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Abstract. Optimal buffer allocation in queueing network systems t®gmnized as a dif-

ficult stochastic, nonlinear, integer mathematical pragraing problem. It is usual that
the objective function, constraints or both are not avaiain closed-form making the
problem harder. A good approximation for the performancesuees is essential for a
successful algorithm for buffer allocation. A recently psived approximation formula

for predicting the optimal buffer allocation in general sare time single queues, which
is based on a two-moment approximation formula, is examimedtails, based on which
a new algorithm is proposed for buffer allocation in genesatvice time queueing net-
works. Computational results are shown to attest for theaffi of the approach in

generating nearly optimal buffer allocation patterns.

Keywords: Buffer allocation, Queues, Networks

1. INTRODUCTION

Manufacturing, telecommunication, and material handggtems are just few ex-
amples of practical interest that may be viewed as finitedouftieueing networks. Be-
cause of the critical costs for buffer space, it is cruciadléfine optimal buffer spaces in
order to ensure maximum performance at the lowest possiiste The buffer allocation
problem (BAP) is computationally hard to solve as the BAPdgally formulated as a
stochastic, non-linear, integer mathematical progrargmnoblem. Besides, most of the
times there is not even available closed-form objectivetions and constraints but only
approximations. The BAP problem becomes much more coniplicahen it involves
general service time queues configured in networks (Maaisr®mith & Cruz, 2005) in
a generic topology as seen in Fig. 1.

One of the objectives of this paper is to compare approxonatior the blocking
probability, p,, the probability that an arriving entity finds the queueiggtem at its ca-
pacity. One of the most regarded performance measures aéogesystems, the block-
ing probability is a building block for buffer allocationfimulations. The BAP is to find
optimal values fok such thap, are below some pre-specified threshelidr all queues
in the network. In this paper, buffer allocation will be mésted to networks of\/ /G /1/k
queues, which in Kendall's notation consider Markoviaivats, General distributed ser-
vice times, a single server, and total capagityncluding the one in service.
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Figure 1: Queueing network in a general topology.

The paper is organized as follows. In Sec. 2 the BAP is defirsed mon-linear
mathematical programming formulation and a short litexateview is presented about
algorithms developed in the past for similar problems. Saofnhne most effective ap-
proximations forp, are compared in Sec. 3. Then, Sec. 4 details the proposedtlago
to solve the BAP. Computational results that attests foeffieacy of the new algorithm
are discussed in Sec. 5. Finally, Sec. 6 closes the papeffinélhcomments and topics
for future research in the area.

2. BUFFER ALLOCATION PROBLEM
2.1 Introduction

The BAP is concerned with how much space needs to be allocatader to guar-
antee that the probability of loosing clients (or delaingrtt) is below a certain threshold.
In its simplest definition the BAP seeks the lowest interiger- 0 such thafp,- < e for
some acceptable threshald: (0,1). It is assumed that the system utilizatipn(that is,
the ratio of the arrival rate and the service ratey) is below one, because an optimum
for £ may not exist fop > 1 (Kimura, 1996a).

2.2 Problem formulation

The BAP may be defined as a multi-objective non-linear matisal programming
formulation with integer decision variables= k, for theith A//G/1/k queue. However
in this paper only the following single objective formutatiwill be considered

Z:minf(x):in, 1)

St.
O(x) > omn 2)
z € N, Vi, (3)

which minimizes the total capacity allocated to the netwdrk z;, subject to providing
a minimum total throughpu®™®. In this formulation,©™® is the threshold throughput
andz; is the bufferk allocated to theéth A//G/1/k queue. Although similar to a linear
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integer mathematical programming problem, the formufatioes not model directly the
buffer allocation becaus@(x) is a function hard to define, involving the arrival rates, the
service rates, and other parameters and variables in theiogenetwork.

