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Abstract — The real world is a complex dynamic and

stochastic environment. This is especially true for the traffic

moving daily on our roads. As such, accurate modeling that

correctly considers the real-world dynamics and the inher-

ent stochasticity is very important, especially if government

will base its road tax decisions on the outcomes of these

models. The contemporary traffic prices, if any, however do

not reflect the external congestion costs. In order to induce

road users to make the correct decision, marginal external

costs should be internalized. To assess these costs, the pub-

lic sector managers need accurate operational models. We

show in this article that using a better representation and

characterization of the road traffic, via stochastic queueing

models, leads to a more adequate reflection of the congestion

costs involved. Using extensive numerical experiments, we

show the superiority of the stochastic traffic flow models.

Keywords — Queueing models; congestion costs; traffic.

1 INTRODUCTION

OPTIMAL use of transportation facilities cannot be
achieved unless each additional user pays for the

additional costs that he imposes on all other users and
on the facility itself. As such, quantifying the external
congestion costs not only contributes to a socially desir-
able result, but is necessary to reach such a result.

This basic idea of paying for externalities dates back
to Nobel prize winner William Vickrey: in the beginning
of the 1950’s, he proposed that fares of the New York
City subway system should be higher in peak times and
in high-traffic sections, and be lower in other sections
(Vickrey [1]). Building on this theorem, he later pro-
posed the same idea (i.e. fares dependent on time and
space) for road congestion (see Vickrey [2] and Vick-
rey [3]) and he discussed how technological advances
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could help in the realization of efficient congestion costs
and the related prizes (Vickrey [4]). After these seminal
works from Vickrey, a large body of literature emerged
on road pricing (see e.g. Dewees [5], De Borger et al. [6],
Li [7], and many others), but also in other application
areas the theorem is observed, such as airport conges-
tion (see Carlin and Park [8]and Davidson [9]), electric-
ity pricing (see Vickrey [10]), etc.

The current paper adds to the literature on road con-
gestion costs. We make use of queueing theory applied
to traffic flows in order to obtain analytical estimates of
the marginal congestion costs, taking into account the
inherent stochasticity.

1.1 Scope and Contributions

In this article, the focus will be on the specific area of
transportation science, related to congestion costs, cer-
tainly a complex, dynamic, and stochastic environment.
We deal with estimating marginal congestion costs for
uninterrupted traffic flows, such as the delays caused
by congestion on major highways. The purpose of this
article is to suggest and to illustrate an alternative ap-
proach that is based on traffic applications of queueing
models. Congestion pricing, as observed by Teodorović
and Edara [11], is a way to force drivers to use more ra-
tionally the transportation facilities, traveling more dur-
ing off-peak hours and less, during peak hours. These
authors however focus on the online real-time conges-
tion pricing case, while we look into the off-line situa-
tion, more appropriate for policy planning.

Queueing models have mainly been used to study
congestion for interrupted traffic flows at signalized
and unsignalized intersections (examples include Hei-
demann [12] and Heidemann and Wegmann [13]).
However, it has been shown (see Heidemann [14] and
Vandaele et al. [15]) that they can also be usefully ap-
plied to describe and analyze congestion for uninter-
rupted traffic flows. Despite of the absence of the de-
velopment of a formal queue, the above-mentioned pa-
pers show that queueing models applied to traffic situ-
ations provide an adequate description of the complex
dynamic and stochastic environment under study. Ad-
ditionally, queueing models have been shown to pro-

DocNum 200817-1062 1



Stochastic Congestion Costs van Woensel & Cruz

vide very accurate results (see e.g. van Woensel and
Vandaele [16]).

Compared to other approaches in the literature, the
main contributions of this paper are:

1. The data requirements for the proposed approach
are fairly limited. In principle, traffic count data are
sufficient for empirical implementation (no speed
observations are needed). This is extremely conve-
nient as empirical approaches need to collect extra
data each time the conditions on the road change.

2. Due to the analytical nature of the models used,
the proposed approach lends itself very well to de-
tailed sensitivity analysis with respect to exoge-
nous parameters that describe traffic conditions
(e.g. free flow speeds, weather conditions, capacity
adjustments etc.). Along the same lines, the effects
of a number of demand management techniques
can be easily simulated, unlike with other empiri-
cal methods. As such, the suggested method can be
easily integrated in optimal cost models and cost-
benefit analysis.

