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Abstract8

The optimal buffer allocation in queueing network systems is a difficult stochastic, non-linear, integer mathematical9

programming problem. Moreover, the objective function, the constraints or both are usually not available in closed-10

form, making the problem even harder. A good approximation for the performance measures is thus essential for11

a successful buffer allocation algorithm. A recently published two-moment approximation formula to obtain the12

optimal buffer allocation in general service time single queues is examined in detail, based on which a new algorithm13

is proposed for the buffer allocation in single-server general service time queueing networks. Computational results14

and simulation results are shown to evaluate the efficacy of the approach in generating optimal buffer allocation15

patterns.16
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1. Introduction18

Manufacturing, telecommunication, and material handling systems are just few examples of practical19

interest that may be represented by finite buffer queueing networks. Because of the critical costs for buffer20

space, it is crucial to optimally determine the buffer spaces in order to ensure maximum performance at the21
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lowest possible cost. The buffer allocation problem (BAP) is computationally hard to solve as the BAP is22

usually formulated as a stochastic, non-linear, integer mathematical programming problem. The BAP is to23

find optimal values for the buffer sizes K such that the blocking probability pK is below some pre-specified24

threshold ε for all queues in the network. In this article, the buffer allocation problem will focus on networks25

of M/G/1/K queues, which in Kendall’s notation considers Markovian arrivals, generally distributed service26

times, one single server, and the total capacity of K items, including the item in service. In this case, the27

BAP is a complicated problem as it involves general service time queues configured in arbitrary networks28

[19] as seen in Fig. 1. No closed-form objective functions are available for these types of networks. Thus, one29

needs to rely on approximations.30
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Fig. 1. Queueing network in an arbitrary topology.

One of the objectives of this article is to extensively compare approximations for the blocking probability,31

pK , the probability that an arriving entity finds the queueing system at its capacity, in general single-server32

queues. One of the most regarded performance measures of queueing systems, the blocking probability is33

a building block for buffer allocation formulations. Another objective is to assess the accuracy of a novel34

implementation [3] for the Generalized Expansion Method (GEM), a well-know method for performance35

evaluation of finite queueuing networks, applied to networks of M/G/1/K queues. Finally, the third objective36

is to propose a simple algorithm for the buffer allocation problem in arbitrarily configured, finite buffer,37

single-server queueing networks. This will then result in insights into this challenging network design problem.38

This article is organized as follows. In Sec. 2 the BAP is defined as a non-linear mathematical programming39

formulation and a short literature review is presented on the different algorithms developed in the past for40

similar problems. Some of the most effective approximations for pK are extensively compared in Sec. 3. In41

Sec. 4 the performance evaluation algorithm for finite queueing networks is described and its accuracy is42

tested. Then, Sec. 5 describes the proposed algorithm to solve the BAP. Computational results evaluating43

the efficacy of the new buffer allocation algorithm are discussed in Sec. 6. Finally, Sec. 7 closes the article44

with final comments and topics for future research in the area.45
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2. Buffer Allocation Problem46

2.1. Problem formulation47

The BAP is concerned with how much space needs to be allocated in order to guarantee that the probability48

of loosing clients (or delaying them) is below a certain threshold. In its simplest definition the BAP seeks49

the lowest integer K > 0 such that pK ≤ ε for some acceptable threshold ε ∈ (0, 1). It is assumed that the50

system utilization ρ (that is, the ratio between the arrival rate and the service rate, ρ = λ/µ) is below 1.0,51

because an optimum may not exist for K if ρ ≥ 1.0 (see Kimura [12]).52

The BAP may be defined by a multi-objective non-linear mathematical programming formulation with53

integer decision variables xi ≡ K, for the ith M/G/1/K queue. However, in this article the following single54

objective formulation will be considered:55

Z = min
∑

i

xi, (1)56

s.t.:57

Θ(x)≥Θmin, (2)

xi ∈ N, ∀i, (3)

which minimizes the total buffer allocation to the network,
∑

i xi, subject to providing a minimum total58

throughput Θmin. In this formulation, Θmin is some threshold throughput, not superior to the total external59

arrival rate, Λ =
∑

i Λi, and xi is the buffer K allocation to the ith M/G/1/K queue, including those in60

service. Although similar to a linear integer mathematical programming problem, the formulation does not61

model directly the buffer allocation because Θ(x) is a function hard to define, involving the arrival rates,62

the service rates, and other parameters and variables in the queueing network.63

2.2. Literature Overview64

The BAP literature can roughly be divided into four methodological approaches: simulation methods,65

meta-heuristics, dynamic programming, and search methods. In the following paragraphs, a short overview66

of these approaches will be presented.67

The simulation methods aim to represent the actual systems by means of robust assumptions. In other68

words, general probability distributions are used to model the various aspects of the system, such as inter-69

arrival times, batch size of the arrivals, service times, among others. Simulation methods are usually very70

general and efficient but the price paid is a great computational effort that may reduce the size of treatable71

instances. However, successful uses of simulation methods have been reported by researchers, such as, for72

instance, Soyster et al. [21], for series queueing networks, and Baker et al. [2], for general topologies.73