2.3 Literature Overview

The literature of the BAP may be divided roughly into four hudological ap-
proaches: simulation methods, meta-heuristics, dynamugramming, and searching
methods. In the following paragraphs, a short overview eséapproaches will be pre-
sented.

The simulation methods aim to represent the actual systgmsslans of robust as-
sumptions. In other words, general probability distribos are used to model the various
aspects of the system, such as inter-arrival times, batehosithe arrivals, service times,
among others. Simulation methods are usually very genecdhle#ficient but the price
paid usually is a great computational effort that may redbeesize of treatable instances.
However successful uses of simulation methods have beenteey researchers, such
as, for instance, Soyster et al. (1979), for series queuagtgorks, and Baker et al.
(1990), for general topologies.

Metaheuristics are very popular methods nowadays, maedgise of the increasing
computational capacity available. Typical techniques thidinto the area include simu-
lated annealing, taboo search, and more recently, gerdgodtams. The advantages of
metaheuristics are the absence of all those restrictiveygssons usually required by the
traditional methods and the ability of avoiding local opitnaps in the seek of the global
optimum. The disadvantage is that usually the metahetsidb not take into account the
special structure of the problem. Among others, a succeszée of use was reported by
Spinellis et al. (2000) for buffer allocation in tandem netls of M/ /M /c/k queues.

Dynamic programming is another powerful and reasonableoagp for the BAP.
Usually the exponential space complexity of dynamic prograng methods reduces
their applicability to very small sized instances. Howetlee approach has been proved
successful in many cases. For instance, Kubat & Sumita (1&&b Yamashita & Altiok
(1998) report results for networks 8f/M /1 queues in series and Yamashita & Onvural
(1994), for general topologies.

Finally, there are the search methods, which try to solveptbelems avoiding the
combinatorial explosion of possible solutions by choosimgse close to the optimum
results. Their main disadvantage is their restrictive agdions, such as concavity and
convexity, that may limit their applicability. In the pashe search methods were also
successful in solving the BAP. In the series topology, thé’B#as solved by searching
methods for networks of//M/1/k queues (Altiok & Stidham, 1983) antl/ £ /1/k
gueues (Hillier & So, 1991). In the general topology, fortarse, there are results for
M/M/1/k queues (MacGregor Smith & Daskalaki, 1988; MacGregor S&itthikhale,
1995). For queueing networks configured in the general tapoWwith general service
times, M /G /1/k, the main object of this paper, there are not many resulisiégshose
reported by MacGregor Smith & Cruz (2005) with a methodolbgged on Powell’s algo-
rithm. The algorithm to be proposed here is considerablpknand easier to implement.
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3. BLOCKING PROBABILITY
Accurate approximations for the blocking probability fat/ G/ /1/k systemspy, will

be presented in the following paragraphs. They are basedibv& fMarkovian systems,
M /M /1/k, but approximations based on infinite queueing systemssosecammon.
3.1 Markovian Systems

The blocking probability expression for a finite Markoviarsem is well-know

(1—p)p"
Pr = 1—7p’“+1’ (4)

for p # 1, being possible then to expreksn terms ofp, the system utilization, ang,
the blocking probability, as follows

In (kpmpkf))
k= _TEéT_ , 5)

in which [z] is the lowest integer not inferior to.

This is useful as an expression for the optimal buffer aliocain individual Marko-
vian queues. Its usefulness for networks of general setvicequeueing systems will be
apparent shortly.

