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Abstract. Optimal buffer allocation in queueing network systems is recognized as a dif-
ficult stochastic, nonlinear, integer mathematical programming problem. It is usual that
the objective function, constraints or both are not available in closed-form making the
problem harder. A good approximation for the performance measures is essential for a
successful algorithm for buffer allocation. A recently published approximation formula
for predicting the optimal buffer allocation in general service time single queues, which
is based on a two-moment approximation formula, is examinedin details, based on which
a new algorithm is proposed for buffer allocation in generalservice time queueing net-
works. Computational results are shown to attest for the efficacy of the approach in
generating nearly optimal buffer allocation patterns.
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1. INTRODUCTION

Manufacturing, telecommunication, and material handlingsystems are just few ex-
amples of practical interest that may be viewed as finite buffer queueing networks. Be-
cause of the critical costs for buffer space, it is crucial todefine optimal buffer spaces in
order to ensure maximum performance at the lowest possible cost. The buffer allocation
problem (BAP) is computationally hard to solve as the BAP is usually formulated as a
stochastic, non-linear, integer mathematical programming problem. Besides, most of the
times there is not even available closed-form objective functions and constraints but only
approximations. The BAP problem becomes much more complicated when it involves
general service time queues configured in networks (MacGregor Smith & Cruz, 2005) in
a generic topology as seen in Fig. 1.

One of the objectives of this paper is to compare approximations for the blocking
probability,pk, the probability that an arriving entity finds the queueing system at its ca-
pacity. One of the most regarded performance measures of queueing systems, the block-
ing probability is a building block for buffer allocation formulations. The BAP is to find
optimal values fork such thatpk are below some pre-specified thresholdε for all queues
in the network. In this paper, buffer allocation will be restricted to networks ofM/G/1/k
queues, which in Kendall’s notation consider Markovian arrivals, General distributed ser-
vice times, a single server, and total capacityk, including the one in service.
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Figure 1: Queueing network in a general topology.

The paper is organized as follows. In Sec. 2 the BAP is defined as a non-linear
mathematical programming formulation and a short literature review is presented about
algorithms developed in the past for similar problems. Someof the most effective ap-
proximations forpk are compared in Sec. 3. Then, Sec. 4 details the proposed algorithm
to solve the BAP. Computational results that attests for theefficacy of the new algorithm
are discussed in Sec. 5. Finally, Sec. 6 closes the paper withfinal comments and topics
for future research in the area.

2. BUFFER ALLOCATION PROBLEM

2.1 Introduction

The BAP is concerned with how much space needs to be allocatedin order to guar-
antee that the probability of loosing clients (or delaing them) is below a certain threshold.
In its simplest definition the BAP seeks the lowest intergerk∗ > 0 such thatpk∗ ≤ ε for
some acceptable thresholdε ∈ (0, 1). It is assumed that the system utilization,ρ (that is,
the ratio of the arrival rate and the service rate,λ/µ) is below one, because an optimum
for k may not exist forρ ≥ 1 (Kimura, 1996a).

2.2 Problem formulation

The BAP may be defined as a multi-objective non-linear mathematical programming
formulation with integer decision variablesxi ≡ k, for theith M/G/1/k queue. However
in this paper only the following single objective formulation will be considered

Z = min f(x) =
∑

i

xi, (1)

s.t.:

Θ(x) ≥ Θmin, (2)

xi ∈ N, ∀i, (3)

which minimizes the total capacity allocated to the network,
∑

i xi, subject to providing
a minimum total throughputΘmin. In this formulation,Θmin is the threshold throughput
andxi is the bufferk allocated to theith M/G/1/k queue. Although similar to a linear
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integer mathematical programming problem, the formulation does not model directly the
buffer allocation becauseΘ(x) is a function hard to define, involving the arrival rates, the
service rates, and other parameters and variables in the queueing network.

2.3 Literature Overview

The literature of the BAP may be divided roughly into four methodological ap-
proaches: simulation methods, meta-heuristics, dynamic programming, and searching
methods. In the following paragraphs, a short overview of these approaches will be pre-
sented.