3



Metaheuristics are very popular methods nowadays, mainly because of the increasing computational74

capacity available. Typical techniques that fall into this area include simulated annealing, tabu search, and75

more recently, generic algorithms. The advantages of metaheuristics are the absence of all those restrictive76

assumptions usually required by the traditional methods and the ability of avoiding local optima traps in77

the seek of the global optimum. The disadvantage is that usually the metaheuristics must be tailored to the78

special structure of the problem. Among others, a successful case of use was reported by Spinellis et al. [22],79

for buffer allocation in tandem networks of M/M/c/K queues.80

Dynamic programming is another powerful and reasonable approach for the BAP. Usually the exponential81

space complexity of dynamic programming methods reduces their applicability to very small size instances.82

However, the approach has been proved successful in many cases. For instance, Kubat and Sumita [14] and83

Yamashita and Altiok [24] reported results for networks of M/M/1 queues in series and Yamashita and84

Onvural [25], for general topologies.85

Finally, there are the search methods, which try to solve the problems avoiding the combinatorial explosion86

of possible solutions by choosing those solutions that are close to the optimum results. Their main disad-87

vantage is their restrictive assumptions, such as concavity and convexity, that may limit the applicability. In88

the past, search methods were also successful in solving the BAP. In series topologies, the BAP was solved89

by search methods by Altiok and Stidham [1], for networks of M/M/1/K queues, and by Hillier and So [8],90

for M/Ek/1/K queues. In general topologies, for instance, there are results reported by Smith and Chikhale91

[18] and Smith and Daskalaki [20], for M/M/1/K queues.92

For networks of single-server general service time queues configured in general topologies, which is the93

main object of this article, there are not many results besides those reported by Smith and Cruz [19] with a94

methodology based on Powell’s algorithm. The algorithm proposed in this article also falls into this category95

of search methods but is considerably simpler and easier to implement, compared e.g. to Smith and Cruz96

[19].97

3. Blocking Probability98

Accurate approximations for the blocking probability for M/G/1/K systems, pK , will be presented in the99

following paragraphs. They are based on finite Markovian systems, M/M/1/K, but approximations based100

on infinite queueing systems are also common. The relevance of accurate approximations for the BAP is101

apparent when we take into account that the throughput in a single queue is the following function of the102

arrival rate and the blocking probability103

θ = λ(1 − pK).
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3.1. Markovian Systems104

The blocking probability expression for a finite Markovian system is well-know [7]105

pK =
(1 − ρ)ρK

1 − ρK+1
, (4)106

for ρ 6= 1, being possible then to express K in terms of ρ, the system utilization, and pK , the blocking107

probability, as follows108

K =







ln
(

pk

1−ρ+pkρ

)

ln (ρ)







, (5)109

in which ⌈x⌉ is the lowest integer not inferior to x, and the blocking probability may be expressed in terms110

of the threshold throughput, Θmin, and the arrival rate, λ, as111

pK ≤ 1 − Θmin/λ.

Expression (5) is not only useful for the optimal buffer allocation for individual Markovian queues but it112

is also useful for networks of general service time queueing systems, as shortly it will be apparent.113

3.2. Gelenbe’s Approximation114

Generally speaking, approximations developed in the past for the blocking probability are based on infinite115

queues. Actually, many of them could be adapted for M/G/1/K queues. A survey by Makens [16], for116

instance, analyzed five different approximations and concluded that Gelenbe’s formula [6] was efficient for117

the majority of the cases tested. Gelenbe’s approximation is based on an approximation of the discrete118

queueing process by a continuous diffusion process. The blocking probability is given by119

pk =
λ(µ − λ)e

−2
(µ−λ)(k−1)

λc2a+µc2s

(

µ2 − λ2e
−2

(µ−λ)(k−1)

λc2a+µc2s

) , (6)120

in which λ is the arrival rate, µ, the service rate, c2
a = Var(Ta)/E(Ta)2 is the squared coefficient of variation121

of the inter-arrival time, Ta, and c2
s = Var(Ts)/E(Ts)

2 is the squared coefficient of variation of the service122

time, Ts. From Eq. (6), it is possible to explicitly get the optimal buffer allocation123