3.2 Gelenbe's Approximation

Generally speaking, approximations developed in the pathé blocking probabil-
ity are based on infinite queues. Actually, many of them cteléddapted fon/ /G /1/k
queues. A survey by Makens (1992), for instance, analyzedififerent approximations
and concluded that Gelenbe’s formula (Gelenbe, 1975) isigifi for most of the cases
tested. Gelenbe’s approximation is based on an approximafithe discrete queueing
process by a continuous diffusion process. The blockingadsiity is given by

o=\ (k=)

)\(/J/ _ )\)6 /\cg+,uc%
Pr = o NG-D
ILL2 _ )\26 Ae2 +pc2

in which X is the arrival ratey, the service rate;? = Var(T,)/E(T,)? is the squared
coefficient of variation of the inter-arrival timd,,, andc? = Var(T,)/E(T;)? is the
squared coefficient of variation of the service tirfig, From Eq. (6), it is possible to get
explicitly the optimal buffer allocation

(6)

12 2 ° 2
_2A—2u+ln(m)kca+ln<%>ﬂcs

"= 2(A = p) 0
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Taking unitary squared coefficients of variation of the firderival time and service
time, ¢ = ¢ = 1, Eq. (7) will lead to an optimal buffer allocation of Markawi sin-
gle queuesM/M/1/k. Notice that the resulting expression will not be exactlg th
M/M/1/k formula, Eq. (5), because Gelenbe’s expression is an ajppation. How-
ever, as noticed by Makens (1992) and MacGregor Smith & C200%), Gelenbe’s ex-
pression is accurate for Markovian system, while is not esteufor deterministic service
time systems\//D/1/k.

3.3 Two-moment Approximation

The two-moment approximation schema to be presented hebmaed on a weighted
combination of the optimal buffer expressions of Markosgstems)/ /M /1/k, denoted
by kM, and deterministic service time systemi$/ D /1/k, denoted by:P. Tijm’s formula
(Tijms, 1986) is one approximation that has been shown tebggood. It is given by

ke e(ef) = ik + (1= ke, (8)
for ¢2 > 0. Clearly, Tijm’s formula is exact for the extreme cases #epexpressions are
known for kM andiP.

Another good approximation is Kimura’s formula (Kimura,98b), which is a little
simpler as it uses only the optimal buffer expression of Mai&n systems on its basis

Kimura 2 M (¢ —1) M
kX (ef) = kS + NINT {T\/ﬁ k. } : (9)
in which NINT[«] is the nearest integer ta Important to say about Kimura's formula
is that it estimates the pure buffer without the space forctiiomers in service while
Tijm’s formula includes those in service.
Recently, MacGregor Smith (2002) proposed an approximébio)/ /G /1/k queues
based on Kimura’s formula

. hl(l,pK > 2_1 111(171)1( >
kfmlth(0§) — # —1 + (Cs 5 )\/ﬁ IHE;F;’KP 1] (10)

in which Eq. (5), subtracted by the space for the single sehas been used as the es-
timate for the optimal buffer allocation of Markovian syst® M. Now, factoring the
terms of the approximation, the following simplified exmies for the optimal buffer
size inM/G/1/k is given

) = [ln (1—PpJf;Kp) - ln(/))} (2+ /pc2 — /p)

kSmith 2
S 21 (p)

Cs

(11)
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Notice also that Eq. (11) yields the same expression as Bdf (5 = 1 and the
space for the server is subtracted. Additionally, as a digeteof Eq. (11), it is possible
to obtain a closed-form approximate expression for the Katac probability of single
M/G/1/k queues

<2+\/ﬁc§—\/ﬁ+2(k—l))
2
A ET ) (1)

Pk = p(22+\/ﬁc§—\/ﬁ+(k—1)) .,

(12)

24+/pc2 —/p

As it will be seen in the following sections, Eq. (12) will beaful for computing
performance measures of queueing networks/gts/1/k systems.

3.4 Computational Experiments

A series of computational experiments was performed tahestfficacy of the block-
ing probabilities given by the Markovian formula, Eq. (4glénbe’s formula, Eq. (6), and
MacGregor Smith’s formula, Eq. (12). For the buffer sizes ¥aluest = {2,4,8,16}
were considered. For each one of the buffer sizes, Markopwiaa 1.0, hipoexponential,
2 = 0.5, and hiperexponential service time systenis= 2.0, were tested. Because no
exact blocking probabilities were available, the resule&sevcompared with simulations
obtained with a Gamma random variable with convenient patars, and 20,000 simu-
lated time units to approach steady state. ARENA was thelation system employed
(see Kelton et al., 2001, for details). The simulation resspiesented are averages from
30 replications. The standard errors are too small to beedin the graphs presented in
Fig. 2—Fig. 4.