The simulation methods aim to represent the actual systems by means of robust as-
sumptions. In other words, general probability distributions are used to model the various
aspects of the system, such as inter-arrival times, batch size of the arrivals, service times,
among others. Simulation methods are usually very general and efficient but the price
paid usually is a great computational effort that may reducethe size of treatable instances.
However successful uses of simulation methods have been reported by researchers, such
as, for instance, Soyster et al. (1979), for series queueingnetworks, and Baker et al.
(1990), for general topologies.

Metaheuristics are very popular methods nowadays, mainly because of the increasing
computational capacity available. Typical techniques that fall into the area include simu-
lated annealing, taboo search, and more recently, generic algorithms. The advantages of
metaheuristics are the absence of all those restrictive assumptions usually required by the
traditional methods and the ability of avoiding local optima traps in the seek of the global
optimum. The disadvantage is that usually the metaheuristics do not take into account the
special structure of the problem. Among others, a successful case of use was reported by
Spinellis et al. (2000) for buffer allocation in tandem networks ofM/M/c/k queues.

Dynamic programming is another powerful and reasonable approach for the BAP.
Usually the exponential space complexity of dynamic programming methods reduces
their applicability to very small sized instances. However, the approach has been proved
successful in many cases. For instance, Kubat & Sumita (1985) and Yamashita & Altiok
(1998) report results for networks ofM/M/1 queues in series and Yamashita & Onvural
(1994), for general topologies.

Finally, there are the search methods, which try to solve theproblems avoiding the
combinatorial explosion of possible solutions by choosingthose close to the optimum
results. Their main disadvantage is their restrictive assumptions, such as concavity and
convexity, that may limit their applicability. In the past,the search methods were also
successful in solving the BAP. In the series topology, the BAP was solved by searching
methods for networks ofM/M/1/k queues (Altiok & Stidham, 1983) andM/Ek/1/k
queues (Hillier & So, 1991). In the general topology, for instance, there are results for
M/M/1/k queues (MacGregor Smith & Daskalaki, 1988; MacGregor Smith& Chikhale,
1995). For queueing networks configured in the general topology with general service
times,M/G/1/k, the main object of this paper, there are not many results besides those
reported by MacGregor Smith & Cruz (2005) with a methodologybased on Powell’s algo-
rithm. The algorithm to be proposed here is considerably simpler and easier to implement.
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3. BLOCKING PROBABILITY

Accurate approximations for the blocking probability forM/G/1/k systems,pk, will
be presented in the following paragraphs. They are based on finite Markovian systems,
M/M/1/k, but approximations based on infinite queueing systems are also common.

3.1 Markovian Systems

The blocking probability expression for a finite Markovian system is well-know

pk =
(1 − ρ)ρk

1 − ρk+1
, (4)

for ρ 6= 1, being possible then to expressk in terms ofρ, the system utilization, andpk,
the blocking probability, as follows

k =







ln
(

pk

1−ρ+pkρ

)

ln (ρ)







, (5)

in which⌈x⌉ is the lowest integer not inferior tox.
This is useful as an expression for the optimal buffer allocation in individual Marko-

vian queues. Its usefulness for networks of general servicetime queueing systems will be
apparent shortly.

3.2 Gelenbe’s Approximation

Generally speaking, approximations developed in the past for the blocking probabil-
ity are based on infinite queues. Actually, many of them couldbe adapted forM/G/1/k
queues. A survey by Makens (1992), for instance, analyzed five different approximations
and concluded that Gelenbe’s formula (Gelenbe, 1975) is efficient for most of the cases
tested. Gelenbe’s approximation is based on an approximation of the discrete queueing
process by a continuous diffusion process. The blocking probability is given by

pk =
λ(µ − λ)e

−2
(µ−λ)(k−1)

λc2a+µc2s

(

µ2 − λ2e
−2

(µ−λ)(k−1)

λc2a+µc2s

) , (6)

in which λ is the arrival rate,µ, the service rate,c2
a = Var(Ta)/E(Ta)

2 is the squared
coefficient of variation of the inter-arrival time,Ta, and c2

s = Var(Ts)/E(Ts)
2 is the

squared coefficient of variation of the service time,Ts. From Eq. (6), it is possible to get
explicitly the optimal buffer allocation

k =
2λ − 2µ + ln

(
pkµ2

λ(−λ+µ+pkλ)