K =
2λ − 2µ + ln

(
pKµ2

λ(−λ+µ+pKλ)

)

λc2
a + ln

(
pKµ2

λ(−λ+µ+pKλ)

)

µc2
s

2(λ − µ)
. (7)124

Taking both the squared coefficients of variation of the inter-arrival time and the service time equal to125

one, c2
a = c2

s = 1, Eq. (7) results in the optimal buffer allocation of Markovian single queues, M/M/1/K.126

Notice that the resulting expression will not be exactly the M/M/1/K formula, Eq. (5), because Gelenbe’s127
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expression is an approximation. However, as noticed by Makens [16] and by Smith and Cruz [19], Gelenbe’s128

expression is accurate for Markovian system, while is not accurate for deterministic service time systems,129

M/D/1/K.130

3.3. Two-moment Approximation131

The two-moment approximation scheme is based on a weighted combination of some approximation for132

the optimal buffer expressions for Markovian systems, M/M/1/K, denoted by KM
ǫ , and for deterministic133

service time systems, M/D/1/K, denoted by KD
ǫ . Tijm’s formula [23] is one two-moment approximation134

that has been shown to be very good in practice. It is given by135

KTijms
ǫ (c2

s) = c2
sK

M
ǫ + (1 − c2

s)K
D
ǫ , (8)136

for c2
s ≥ 0. Clearly, Tijm’s formula is exact for the extreme cases, i.e., c2

s = 0 and c2
s = 1, if exact expressions137

are known for KM
ǫ and KD

ǫ .138

Kimura’s formula [13] is another good two-moment approximation, which is a little simpler as it uses as139

a basis only an approximation for the optimal pure buffer expression of Markovian systems140

BKimura
ǫ (c2

s) = BM
ǫ + NINT

[
(c2

s − 1)

2

√
ρ BM

ǫ

]

, (9)141

in which NINT[x] is the nearest integer to x. Important to say about Kimura’s formula is that it estimates142

the pure buffer without the space for the customers in service (that is, B = K − 1, for M/G/1/K systems),143

while Tijm’s formula includes those in service.144

Recently, Smith [17] proposed the following two-moment approximation for M/G/1/K queues, based on145

Kimura’s formula146

BSmith
ǫ (c2

s) =








ln
(

pK

1−ρ+pKρ

)

ln(ρ)
− 1

︸ ︷︷ ︸

BM
ǫ =KM−1








+
(c2

s − 1)

2

√
ρ








ln
(

pK

1−ρ+pKρ

)

ln(ρ)
− 1

︸ ︷︷ ︸

BM
ǫ =KM−1








. (10)

in which expression (5), subtracted by the space for the single server, is used as the estimate for the147

optimal pure buffer allocation of Markovian systems, BM
ǫ . Now, factoring the terms of the approximation,148

the following simplified expression for the optimal buffer size in M/G/1/K is given149

BSmith
ǫ (c2

s) =

[

ln
(

pK

1−ρ+pK ρ

)

− ln(ρ)
] (

2 +
√

ρc2
s −

√
ρ
)

2 ln(ρ)
. (11)150

Notice also that Eq. (11) yields the same expression as Eq. (5), if c2
s = 1 and the space for the server is151

added. Additionally, as a side effect of Eq. (11), it is possible to obtain a closed-form approximate expression152

for the blocking probability of single M/G/1/K queues153
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pK =
ρ

(
2+

√
ρc2s−

√
ρ+2(K−1)

2+
√

ρc2s−
√

ρ

)

(−1 + ρ)

ρ

(

2
2+

√
ρc2s−

√
ρ+(K−1)

2+
√

ρc2s−
√

ρ

)

− 1

. (12)154

As it will be seen in the following sections, Eq. (12) will be useful for computing performance measures155

of queueing networks of M/G/1/K systems.156

3.4. Computational Experiments157

A series of computational experiments was performed to test the efficacy of the blocking probabilities158

given by the Markovian formula, Eq. (4), Gelenbe’s formula, Eq. (6), and Smith’s formula, Eq. (12). For159

the buffer sizes the values K = {2, 4, 8, 16} were considered. For each one of the buffer sizes, Markovian,160

c2
s = 1.0, hypoexponential, c2

s = 0.5, and hyperexponential service time systems, c2
s = 2.0, were tested.161

Because no exact blocking probabilities are available, the results are compared with simulation, using Gamma162

distributions for the service times and 20,000 simulated time units to approach steady state. ARENA was163

the simulation system employed (for details, see Kelton et al. [10]). The simulation results presented are164

averages from 30 replications. The mean standard errors are too small to be noticed in the graphs presented165

in Fig. 2–Fig. 4. Some studies have been published for M/G/1/K single queues [17, 19] but not at the166

extend seen in this article.167

Markovian Systems168

Results for the first set of experiments, done for Markovian systems, that is, c2
s = 1.0, are presented in169