Markovian Systems

Results for the first set of experiments, done for Markovigstems, that is;> = 1.0,
are presented in Fig. 2. These experiments were plannetbjuatidate the implemen-
tations as all of them should yield the same results whici iheéeed do in most of the
cases. Actually, only fok = 2 andp < 1.0 some divergence was noticed involving
Gelenbe’s formula. It is noticeable that/agcreases the blocking probabilities are close
to zero wherp < 1.0.

Hipoexponential Systems

Hipoexponential systems, wi#f = 0.5, were also tested. The results are available
in Fig. 3. For hipoexponential systems the Markovian apjpnaxion is an upper bound
for the blocking probabilities as it always overestimates simulation results, assumed
here as reference. Thus, it is clear that by simply using b\agn approximations for
hipoexponential systems one will tend to allocate largdielbspaces than necessary.

Taking again the simulations as references, Gelenbe’'oappation underestimates
the blocking probabilities if the system utilization is bl unity but tends to overesti-
mate them otherwise. On the other hand, MacGregor Smitlpsoapnation seems to be
more accurate than Gelenbe’s approximation and less depead thep. However, it is
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Figure 2. Comparisons fgr, for Markovian systems.

noticeable that although the approximations may disagoesiderably for small buffer
sizes they all tend to produce similar estimates as the bsife increases. As a final
remark, as the buffer size increases, the blocking proitiabitend to be zero for those
cases in which the system utilization is below unity;: 1.0.

Hiperexponential Systems

Results for hiperexponential systems, with= 2.0, are presented in Fig. 4. The
Markovian approximations may be seen as a lower bound foblbeking probabilities
as their values always underestimate the simulation sediaken here as references. It
is confirmed here the inadequacy of Markovian approximatfonhiperexponential sys-
tems for optimal buffer allocation purposes as one will temdllocate less buffer space
than necessary.

In comparison with the simulations results, Gelenbe’s apiprations overestimate
the blocking probabilities just in the range @that it is most appropriate to consider in
practice, that is, for system utilization less than theypit< 1.0. By its side, MacGregor
Smith’s approximation presents estimates closer to thalaiion results independent on
thep.

As observed for hipoexponential systems, all approxinmatiend to agree for large
buffer size systems. Also similarly to hipoexponentialteyss, the blocking probability
tends to be close to zero for system utilization below théaas the buffer size increases.
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Figure 3: Comparisons fgr, for hipoexponential systems with = 0.5.

4. ALGORITHMS

The optimization problem that will be examined here is gibgnEqg. (1)-Eq. (3).
Notice that©™" can be pre-specified and then serve as the inpiat an approximate
performance measure program that will also gb(ex) for the M /G/1/k queueing net-
work system of interest, as explained in the following paapys. In the formulation,
x; become the decision variables under optimization continal, is,z; = k, for theith
queue.

A possible way to solve the problem is through the Lagrangekaxation, a tech-
nique that consists in relaxing the complicating constsaand including then in the
objective function as a penalty. Among the classical refegs to the Lagrangean re-
laxation, the paper by Fisher (1985) could be cited. A rdggniblished tutorial about
the Lagragean relaxation by Lemaréchal (2003) is ano#ferance for the technique.