)

λc2
a + ln

(
pkµ2

λ(−λ+µ+pkλ)

)

µc2
s

2(λ − µ)
. (7)
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Taking unitary squared coefficients of variation of the inter-arrival time and service
time, c2

s = c2
s = 1, Eq. (7) will lead to an optimal buffer allocation of Markovian sin-

gle queues,M/M/1/k. Notice that the resulting expression will not be exactly the
M/M/1/k formula, Eq. (5), because Gelenbe’s expression is an approximation. How-
ever, as noticed by Makens (1992) and MacGregor Smith & Cruz (2005), Gelenbe’s ex-
pression is accurate for Markovian system, while is not accurate for deterministic service
time systemsM/D/1/k.

3.3 Two-moment Approximation

The two-moment approximation schema to be presented here are based on a weighted
combination of the optimal buffer expressions of Markoviansystems,M/M/1/k, denoted
bykM

ǫ , and deterministic service time systems,M/D/1/k, denoted bykD
ǫ . Tijm’s formula

(Tijms, 1986) is one approximation that has been shown to be very good. It is given by

kTijms
ǫ (c2

s) = c2
sk

M
ǫ + (1 − c2

s)k
D
ǫ , (8)

for c2
s ≥ 0. Clearly, Tijm’s formula is exact for the extreme cases if exact expressions are

known forkM
ǫ andkD

ǫ .
Another good approximation is Kimura’s formula (Kimura, 1996b), which is a little

simpler as it uses only the optimal buffer expression of Markovian systems on its basis

kKimura
ǫ (c2

s) = kM
ǫ + NINT

[
(c2

s − 1)

2

√
ρ kM

ǫ

]

, (9)

in which NINT[x] is the nearest integer tox. Important to say about Kimura’s formula
is that it estimates the pure buffer without the space for thecustomers in service while
Tijm’s formula includes those in service.

Recently, MacGregor Smith (2002) proposed an approximation forM/G/1/k queues
based on Kimura’s formula

kSmith
ǫ (c2

s) =








ln
(

pK

1−ρ+pKρ

)

ln(ρ)
− 1

︸ ︷︷ ︸

kM
ǫ








+
(c2

s − 1)

2

√
ρ








ln
(

pK

1−ρ+pKρ

)

ln(ρ)
− 1

︸ ︷︷ ︸

kM
ǫ








. (10)

in which Eq. (5), subtracted by the space for the single server, has been used as the es-
timate for the optimal buffer allocation of Markovian systems,kM

ǫ . Now, factoring the
terms of the approximation, the following simplified expression for the optimal buffer
size inM/G/1/k is given

kSmith
ǫ (c2

s) =

[

ln
(

pK

1−ρ+pK ρ

)

− ln(ρ)
] (

2 +
√

ρc2
s −

√
ρ
)

2 ln(ρ)
. (11)
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Notice also that Eq. (11) yields the same expression as Eq. (5) if c2
s = 1 and the

space for the server is subtracted. Additionally, as a side effect of Eq. (11), it is possible
to obtain a closed-form approximate expression for the blocking probability of single
M/G/1/k queues

pk =
ρ

(

2+
√

ρc2s−
√

ρ+2(k−1)

2+
√

ρc2s−
√

ρ

)

(−1 + ρ)

ρ

(

2
2+

√
ρc2s−

√
ρ+(k−1)

2+
√

ρc2s−
√

ρ

)

− 1

. (12)

As it will be seen in the following sections, Eq. (12) will be useful for computing
performance measures of queueing networks ofM/G/1/k systems.

3.4 Computational Experiments

A series of computational experiments was performed to testthe efficacy of the block-
ing probabilities given by the Markovian formula, Eq. (4), Gelenbe’s formula, Eq. (6), and
MacGregor Smith’s formula, Eq. (12). For the buffer sizes the valuesk = {2, 4, 8, 16}
were considered. For each one of the buffer sizes, Markovian, c2

s = 1.0, hipoexponential,
c2
s = 0.5, and hiperexponential service time systems,c2

s = 2.0, were tested. Because no
exact blocking probabilities were available, the results were compared with simulations
obtained with a Gamma random variable with convenient parameters, and 20,000 simu-
lated time units to approach steady state. ARENA was the simulation system employed
(see Kelton et al., 2001, for details). The simulation results presented are averages from
30 replications. The standard errors are too small to be noticed in the graphs presented in
Fig. 2–Fig. 4.