1.2 Motivation

In the public sector accurate modeling of operations
and logistics functions is a necessary precondition to ef-
fective operational planning and control. Public sector
managers play a key role in determining and regulat-
ing societal externalities. Policy conclusions and regula-
tory policies based on inaccurate modeling affect the en-
tire economy. Since policy has a fundamental impact on
the costs of logistics activities of firms, the private sec-
tor will of course also be affected. The consequences of
inaccuracy or incomplete modeling in the public sector
can be even more significant than in the private sector.
In fact, the resulting policy conclusions and regulatory
policies will affect the entire economy and not just a sin-
gle firm. This is perhaps nowhere more evident than
in the area of transportation policy in which different
models (e.g. for emissions, costs etc.) have led to sig-
nificant policy pronouncements about everything from
ozone precursors to vehicle routing restrictions.

1.3 Organization

The structure of the paper is as follows. In Section 2
the methodology underlying the queueing approach to
congestion in uninterrupted traffic flows is explained.
Section 3 shows how to model the marginal congestion
costs within this queueing framework. In Section 4,
an application of the methodology is presented, based
on empirically observed data flows from Belgium. The
queueing models are applied to compute the marginal
congestion costs, and a sensitivity analysis of these costs
is performed in relation to the various exogenous pa-
rameters describing the traffic conditions. The different

policy implications are discussed. In Section 5, this arti-
cle is concluded with final remarks and topics for future
research in the area.

2 TRAVEL TIME FUNCTIONS

An important issue in the modeling and optimization
of transportation networks is the characterization of the
travel time functions, leading to acceptable estimates of
the travel times on the road under a wide range of con-
ditions (e.g. rain, two lanes etc.). In this section, we
briefly review the research so-far in traffic flow model-
ing practice. For a detailed comparison of some of the
travel time functions mentioned here, the reader is also
referred to van Woensel et al. [17].

2.1 Empirical approaches

It is often observed that the speed for a certain time pe-
riod tends to be reproduced whenever the same flow is
observed. Based on this observation, it seems reason-
able to postulate that, if traffic conditions on a given
road are stationary, there should be a relationship be-
tween flow, speed, and density. This relationship results
in the concept of speed-flow-density diagrams. These
diagrams describe the interdependence of traffic flow
(q), density (k) and speed (v). The seminal work on
speed-flow diagrams was the paper by Greenshields
[18]. Among the existing methods to describe traffic
flows and the travel times the most popular is by far the
use of empirical speed-flow relations (for more recent
applications see, among others, O’Mahony and Kirwan
[19]) and Li [7]).

Figure 1: The relations between the speed-flow, speed-
density, and flow-density diagrams

Figure 1 illustrates that although every speed v has
a corresponding traffic flow q the reverse is not true.
There are two speeds for every traffic flow, an upper
branch (v2), in which the speed decreases as the flow
increases, and a lower branch (v1), in which the speed
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increases. Intuitively it is clear that, as the flow moves
from 0 (at free flow speed vf ) to qmax, the congestion in-
creases but the flow rises because the decline in speed is
over-compensated by the higher traffic density; if traffic
tends to grow past qmax, flow falls again because the de-
cline in speed more than offsets the additional vehicle
numbers, further increasing congestion [20]. The flow-
density diagram and the speed-density diagrams are an
equivalent representation and can be interpreted in the
same way.

Two standard procedures exist for determining the
needed parameters of these relations (see Daganzo [20]).
First, they can be estimated by econometric models by
using data on average traffic volumes and observed av-
erage speeds, selecting the functional form that best
fits the data (see e.g. Mayeres [21]). Secondly, assum-
ing particular nonlinear functional forms with a limited
number of unknown parameters, the latter can be cali-
brated on the basis of just a few observations, typically
including the free flow speed at zero traffic flow (see e.g.
De Borger and Proost [22]). Obviously, both methods
have shortcomings:

1. Estimating speed-flow relations by econometrics
requires data on average speeds-average flows (or
volume versus time per kilometer). Typically traffic
volumes are available from standard traffic counts,
but in many cases information on the correspond-
ing average speed of the traffic flow is not recorded.
To cope with this problem, other data generation
processes have to be used (see e.g. O’Mahony and
Kirwan [19]).