Thus, one way to incorporate the throughput constraintr@uiph a penalty function.
Defining a dual variabler and relaxing constraint (2), the following penalized objex
function is given

O(x)) (13)

N
L(a) = min Z T + a (O™ —
i=1

<0
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Figure 4: Comparisons fgr, for hiperexponential systems with = 2.0.

s.t:

a > 0. (15)

Notice that the termn(©™" — ©(x)), always non-negative for any feasible, is
a penalty of the objective function related to the differitetween the pre-specified
throughput,©™i, and the effective throughpu®)(x). Thus, it follows that(a) < Z,
that is, L(«) is an inferior limit for Z, the optimal solution for the BAP, Eq. (1)-Eq. (3).
The best possible (highest) inferior limit is given by thé#dwing Theorem 1.

Theorem 1 The highest inferior limitL(a*) = maz,>¢L(«), is achieved for* — oc.

Proof: It follows from©(x), a non-decreasing function &f as it is seen in Fig. 5, and
also from the Lagrangean functioh{«), which is the minimum of linear functions @f

N slope
—N—
L(«) = min Zmz +a (O™ - 0(x)) |,
i=1

intercept
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with non-negative intercepts and slopes with

lim (™" — ©(x)) = 0,

X—00

which results in a non-decreasing convex envelopment,aséen in Fig. 6.

40

lambda

theta(x)
L(alpha)

Figure 5: Throughputersusbuffer size. Figure 6: Lagrangian functioh(«).

4.1 Noteon the Lagrangean Multiplier

The Lagrangean relaxation of the BAR{«), plus an additional relaxation of the
integrality constraints fog;, is a classical unconstrained optimization problem. Thst be
Lagrangean multipliet,, as defined by Theorem 1, is not practical because one would
need that

(@min - @(x)) —0,

which yieldsz; — oo, V i. On the other hand, if a small difference, s(a@min—@(x)> =
g, is acceptable, it must hold that

a(@min - @(x)) <1,

because, otherwise, it would be better to spend one morgairbiuffer space to somigh
queue,r;, to increase(x) (remind thato(x) is a non-decreasing function &). Thus,
it is possible to define a correspondingas follows

a. <1 /(@min - @(x)),
which, assuming(@min — @(x)) < 1073, yieldsa, = 10°.

4.2 Search Algorithm

Among the many possible algorithms to solve the BAP, a daviedree search algo-
rithm was used, which is seen in Fig. 7, for its simplicitydaaiso efficiency, as it will
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. algorithm
algorithm read G(V, A, P), A, p, c2
read G(V, A, P), \, u, 2, x(©) I* preevaluate all nodes */
opt 0 Q - (Z)
x(0Pt) — x(0 whileQ # V
repeat choosej € (V \ Q)
x(1)  x(opt) ifV (i,7) € A, i € Q then

/* compute performance measures for ngdé

for ¢ = 1 until n do computqa,(cj) andf; = \; x (1— pz(;i))

[* unidirectional search */ /* forward information */
; . ; i for V I, such that(j,!) € Ado
(i+1) * *) = ©) (4) ) )
x(FD L) = minf (9 + () | N o X 0,
end for /e*nd fgrt 0%
] update se
if f(x("*TD) < f(x(D)) then Q—QuU{j}
x(opt)  x(n+1) end if
. end while
end if I* reevaluate all nodes */
until [|x(©PY) — x| < ¢ (to be implemented)
% T 1 *
write x(opt) / v.vrlte(fil)nal results */
] writep, ’, 0;,Vi €V
end algorithm end algorithm

Figure 7: Algorithm for optimal buffer allofigure 8: Algorithm for performance evalu-
cation. ation.

be seen. The algorithm starts by reading the inputs, thalhésnumber of vertexes in
the networks}/, the number of arcs}, the routing matrix” = [p; ;)|, which defines the
probabilities of an entity to choose one or another patho Aéad, are the vector of arrival
rates,\, of service ratesy, squared coefficient of variation of service rates,and an
initial buffer allocation vectorx?). With these values, the algorithm take the objective
function

fx) = ﬁj zi+a(0™ - 0(x)), (16)

which is optimized only in relation to the first coordinateveictorx, keeping the remain
fixed. The process is repeated for the second coordinatecand,until the last coor-
dinate is reached. A completely new vectdrt! is obtained and compared with the
previous vecto?. If the Euclidean distance between these two vectors isthessa
pre-specified value, the algorithm stops. Otherwise, the hole process keepsrrgintil
the convergence is reached.