Markovian Systems

Results for the first set of experiments, done for Markovian systems, that is,c2
s = 1.0,

are presented in Fig. 2. These experiments were planned justto validate the implemen-
tations as all of them should yield the same results which they indeed do in most of the
cases. Actually, only fork = 2 andρ < 1.0 some divergence was noticed involving
Gelenbe’s formula. It is noticeable that ask increases the blocking probabilities are close
to zero whenρ < 1.0.

Hipoexponential Systems

Hipoexponential systems, withc2
s = 0.5, were also tested. The results are available

in Fig. 3. For hipoexponential systems the Markovian approximation is an upper bound
for the blocking probabilities as it always overestimates the simulation results, assumed
here as reference. Thus, it is clear that by simply using Markovian approximations for
hipoexponential systems one will tend to allocate larger buffer spaces than necessary.

Taking again the simulations as references, Gelenbe’s approximation underestimates
the blocking probabilities if the system utilization is below unity but tends to overesti-
mate them otherwise. On the other hand, MacGregor Smith’s approximation seems to be
more accurate than Gelenbe’s approximation and less dependent on theρ. However, it is
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Figure 2: Comparisons forpk for Markovian systems.

noticeable that although the approximations may disagree considerably for small buffer
sizes they all tend to produce similar estimates as the buffer size increases. As a final
remark, as the buffer size increases, the blocking probabilities tend to be zero for those
cases in which the system utilization is below unity,ρ < 1.0.

Hiperexponential Systems

Results for hiperexponential systems, withc2
s = 2.0, are presented in Fig. 4. The

Markovian approximations may be seen as a lower bound for theblocking probabilities
as their values always underestimate the simulation results, taken here as references. It
is confirmed here the inadequacy of Markovian approximations for hiperexponential sys-
tems for optimal buffer allocation purposes as one will tendto allocate less buffer space
than necessary.

In comparison with the simulations results, Gelenbe’s approximations overestimate
the blocking probabilities just in the range ofρ that it is most appropriate to consider in
practice, that is, for system utilization less than the unity, ρ < 1.0. By its side, MacGregor
Smith’s approximation presents estimates closer to the simulation results independent on
theρ.

As observed for hipoexponential systems, all approximations tend to agree for large
buffer size systems. Also similarly to hipoexponential systems, the blocking probability
tends to be close to zero for system utilization below the unity as the buffer size increases.
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Figure 3: Comparisons forpk for hipoexponential systems withc2
s = 0.5.

4. ALGORITHMS

The optimization problem that will be examined here is givenby Eq. (1)–Eq. (3).
Notice thatΘmin can be pre-specified and then serve as the inputλ to an approximate
performance measure program that will also giveΘ(x) for theM/G/1/k queueing net-
work system of interest, as explained in the following paragraphs. In the formulation,
xi become the decision variables under optimization control,that is,xi ≡ k, for the ith
queue.

A possible way to solve the problem is through the Lagrangeanrelaxation, a tech-
nique that consists in relaxing the complicating constraints and including then in the
objective function as a penalty. Among the classical references to the Lagrangean re-
laxation, the paper by Fisher (1985) could be cited. A recently published tutorial about
the Lagragean relaxation by Lemaréchal (2003) is another reference for the technique.

Thus, one way to incorporate the throughput constraint is through a penalty function.
Defining a dual variableα and relaxing constraint (2), the following penalized objective
function is given

L(α) = min





N∑

i=1

xi + α (Θmin − Θ(x))
︸ ︷︷ ︸

≤0



 (13)
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Figure 4: Comparisons forpk for hiperexponential systems withc2
s = 2.0.

s.t:

xi ∈ N, ∀i (14)

α ≥ 0. (15)

Notice that the termα(Θmin − Θ(x)), always non-negative for anyx feasible, is
a penalty of the objective function related to the difference between the pre-specified
throughput,Θmin, and the effective throughput,Θ(x). Thus, it follows thatL(α) ≤ Z,
that is,L(α) is an inferior limit forZ, the optimal solution for the BAP, Eq. (1)–Eq. (3).
The best possible (highest) inferior limit is given by the following Theorem 1.