Fig. 2. These experiments were performed to validate the implementations as all of them should yield the170

same results, which they indeed do in most of the cases. Actually, only for K = 2 and ρ < 1.0 divergences171

were noticed involving Gelenbe’s formula. Notice that as K increases the blocking probabilities get close to172

zero when ρ < 1.0, which is a logical and expected behavior.173

Hypoexponential Systems174

The results for hypoexponential systems, with c2
s = 0.5, are available in Fig. 3. For hypoexponential175

systems the Markovian approximation is an upper bound for the blocking probabilities, as it always overes-176

timates the simulation results, assumed here as reference. Thus, it is clear that by simply using Markovian177

approximations for hypoexponential systems one will tend to allocate larger buffer spaces than necessary.178

Taking again the simulations as reference, Gelenbe’s approximation underestimates the blocking proba-179

bilities when the system utilization is below unity but tends to overestimate them otherwise. On the other180

hand, Smith’s approximation seems to be more accurate than Gelenbe’s approximation and less dependent181
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Fig. 2. Comparisons for pK for Markovian systems.
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9



on ρ. For large buffer sizes, the blocking probabilities tend to be zero for those cases in which the system182

utilization is below unity, ρ < 1.0. However, it is noticeable that although the approximations may disagree183

considerably for small buffer sizes they all tend to produce similar estimates as the buffer size increases.184

Hyperexponential Systems185

Results for hyperexponential systems, with c2
s = 2.0, are presented in Fig. 4. The Markovian approxima-186

tions may be seen as a lower bound for the blocking probabilities, as their values always underestimate the187

simulation results, taken here as references. The inadequacy of Markovian approximations for hyperexpo-188

nential systems for optimal buffer allocation purposes is confirmed. In this case, one will allocate less buffer189

space than necessary.190

In comparison with the simulations results, Gelenbe’s approximations overestimate the blocking proba-191

bilities just in the most appropriate range of ρ (for system utilization less than the unity, ρ < 1.0). By its192

side, Smith’s approximation presents estimates close to the simulation results independent of ρ. As observed193

for hypoexponential systems, the blocking probabilities tend to be close to zero for system utilization below194

the unity as the buffer size increases. Also similarly to hypoexponential systems, all approximations tend to195

agree for larger buffer size systems.196

4. Performance Evaluation Algorithm197

4.1. Generalized Expansion Method198

Notice that, in order to solve the optimization problem given by Eq. (1), (2), and (3), one will need an199

estimate for the throughput, Θ(x). An algorithm available is the Generalized Expansion Method (GEM),200

successfully used in the past to estimate performance measures for arbitrarily configured finite queueing201

networks.202

Well described in many articles, in particular in the recently published article by Kerbache and Smith203

[11], the GEM is basically a combination of node-by-node decomposition and repeated trials, in which each204

queue is analyzed separately and then corrections are made in order to take into account the interrelation205

between the queues in the network. The GEM uses type I blocking, that is, the upstream node gets blocked if206

the service on a customer is completed but it cannot move downstream due to the queue at the downstream207

node being full. This is sometimes referred to as blocking after service, which is prevalent in most production208

and manufacturing, transportation, and similar systems. The implementation used here in this work is based209

on a recently proposed implementation of the GEM by Cruz and Smith [3], suitable for light to moderate210

traffic, and, for the first time, used in networks of M/G/1/K queues. The algorithm may be seen in Fig. 5.211
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algorithm

read G(V, A, P ), Λ, µ, c2
s

/* preevaluate all nodes */

λl ← Λl ∀ l ∈ V
Q← ∅
while Q 6= V

choose j ∈ (V \Q)

if i ∈ Q, ∀ (i, j) ∈ A then

/* evaluate performance for node j */
compute pKj

compute θj = λj × (1− pKj
)

/* forward information */

for ∀ l, such that (j, l) ∈ A do

λl ← λl + p(j,l) × θj

end for

/* update set Q */
Q← Q ∪ {j}

end if

end while

/* reevaluate all nodes */

Q← ∅
θmax
i
←∞, ∀i ∈ V

while Q 6= V
choose i ∈ (V \Q)

if j ∈ Q, ∀ (i, j) ∈ A then

/* update performance measure */

E[Ts]∗i ← min E[Ts]i
s.t.: θi ≤ θmax

i
,

E[Ts]i ≥ 1/µi

pKi
← f(ρi = λi/µ∗

i
; c2s), Eq. (12)

θi ← λi(1− pKi
)

/* backpropagate to predecessors */
for ∀ k ∈ {k′| (k′, i) ∈ A} then

update θmax
k

end for

/* label node as evaluated */
Q← Q ∪ {k}

end if

end while

/* write final results */
write pKi

, θi, ∀ i ∈ V
end algorithm

Fig. 5. Algorithm for performance evaluation.