4.3 Performance Evaluation Algorithm

Notice that the algorithm presented in Fig. 7 needs an estifoathe objective func-
tion f(x), Eq. (16), which implies that an estimate f8fx) must be sought. An algorithm
available is the Generalized Expansion Method (GEM), sssfodly used in the past to
estimate performance measures for finite queueing networks

Well described in many papers, in particular in the receptiplished paper by Ker-
bache & MacGregor Smith (2000), the GEM is basically a coratoam of repeated trials
and node-by-node decomposition in which each queue is zedlyeparately and then
corrections are made in order to take into account the gitgion between the queues in
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the network. The GEM uses type | blocking, that is, the upstr&iode gets blocked if
the service on a customer is completed but it cannot move skogam due to the queue
at the downstream node being full. This is sometimes raleiweas blocking after ser-
vice, which is prevalent in most production and manufaogiriransportation, and similar
systems. The implementation used in this work is seen ingig.

Similarly to the optimization algorithm, the GEM starts lBading all relevant in-
formation from the network under analysis. As it is seen & plaper by Kerbache &
MacGregor Smith (2000), the GEM consist in creating for gaulte queue, represented
by vertexj, an auxiliary vertex:, modeled as ai/ /M /oo queue. When an entity arrives
to the system, vertex may be blocked with probability,(j), or unblocked, with proba-
bility (1 — p,(j)). Under blocking, the entities are rerouted to vertefor a delay while
nodej is busy. Vertex: helps to accumulate the time an entity has to wait beforeiegte
vertex; and to compute the effective arrival rate to verjex

Thus, the algorithm chooses an arbitrary ngddrom setV” but not from set) (in
which @ is the set of nodes already evaluated), such that for alliafg € A, vertex
i has been evaluated already. Then, vejtémas computed its blocking probabiliﬁf),

from Eq. (12), and its arrival rate, froth = \; x (1 — pﬁj)). These service rates are then
forwarded as arrival rates to the downstream nodes (if thisg)eand vertex is included
in setq).

Notice that the GEM includes an reevaluation step that witloe implemented here.
For the BAP defined here, the coupling between nodes will mémuim in the optimum,
as a small difference between the arrival rate and the seraie is sought. Thus, the
queueing network may be seen as a Jackson network in whiol@d may be analyzed
separately, which is precisely the pre-evaluation step®fGEM presented in Fig. 8.

5. EXPERIMENTAL RESULTS

All algorithms were implemented in FORTRAN, taking advayeeof all code al-
ready developed for similar problems (MacGregor Smith,20dacGregor Smith &
Cruz, 2005). For simplicity, all experiments were run fondam queues (that is, se-
ries queues, see Fig. 9), even though the algorithm is readyglte networks in general
topologies too (see Duarte, 2005, for additional compaitati results for other topolo-
gies). Arrival rates considered weke= ©™" = {1.0,2.0,4.0} users/s, homogeneous
service rateg; = 10.0, V i, with squared coefficient of variatiad = {0.5,1.0, 2.0}, and
number of nodesV = {2, 4, 8}. The results are seen in Tab. 1.

In order to see how close to optimal are the generated paftéris interesting to
compare the results with those of simulation. Experimeritts ARENA (see Kelton et al.,
2001, for details) with 100.000 time units, 2000 time unierm-up and 30 replications
were found to yield fairly stable results and acceptable @6%iidence intervals. For all
the non-exponential service times, a 2-stage gamma distibwas used to capture the
general service times with non-umtt

From Tab. 1, it is possible to see in boldface the buffer allion x, obtained by
the optimization algorithm. The pattern found in the smaliworks essentially becomes
the pattern for the large networks. Notice that the buffircaltion is uniform across the
series topology and that the throughput is essentially tiieahrate. This type of results
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Figure 9: Networks of queues in various topologies.