Theorem 1 The highest inferior limit,L(α∗) = maxα≥0L(α), is achieved forα∗ −→ ∞.

Proof: It follows fromΘ(x), a non-decreasing function ofx, as it is seen in Fig. 5, and
also from the Lagrangean function,L(α), which is the minimum of linear functions ofα,

L(α) = min

(
N∑

i=1

xi

︸ ︷︷ ︸

intercept

+α

slope
︷ ︸︸ ︷

(Θmin − Θ(x))

)

,
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with non-negative intercepts and slopes with

lim
x→∞

(Θmin − Θ(x)) = 0,

which results in a non-decreasing convex envelopment, as itis seen in Fig. 6.

xi

th
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a(
x)

0 10 20 30 40

lambda

Figure 5: Throughputversusbuffer size.
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Figure 6: Lagrangian functionL(α).

4.1 Note on the Lagrangean Multiplier

The Lagrangean relaxation of the BAP,L(α), plus an additional relaxation of the
integrality constraints forxi, is a classical unconstrained optimization problem. The best
Lagrangean multiplierα, as defined by Theorem 1, is not practical because one would
need that

(

Θmin − Θ(x)
)

= 0,

which yieldsxi → ∞, ∀ i. On the other hand, if a small difference, say
(

Θmin−Θ(x)
)

=

ε, is acceptable, it must hold that

α
(

Θmin − Θ(x)
)

≤ 1,

because, otherwise, it would be better to spend one more unity of buffer space to someith
queue,xi, to increaseΘ(x) (remind thatΘ(x) is a non-decreasing function ofx). Thus,
it is possible to define a correspondingαε as follows

αε ≤ 1/
(

Θmin − Θ(x)
)

,

which, assuming
(

Θmin − Θ(x)
)

≤ 10−3, yieldsαε = 103.

4.2 Search Algorithm

Among the many possible algorithms to solve the BAP, a derivative free search algo-
rithm was used, which is seen in Fig. 7, for its simplicity, and also efficiency, as it will
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algorithm

read G(V, A, P ), λ, µ, c2
s, x(0)

x
(opt) ← x

(0)

repeat

x
(1) ← x

(opt)

for i = 1 until n do

/* unidirectional search */

x
(i+1) ←

n

x
∗|f(x∗) = min

j∈N

f(x(i) + je(i))
o

end for

if f(x(n+1)) < f(x(1)) then

x
(opt) ← x

(n+1)

end if

until ‖x(opt) − x
(1)‖ < ǫ

write x
(opt)

end algorithm

Figure 7: Algorithm for optimal buffer allo-
cation.

algorithm
read G(V, A, P ), λ, µ, c2

s

/* preevaluate all nodes */
Q← ∅
while Q 6= V

choosej ∈ (V \Q)
if ∀ (i, j) ∈ A, i ∈ Q then

/* compute performance measures for nodej */

computep(j)
k

andθj = λj × (1− p
(j)
k

)
/* forward information */
for ∀ l, such that(j, l) ∈ A do

λl ← λl + p(j,l) × θj

end for
/* update setQ */
Q← Q ∪ {j}

end if
end while
/* reevaluate all nodes */
(to be implemented)
/* write final results */

write p
(i)
k

, θi, ∀ i ∈ V

end algorithm

Figure 8: Algorithm for performance evalu-
ation.

be seen. The algorithm starts by reading the inputs, that is,the number of vertexes in
the networks,V , the number of arcs,A, the routing matrixP ≡ [p(i,j)], which defines the
probabilities of an entity to choose one or another path. Also read, are the vector of arrival
rates,λ, of service rates,µ, squared coefficient of variation of service rates,c

2
s, and an

initial buffer allocation vector,x(0). With these values, the algorithm take the objective
function

f(x) =

N∑

i=1

xi + α
(

Θmin − Θ(x)
)

, (16)

which is optimized only in relation to the first coordinate ofvectorx, keeping the remain
fixed. The process is repeated for the second coordinate and so on, until the last coor-
dinate is reached. A completely new vectorx

(n+1) is obtained and compared with the
previous vectorx(1). If the Euclidean distance between these two vectors is lessthan a
pre-specified valueǫ, the algorithm stops. Otherwise, the hole process keeps running until
the convergence is reached.