2. Calibration of speed-flow relations on the basis of
just a few observations leads to obvious prediction
problems for speeds that substantially deviate from
those used to calibrate the parameters.

3. Both methods are of limited use to study the effect
on congestion of changes in a number of impor-
tant determinants such as road capacity, free flow
speeds, weather conditions, demand management
techniques etc.

2.2 Analytical approaches

The analytical approaches are preferred over simulation
techniques, which usually are computationally inten-
sive, or econometric models, which are strongly depen-
dent on the underlying data. Of course, such a choice
may lead to very complicated and highly intractable
models. There is of course always the question of find-
ing an acceptable trade off between approximate analyt-
ical and simulation. The resulting analytical queueing
models are transparent and usable enough to motivate
the use of these models (see Vandaele et al. [15]). In-
stead of presenting a formal overview of the queueing
methodology and its application to traffic flows, the re-
mainder of this section will offer an intuitive approach
and a selection of the crucial formulas based on the

work of Vandaele et al. [15], van Woensel et al. [23], and
Heidemann [14], which is sufficient to understand the
remaining of this article.

Figure 2: Queueing representation of traffic flows

In a queueing approach to traffic flow analysis, roads
are subdivided into segments, with length equal to the
minimal space needed by one vehicle on that road, as
seen in Figure 2. Let us define kj as the maximum traf-
fic density (i.e. maximum number of cars on a road seg-
ment). This segment length is then equal to 1/kj and
matches the minimal space needed by one vehicle on
that road. Each road segment is considered as a service
station, in which the vehicles arrive at a certain rate λ
(i.e. the demand) and they are served at another rate µ
(see Vandaele et al. [15]).

Following Heidemann [14], the arrival rate λ is de-
fined as the product of the traffic density k and the free
flow speed vf , or λ = k × vf . Similarly, the service rate
µ is defined as the product of free flow speed vf with
the maximum traffic density kj , or µ = kj × vf (Heide-
mann [14]). The interaction of λ and µ results in a cer-
tain realized flow q which will be a function of the road
characteristics (e.g. kj and vf ) and the queueing model
parameters (e.g. the variability). Vandaele et al. [15] and
Heidemann [14] showed that the speed v can be calcu-
lated by dividing the length of the road segment (1/kj)
by the total time in the system (W ), or:

v =
1/kj

W
. (1)

The total time in the system W is different depend-
ing upon the queueing model used. This time is the
sum of the time spend in the queue Wq and the time
being in service Wp. The average time in service is al-
ways equal to the mean of the distribution of the service
times. The determination of the time spend in the queue
Wq is however dependent upon the specific queueing
model under investigation. Vandaele et al. [15] devel-
oped different queueing models1. This article will be
limited to the M/M/1 and M/G/1 queueing models, as
the results for these models can be obtained in closed
form (closed form expressions for the time in the queue
Wq for these basic queueing models are readily available
in the literature, see e.g. Hillier and Lieberman [24]).
The methodology developed for these models can how-
ever be extended to more general models (e.g. GI/G/1
models for which Wq needs to be approximated), but
the results are only obtained numerically. Table 1 gives

1In order to refer to the queueing models, we use Kendall’s no-
tation, in which M/G/1 means a queueing system with Markovian
arrival rates, General service times, and 1 server in the system.
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Table 1: The time in the queue Wq

Model Wq

M/M/1 v =
kj×vf±

√
kj×vf×[kj×vf−4q]

2kj

M/G/1 v =
2×kj×vf−q(c2

s−1)±
√

[q(c2
s−1)−2×kj×vf ]2−16×kj×vf×q

4kj

the relevant formulas for the speed v for the models un-
der consideration.