Table 1: Simulation results for tandem queues.

O(x)
c? A n x average MIN MAX CI[95%)] L(a) CPU*
0.5 1.0 2 22 0.99231 0.98945 0.99525 (0.98979;0.99483) 11.7 0.47
23 0.99239 0.98957 0.99556 (0.98998;0.99480) 12.6 0.47
32 1.00010 0.99825 1.00220 (0.99846;1.00174)f 0.45
33 1.00030  0.99833 1.00220 (0.99856;1.00204) 5.7¢ 0.45
34 1.00030 0.99834 1.00220 (0.99856;1.00204) 6.7 0.45
43 1.00150 0.99879 1.00460 (0.99930;1.00370) 5.5 0.45
44 1.00160 0.99882 1.00460 (0.99935;1.00385) 6.4 0.47
1.0 2.0 4 3333 1.98860 1.98390 1.99360 (1.98492;1.99228%023 1.95
4444 1.99750 1.99370 2.00080 (1.99469;2.00088.50" 1.87
5555 1.99850 1.99380 2.00170 (1.99564;2.00136) 21.50% 1.90
6666 1.99970 1.99290 2.00380 (1.99532;2.00408) 24.30 1.90
2.0 4.0 8 99999999 3.9939 3.9880 4.0015 (3.98884;3.99894a)01 7.98

1010101010101010 3.9948 3.9904 3.9988 (3.99103;3.99857) 85.20% 8.05
1111111111111111 3.9983 3.9935 4.0021 (3.99504;4.00B%6)0 9.83

*CPU time in minutes Best solution via simulation:Best solution via optimization algorithm.

is similar to the uniform buffer allocation results of De K@K90).

Concerning the simulation results, only the 2-node netwaak analyzed in details
because the time for setting up the experiments and runhem tvas short enough to
do so. Notice that the best solution from the optimizatiggoathm does not correspond
exactly to the lowesL(«a) (see Tab. 1, in boldface), but something quite close to ie Th
general conclusion is that optimization algorithm tendaltocate more space than nec-
essary to ensure the desired performance. Also noticeslbtai the CPU time for the
simulations grows quickly as the number of node in the neétwmereases indicating that
the simulation may not be efficient as a tool for optimizindgféuallocation although it is
certainly useful for assessing the quality of solutionsottzer methods.

6. SUMMARY AND CONCLUSIONS

One major difficulty in dealing with the buffer allocationgimiem (BAP) in general
and for M /G /1/k queues in particular is to find good approximate expresdionthe
performance measures of interest. The BAP is made much niificelll when queues
are configured in networks, in which blocking after serviegtiently occurs and compli-
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cates the analysis. In this paper, some of the most effegtipeoximations for the block-
ing probability, a crucial performance measure for the BAgatied here, were extensively
compared. The approximation by MacGregor Smith seemed thébmost accurate for
the cases tested and was used for solving the BAP. The dgoptoposed is based on
Lagrangean relaxation, a technique that has been provetetfin solving optimization
problems with complicate constraints. The Lagrangearxatilan enables one to avoid
hard optimization formulations by relaxing complicate staints and including then into
the objective function as a penalty. Important propertighe relaxed problem were de-
rived, which made possible the development of a searchitigarconsiderably simpler
than one previously published for the same problem (Mac@r8aqith & Cruz, 2005). In
comparison with exact simulation results, the algorithensed to produce very fast and
accurate solutions and can be used in the design of produstgiems. Topics for future
research in the area include extensions to systems thaild@y® such as systems with
captive pallets and fixtures. Also of interest is the studwglgbrithms for multi-server
general service time queueing networks.
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