4.3 Performance Evaluation Algorithm

Notice that the algorithm presented in Fig. 7 needs an estimate for the objective func-
tion f(x), Eq. (16), which implies that an estimate forΘ(x) must be sought. An algorithm
available is the Generalized Expansion Method (GEM), successfully used in the past to
estimate performance measures for finite queueing networks.

Well described in many papers, in particular in the recentlypublished paper by Ker-
bache & MacGregor Smith (2000), the GEM is basically a combination of repeated trials
and node-by-node decomposition in which each queue is analyzed separately and then
corrections are made in order to take into account the interrelation between the queues in
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the network. The GEM uses type I blocking, that is, the upstream node gets blocked if
the service on a customer is completed but it cannot move downstream due to the queue
at the downstream node being full. This is sometimes referred to as blocking after ser-
vice, which is prevalent in most production and manufacturing, transportation, and similar
systems. The implementation used in this work is seen in Fig.8.

Similarly to the optimization algorithm, the GEM starts by reading all relevant in-
formation from the network under analysis. As it is seen in the paper by Kerbache &
MacGregor Smith (2000), the GEM consist in creating for eachfinite queue, represented
by vertexj, an auxiliary vertexh, modeled as anM/M/∞ queue. When an entity arrives
to the system, vertexj may be blocked with probabilityp(j)

k , or unblocked, with proba-
bility (1 − p

(j)
k ). Under blocking, the entities are rerouted to vertexh for a delay while

nodej is busy. Vertexh helps to accumulate the time an entity has to wait before entering
vertexj and to compute the effective arrival rate to vertexj.

Thus, the algorithm chooses an arbitrary node,j, from setV but not from setQ (in
which Q is the set of nodes already evaluated), such that for all arc(i, j) ∈ A, vertex
i has been evaluated already. Then, vertexj has computed its blocking probabilityp(j)

k ,
from Eq. (12), and its arrival rate, fromθj = λj × (1 − p

(j)
k ). These service rates are then

forwarded as arrival rates to the downstream nodes (if they exist), and vertexj is included
in setQ.

Notice that the GEM includes an reevaluation step that will not be implemented here.
For the BAP defined here, the coupling between nodes will be minimum in the optimum,
as a small difference between the arrival rate and the service rate is sought. Thus, the
queueing network may be seen as a Jackson network in which allnode may be analyzed
separately, which is precisely the pre-evaluation step of the GEM presented in Fig. 8.

5. EXPERIMENTAL RESULTS

All algorithms were implemented in FORTRAN, taking advantage of all code al-
ready developed for similar problems (MacGregor Smith, 2002; MacGregor Smith &
Cruz, 2005). For simplicity, all experiments were run for tandem queues (that is, se-
ries queues, see Fig. 9), even though the algorithm is ready to solve networks in general
topologies too (see Duarte, 2005, for additional computational results for other topolo-
gies). Arrival rates considered wereλ = Θmin = {1.0, 2.0, 4.0} users/s, homogeneous
service ratesµi = 10.0, ∀ i, with squared coefficient of variationc2

s = {0.5, 1.0, 2.0}, and
number of nodesN = {2, 4, 8}. The results are seen in Tab. 1.

In order to see how close to optimal are the generated patterns, it is interesting to
compare the results with those of simulation. Experiments with ARENA (see Kelton et al.,
2001, for details) with 100.000 time units, 2000 time units warm-up and 30 replications
were found to yield fairly stable results and acceptable 95%confidence intervals. For all
the non-exponential service times, a 2-stage gamma distribution was used to capture the
general service times with non-unitc2

s.
From Tab. 1, it is possible to see in boldface the buffer allocation x, obtained by

the optimization algorithm. The pattern found in the small networks essentially becomes
the pattern for the large networks. Notice that the buffer allocation is uniform across the
series topology and that the throughput is essentially the arrival rate. This type of results
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Figure 9: Networks of queues in various topologies.