The validity of the queueing approach was proved
to be a representation of the traffic flow reality in a
number of papers, both using empirical data and sim-
ulation (see e.g. van Woensel and Vandaele [16], van
Woensel et al. [25]). Validation results showed that the
developed queueing models can be adequately used to
model uninterrupted traffic flows. As such, these mod-
els can be used to evaluate potential improvements in
the existing traffic conditions. Starting from the existing
traffic state, potential improvements are easily quanti-
fied and compared with one and another. Potential im-
provements that can be evaluated using this queueing
approach are for example, congestion costs (the scope
of this paper), environmental impact of traffic (see van
Woensel et al. [23]), optimal number of lanes, invest-
ment analysis, routing decisions (see van Woensel et al.
[26]) etc.

2.3 Discussion

The traditional empirical approach is limited in terms
of predictive power and sensitivity analysis. Vandaele
et al. [15] and Heidemann [14], showed that queueing
models can also be used to explain uninterrupted traffic
flows and thus offering a more practical approach, use-
ful for sensitivity analysis, forecasting etc. It is impor-
tant to mention that the queueing models developed all
assume steady-state conditions, i.e. such that the same
behavior is reproduced and observed every time with
the same probability. The steady-state queueing models
are most appropriate in design and policy recommen-
dations, which is the main focus of this paper. This as-
sumption has a number of consequences:

1. The traffic flows observed are stationary meaning
that all vehicles will always be driving (no mat-
ter how slow) and never come to a full stop. The
non-stationary traffic experiences stop’s and go’s
and would be more suitable for modeling bottle-
necks. These non-stationary traffic flows can be
modeled using e.g. transient queueing models.
Heidemann [27] showed that under non-stationary
conditions, the speed-flow-density results deviate
from the ones obtained with stationary queue-
ing models. [27] also demonstrated that the non-
stationary flow-density diagrams converge to the
stationary ones when the time period considered in

the non-stationary models grows to infinity. More-
over, the transient queueing models are more use-
ful in specific control situations for relatively small
networks.

2. At some places in this paper, the term congestion
will be used in a strictly queueing theory sense,
meaning more than one customer in the system
leading to traffic intensity strictly larger than 0.
When considering getting stuck in traffic, the term
traffic jam will be used. Note also that although the
queueing theory terminology is used when talking
about waiting time, a more appropriate term would
be delay. The first term would imply in traffic flow
terminology a full stop, while the latter one as-
sumes that vehicles still move but at a lower rate.

3. The observed traffic flows can never be larger than
the capacity, as in this case, the traffic intensity
would grow larger than 1 which would mean in
terms of queueing theory that the system is ex-
plosive (more arrivals than the service stations can
handle). In queueing practice, this means that the
arrivals are lost (and not back-ordered). Hence, this
is different from the bottleneck model, If the incom-
ing flow exceeds capacity, the excess flow accumu-
lates in the form of a queue propagating upstream
(see Daganzo [20]).

Of course, any model (e.g. econometric models, sim-
ulation etc.) is an abstraction of reality. A queueing
model is a mathematical model and by definition, an ab-
straction of reality. It has been shown however that this
abstraction does not mean that the queueing approach
is inadequate to model uninterrupted traffic flows.

Finally, it has to be mentioned that other queueing ap-
proaches do exist. Jain and Smith [28] described in their
paper a state-dependent M/G/C/C queueing model for
traffic flows. Part of their logic is used to extend our
queueing models to state-dependent ones. Also a lot of
research is done on a travel time-flow model originating
from Davidson [9]. The model is based on some con-
cepts of queueing theory but a direct derivation has not
been clearly demonstrated (see Akçelik [29, 30]).

3 TOWARD TRAFFIC CONGESTION COSTS

Following the conventional approach in the literature
(see De Borger et al. [6] and Li [7]), the total cost of a
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delay, denoted by TCq (EURO per kilometer per hour),
for a given flow q, is defined as

TCq = q × Cq, (2)

with Cq = VOT× 1
vq

, in which Cq is the cost for a traveler

to take a trip (given a certain flow q) and VOT is the
value of time. The speed function vq is then given by the
queueing formulas presented in the previous sections.
Note again that in the literature this Cq is coming from
regression fits of empirical data, while here in this article
the analytical queueing approach is followed.

