 1.00

0.99 4 259.07 1.00 358.42 1.00 418.41 1.00
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Figure 5: ARL0 and ARL1 mean values for the proposed charts.
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state prevails in the queueing system. Furthermore,
ρ ≈ 0.50 are the toughest values for the traffic inten-
sity around which shifts out of the in-control state can
be identified, as seen in Figure 5-(d), with the highest
ARL1 values on average. Additionally, for extreme traf-
fic intensities (ρ → 0.10 or ρ → 0.90), all three control
charts are equally efficient for identifying out-of-control
shifts. Additionally, for sample sizes as large as 100 or
above, all three control charts present low ARL1 values
on average, as seen in Figure 5-(e), which also shows that
small samples of size 50 produce control charts that may
be too slow to detect out-of-control shifts. Finally, it is
worth mentioning the asymmetrical nature of the density
probability function (see Figure 1) that is evident from
the results presented in Figure 5-(f). Indeed, the BSD
control charts, which assume a normal approximation,
tend to have the highest ARL1 values on average if the
traffic intensity increases such that ρ1 − ρ0 ≈ 0.05. On
the other hand, the KB charts that attempt to take into
account such an asymmetry present the highest ARL1

values on average when the traffic intensity reduces such
that ρ1−ρ0 ≈ −0.05. More robust than these two charts,
the PB control charts exhibit the best performance. In
this sense, the KB control charts are preferable if the in-
control state prevails in the queueing system, but they
are less preferred if the process frequently shifts to an
out-of-control state, for which it is better to have a PB
chart controlling the system.

4 Conclusions

As previously noted by Green et al. [17], queueing mod-
els are important analytical tools to model complex en-
vironments. Although such models can never capture
all the characteristics of a real operating setting, it has
been demonstrated over the years that in a wide range of
real situations, queue models can be valuable in provid-
ing decision support that is able to significantly improve
the performance. In this paper, the problem of control-
ling the traffic intensity in Markovian multi-server queues
(M/M/s queues in Kendal notation), one of the basic
queueing models, was approached by means of three orig-
inal control charts: a chart based on normal approxi-
mation and bootstrap standard deviation (BSD control
charts), a percentile bootstrap (PB) control chart, and
a kernel-based (KB) chart. In the context tested, the
control charts produced results that make sense. That
is, when the system has an in-control state, high values
are obtained for the average run length under H0 (that
is, ARL0) around the nominal value 1/α ≈ 370.3983 in a
6σ control chart, and when the system is out-of-control,
low values close to 1 are obtained for the average run
length under H1 (that is, ARL1), which is encouraging.
Although the computational results seem to suggest the
use of KB control charts to monitor M/M/s queueing
systems under H0, these charts may not be ideal for
detecting shifts to H1, for which the PB control charts
present the smallest ARL1 values on average.

There are many directions for further research on this
important topic. A first step was taken here in control-
ling ρ by its upper and lower control limits to ensure
the economic viability of a process and quality of ser-
vice on the user side. Next steps include controlling ρ
for more general queueing systems. This would certainly
lead to important performance differences because of the
differences in the corresponding stationary distributions
of the number of customers in the system. Another line
of research includes considering variations in the arrival
rate λ and a search for control strategies via automatic
adjustment of the number of servers c. Support vector
machines represent another emerging technique that has
begun to bear fruit in the area of control charts [49].
These are only a few topics for future research in this
area.
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