Table 1: Simulation results for tandem queues.

Θ(x)

c2s λ n x average MIN MAX CI[95%] L(α) CPU∗

0.5 1.0 2 2 2 0.99231 0.98945 0.99525 (0.98979;0.99483) 11.7 0.47

2 3 0.99239 0.98957 0.99556 (0.98998;0.99480) 12.6 0.47

3 2 1.00010 0.99825 1.00220 (0.99846;1.00174)4.9† 0.45

3 3 1.00030 0.99833 1.00220 (0.99856;1.00204) 5.7‡ 0.45

3 4 1.00030 0.99834 1.00220 (0.99856;1.00204) 6.7 0.45

4 3 1.00150 0.99879 1.00460 (0.99930;1.00370) 5.5 0.45

4 4 1.00160 0.99882 1.00460 (0.99935;1.00385) 6.4 0.47

1.0 2.0 4 3 3 3 3 1.98860 1.98390 1.99360 (1.98492;1.99228) 23.40 1.95

4 4 4 4 1.99750 1.99370 2.00080 (1.99469;2.00031)18.50† 1.87

5 5 5 5 1.99850 1.99380 2.00170 (1.99564;2.00136) 21.50‡ 1.90

6 6 6 6 1.99970 1.99290 2.00380 (1.99532;2.00408) 24.30 1.90

2.0 4.0 8 9 9 9 9 9 9 9 9 3.9939 3.9880 4.0015 (3.98884;3.99896)78.10† 7.98

10 10 10 10 10 10 10 10 3.9948 3.9904 3.9988 (3.99103;3.99857) 85.20‡ 8.05

11 11 11 11 11 11 11 11 3.9983 3.9935 4.0021 (3.99504;4.00156)89.70 9.83
∗CPU time in minutes.†Best solution via simulation.‡Best solution via optimization algorithm.

is similar to the uniform buffer allocation results of De Kok(1990).
Concerning the simulation results, only the 2-node networkwas analyzed in details

because the time for setting up the experiments and running them was short enough to
do so. Notice that the best solution from the optimization algorithm does not correspond
exactly to the lowestL(α) (see Tab. 1, in boldface), but something quite close to it. The
general conclusion is that optimization algorithm tends toallocate more space than nec-
essary to ensure the desired performance. Also noticeable is that the CPU time for the
simulations grows quickly as the number of node in the network increases indicating that
the simulation may not be efficient as a tool for optimizing buffer allocation although it is
certainly useful for assessing the quality of solutions viaother methods.

6. SUMMARY AND CONCLUSIONS

One major difficulty in dealing with the buffer allocation problem (BAP) in general
and forM/G/1/k queues in particular is to find good approximate expressionsfor the
performance measures of interest. The BAP is made much more difficult when queues
are configured in networks, in which blocking after service frequently occurs and compli-
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cates the analysis. In this paper, some of the most effectiveapproximations for the block-
ing probability, a crucial performance measure for the BAP treated here, were extensively
compared. The approximation by MacGregor Smith seemed to bethe most accurate for
the cases tested and was used for solving the BAP. The algorithm proposed is based on
Lagrangean relaxation, a technique that has been proved efficient in solving optimization
problems with complicate constraints. The Lagrangean relaxation enables one to avoid
hard optimization formulations by relaxing complicate constraints and including then into
the objective function as a penalty. Important properties of the relaxed problem were de-
rived, which made possible the development of a search algorithm, considerably simpler
than one previously published for the same problem (MacGregor Smith & Cruz, 2005). In
comparison with exact simulation results, the algorithm seemed to produce very fast and
accurate solutions and can be used in the design of production systems. Topics for future
research in the area include extensions to systems that haveloops, such as systems with
captive pallets and fixtures. Also of interest is the study ofalgorithms for multi-server
general service time queueing networks.
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