The marginal congestion cost is defined as the extra
cost due to a structural exogenous increase of traffic de-
mand by 1 vehicle. In order to obtain the marginal con-
gestion cost, the marginal change of TCq, Eq. (2), over q
is derived, which leads to

MCq =
∂TCq

∂q
, (3)

=

[

Cq + q ×
∂Cq

∂q

]

. (4)

The first component, Cq or
[

VOT × 1
vq

]

in Eq. (4), is

the average cost per vehicle per kilometer experienced
by the marginal traveler and the second component,

q ×
∂Cq

∂q
in Eq. (4), is the increase in time cost per kilo-

meter due to the increase in the flow q. The first compo-

nent is thus the internal cost MCI
q . The second one is the

external cost MCE
q imposed by the driver. The specific

value of both components depends upon the queueing
model chosen. Table 2 summarizes the functions for dif-
ferent queueing models.

Table 2: External cost component for different queueing
models

Model Marginal congestion cost MCq

M/M/1 q ×
4k2

j vf
√

kjvf (kjvf−4q)
(

kjvf±
√

kjvf (kjvf−4q)
)

2

M/G/1 q ×

4kj





(c2s−1)+
(c2s−1)q−2(c2s+3)kjvf

2

√

((c2s−1)q−2 kjvf )2−16kjvf q







(

(c2s−1)q+2kjvf±

√

((c2s−1)q−2kjvf )2−16kjvf q

)

2

4 RESULTS AND APPLICATIONS

In this section, results are presented based on the in-
tegrated queueing-congestion costs approach. Based
on the described queueing models and the proposed
methodology, the marginal external congestion costs are
calculated. We first elaborate on the congestion costs
for traffic in a single node. Secondly, this analysis is ex-
tended toward network models.

hour
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Figure 3: The hourly flow over the day

The data are collected by the Department of Envi-
ronment and Infrastructure of the Ministry of the Flem-
ish Community. This department is responsible for col-
lecting and reporting the counting data for all Flemish
roads. The dataset consists of observations of the num-
ber of vehicles per hour for 273 days of the A1/E19
highway, section Mechelen North–Rumst, headed to
Brussels (i.e. counter 19012). There are three lanes
which are aggregated into one lane (see also Button and
Hensher [31]). All vehicle observations are recalculated
into passenger car equivalents (one truck counting for
two passenger cars). The data used can be seen in Fig-
ure 3.

4.1 Traffic at a single node

Using the flow data obtained for one counting point
on the mentioned highway, we are able to evaluate the
magnitude of the congestion costs for a number of pa-
rameter settings. We set the free flow speed vf equal
to 120 km/h, which is approximated by the maximum
speed allowed on this stretch. The jam density kj is set
equal to 201, which is obtained based on the maximum
historical flow ever observed on this stretch of road (see
van Woensel and Vandaele [16] for more information).
The VOT is conventionally set equal to 6.67EUR (see
Png et al. [32]).

Figure 4 shows the speed-flow diagrams (upper
graphs) for different settings of the coefficient of vari-
ation cs. Note that when cs = 1.0, it refers to a Marko-
vian M/M/1 queueing model. The other values result
in a M/G/1 queueing model. The lower graphs repre-
sent the shape of the Cq function, or Cq = VOT × 1

vq
.

These curve have a positively sloped part which corre-
sponds to the congested branch (upper branch) of the
speed-flow diagram and a negatively sloped backward-
bending part corresponding to the hyper-congested
branch (lower branch) of the speed-flow diagram. Note
that these curves generated here are analytical counter-
parts of the empirical curves as described in e.g. Lind-
sey and Verhoef [33]. Also depending upon the vari-
ability (as a function of cs), the maximum flow that can
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Figure 4: Speed-flow diagrams and the resulting cost for a traveler, Cq

be realized is different. It should be clear that the max-
imum capacity of the road system depends on the cir-
cumstances in which traffic realizes itself (e.g. snow ver-
sus sunny). This is clearly reflected in the speed-flow di-
agram where the maximum flow ranges between 3,600
and 8,200 vehicles.

Several authors (see e.g. Chu and Small [34] and
Lindsey and Verhoef [33]) argued that the hyper-
congested branch of the speed-flow density diagram is
not stable. These authors concluded that this part of the
speed-flow curve is the result of transient demand fluc-
tuations and is considered to be unsuitable for build-
ing policy plans. As such, for economic cost analysis
and policy applications, it is reasonable to ignore the
hyper-congested branch of the speed-flow curve and
only focus on the congested (steady-state) branch of the
speed-flow curve (see also Button [35]). We will adopt
the same approach in this paper, as the prime purpose
is to develop generic insights for policy making which
should be based on steady-state rather than on transient
behavior.

Figure 5 shows the marginal congestion costs MCI
q

and MCE
q for different coefficients of variation cs, but

considering only the upper (i.e. congested) branch of
the speed-flow diagram. Both the internal cost compo-
nent as the external cost component are an increasing

function in flow q. However, the external cost MCE
q

tends to be significantly higher than the internal cost

MCI
q for medium to high flows.

Figure 6 gives the respective internal cost component
and the external cost component, for a specific flow pro-
file for a random day (depicted in Figure 3). One can
also see that the congestion costs during the morning
peak (from 7–10) are significantly higher than the ones
in the evening peak (from 16–19). This of course is due
to the observation that the traffic intensity in the morn-
ing peak is higher than in the evening peak, which tends
to be spread over a longer time. In the off-peak mo-
ments however, the total costs are mainly comprised
of the internal costs. The external costs are limited. It
should be clear that if one decide to use the road on
highly congested moments, the user pays more. This
has been recognized already in the literature mentioned
before. On the other hand, note again the influence of
the stochasticity on the external costs. For high traffic
intensities, the costs tend to be much higher for days
with high variability compared to low variability. Ob-
taining the relevant costs for these situations is only pos-
sible when using analytical models (rather than empiri-
cal models).

4.2 Sensitivity Analysis

A sensitivity analysis is done for the different pa-
rameters in the model. As pointed out earlier, this
is one of the major contributions of the proposed
queueing-congestion costs approach compared to other
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Figure 5: The marginal congestion cost MCq for different
coefficients of variation cs

approaches. In order to perform a sensitivity analysis,
partial derivatives of the marginal external congestion
cost to the parameters vf , kj and cs are calculated, keep-
ing all other parameters equal. The rationale behind
changing the jam density is to determine the influence
of adding lanes on the congestion costs. This can be
done as the jam density kj can be seen as a proxy for the
number of lanes. For reasons of simplicity, it is assumed
that the jam density is a linear function of the number
of lanes. The coefficient of variation of the service times
can be used to see the effect of the different factors that
influence the traffic, e.g. weather circumstances. The
analytical formulas for the different queueing models
can easily be obtained.

In general, the effect (sign) for vf and kj is negative
and for cs is positive. In other words, increasing the
free flow speed vf or the jam density kj will result in
lower costs (due to the increase in capacity), while an
increase in the coefficient of variation cs will result in
higher costs (due to the decrease in capacity).

In Figure 7, the external cost component is always
shown for the maximum flow that can be observed for
the parameter setting (i.e. a highly congested situation)
as the results of the previous section suggested that the
external cost component only becomes significant for
high congestion. One should note that this is not the
same as the above partial derivatives of the marginal
external congestion cost to the parameters vf , kj and
cs. There it was assumed that the flow q remained the
same; in the remainder of this section the effect is exam-
ined as if the flow on the highway is always equal the
maximum flow able to use the highway (which depends
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Figure 6: The marginal congestion costs MCq over a day

upon the parameter settings). The rationale behind is
that if, for example the number of lanes is increased, the
number of cars eventually using the road will also in-
crease. As such the sensitivity results presented in the
remainder of the section can be seen as long term effects.

The sensitivity analysis shows that the external costs
for the maximum flows are strongly depending on the
parameters. It is clear that there is a significant stochas-
tic effect on the external costs. Ignoring this important
influence and treating this complex phenomenon as de-
terministic (as done in many empirical approaches) is
bound to lead to inaccurate policy making.

4.3 Policy Implications

In the literature, the estimated marginal external con-
gestion costs vary dramatically: for a congested high-
way the approximations of Mayeres [21], De Borger
et al. [6] and Li [7] range from 0.2040EUR to 1.8751EUR
per kilometer per vehicle. The range of the former re-
sults is remarkable, since the assumed hourly brute in-
come and the value of time (VOT) expressed as a frac-
tion of the hourly brute income do not differ signifi-
cantly (the hourly brute income is in general assumed
to be equal to 10EUR, and a recent estimate (Png et al.
[32]) presents the VOT as 67% of the hourly brute in-
come). For the queueing-congestion costs approach the
cost estimates are presented in Table 3 (with the speed-
flow profile and parameter setting discussed in the pre-
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Figure 7: Sensitivity of the parameters on the external
costs

vious section).

Table 3: Overview of peak and off-peak external costs

cs = 0.1 cs = 1 cs = 2

Morning peak 1.24EUR 2.35EUR 4.66EUR

Evening peak 0.29EUR 1.66EUR 3.38EUR

Off-peak 0.02EUR 0.03EUR 0.05EUR

As one can see, these numbers are not substantially
different from the results reported in the literature.
There are however significant differences when looking
at the different levels of variability. Self-evidently, to ex-
plain the differences, one has to bear in mind the out-
dated traffic flow data used in early literature. Next to
this, it should be noted that the results reported in the
literature are based on observed speed-flow density di-
agrams with an implicit coefficient of variation of the
service times (which is unknown). The presented ap-
proach can thus be seen as a framework in which all
past observations regarding costs can fit in.

In the literature, most studies rely on comparing the
existing traffic conditions against a notional ’base’ in
which the traffic volumes are at the same high lev-
els, but all vehicles all deemed to travel at completely
congestion-free speeds. This situation could never exist
in reality is it reasonable to encourage public opinion to
imagine that this is an achievable aim of transport pol-
icy. In this paper, the idea of a totally congestion-free
target is ignored, and emphasis is put on the change
in congestion that would be realistically achievable as
a result of implementing specific more or less ambitious
transport policies, such as road building, public trans-
port improvements, and transport prices.

Since the policy made by public sector managers,
mainly depends on the models they use, accurate op-
erational models are mandatory. Suboptimal decisions
affect the entire economy and drive companies into
decision making which can rather be worse than bet-
ter for the society as a whole and other stake-holders.
Therefore government should use accurate and com-
plete tools to support their operational policy conclu-
sions, especially when it comes to regulating traffic, one
of the very important characteristics of contemporary
logistical activities. In addition, these regulations can
significantly impact the way companies conduct their
transportation planning, distribution organization, de-
liveries, shipments, etc.

These observations are crucial when it comes to the
development of traffic measures. The decisions, made
by strategic and operational public sector managers
clearly affect the private sector. Thus, the dynamic
queueing approach proposed has the potential for mak-
ing important contributions to improving the decision
making of both public sector managers and private
companies related to logistics and traffic movements.
Through the use of the sensitivity analysis, the pub-
lic sector manager can get useful insights in the effects
of his measures. Moreover, not only short term effects
(where flow is unchanged) are quantified but also long
term effects (where flow increases) can be quantified.

5 CONCLUSIONS AND TOPICS FOR FUTURE

RESEARCH

As documented in the literature, optimal use of a trans-
portation facility cannot be achieved unless each addi-
tional user pays for the additional costs that this user
imposes on all other users and on the facility itself. As
such, a congestion toll not only contributes to a socially
desirable result, but is necessary to reach such a result.
This paper makes use of the existing queueing theory
for traffic flows in order to get an estimate of marginal
congestion costs.

The main advantage of the methodology described
in this paper, consists in the possibility to derive the
marginal congestion costs in an analytical way taking
into account the inherent stochasticity of the real world.
This approach relies less on the availability of required
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data: only data on the flows is needed, contrary to the
traditional approaches where also data for the speed is
needed. The marginal congestion cost appears readily
easy to calculate, and can straightforwardly be decom-
posed in internal and external costs. It is demonstrated
that using the queueing approach to the speed-flow-
density relationship leads to a more controllable envi-
ronment to conduct what-if analysis and perform sensi-
tivity analysis. Based on the experiments, the effects of
a change the free flow speed (e.g. changing speed limit),
the jam density (e.g. add an extra lane) and the coeffi-
cient of variation (e.g. snowy day versus sunny day) are
shown.

Future research mainly involves extending the ap-
proach toward multiple user types (e.g. passenger cars
versus trucks) and finding the equilibrium conditions
in a (queueing) network setting for the proposed ap-
proach.
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