The GEM starts by reading all relevant information from the network under analysis, including the set212

of vertexes in the networks, V , the set of arcs, A, and the routing matrix, P ≡ [p(i,j)], which defines the213

probabilities of an entity to choose one or another path. Following Kerbache and Smith [11], the GEM214

consists of creating for each finite queue following another finite queue (see Fig. 6), represented by vertex j,215

an auxiliary vertex hj , modeled as an M/G/∞ queue. When an entity arrives at the system, vertex j may216

be blocked with probability pKj
, or unblocked, with probability (1 − pKj

). Under blocking, the entities are217

rerouted to vertex hj for a delay while node j is busy. Vertex hj helps to accumulate the time an entity has218

to wait before entering vertex j and to compute the effective arrival rate to vertex j.219

Thus, the algorithm chooses an arbitrary node, j, from set V but not from set Q (in which Q is the set of220
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nodes already evaluated), such that for all arc (i, j) ∈ A, vertex i has been evaluated already. Then, vertex221

j has computed its blocking probability pKj
, from Eq. (12), and its arrival rate, from θj = λj × (1 − pKj

),222

λj = Λj +
∑

i λij . These service rates are then forwarded as arrival rates to the downstream nodes (if they223

exist), and vertex j is included into set Q. For instance, in the network illustrated in Figure 1, a possible224

valid sequence to perform pre-evaluations is 1 → 2 → 4 → 3 → 5 → 6.225

Notice that the GEM also includes a re-evaluation step, designed to guarantee flow conservation, that226

is, θj ≤ λj +
∑

∀ i|(i,j)∈A θipij , for all j ∈ V . The re-evaluation step is a labeling algorithm working in227

reverse. For the network presented in Figure 1, a possible valid sequence to perform the reevaluations is228

6 → 5 → 4 → 3 → 2 → 1, because a node can only be re-evaluated if all of its successors were re-evaluated229

already. The re-evaluation algorithm corrects the estimates by means of adjustments in the expected service230

time of each node i, E[Ts]i. Further details will not be given in this article. The interested reader is referred231

to Cruz and Smith [3].232

4.2. Computational Experiments233

A series of computational experiments was performed to attest for the accuracy of the proposed imple-234

mentation of the GEM for networks of M/G/1/K queues. However, only networks of M/G/1/2 queues were235

considered because those are the most critical cases, since all approximations tend to agree for larger buffer236

systems, as shown in Section 3.237

We run experiments in three basic topologies, series, merge, and split, combined into several values for238

the system utilization, ρ, and for the squared coefficient of variation, c2
s. When no exact results are available239

for the configurations tested, the results are compared with simulation. ARENA was the simulation system240

employed (for details, see Kelton et al. [10]). For the non-Markovian service times (that is, c2
s = {0.5, 2.0}),241

we used a two-stage gamma distribution, with convenient settings for the shape and scale parameters. In242

order to assure the steady-state regime, 200,000 time units were used as the simulation times with a warm-up243
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period of 2,000 time units. The simulation results presented are the averages over 20 replications, to get244

reduced mean standard errors. Slightly longer and shorter simulations and replications were tested but the245

results (not shown) did not change significantly.246

Table 1 presents the results for the experiments, obtained from a PC Pentium(R) 4 CPU 3.00GHZ, 960247

MB RAM running the Microsoft(R) Windows XP. In the column labeled ‘analytical’, we give the throughput248

result from the GEM for each of the cases. We then compare this analytical result with the average result249

obtained via the simulation. The column δ refers to the half-width of the 95% confidence interval. Notice that250

the Monte Carlo errors were quite small. Also included in these tables is the % deviation for the analytical251

results on the throughput, column ∆%θ, from which we can see that the analytical results may be quite far252

away from the simulation (exact) results (see results in boldface in Table 1). Mainly the results from this253

GEM implementation get worse as the system gets overloaded. Notice that for the split topology the results254

are quite good, because the flow in excess is rejected right away in the first node being then divided into255

two nodes with equal service rate. It appears that the quality of the approximations is mainly dependent on256

the squared coefficient of variation of the service time. In fact, the % deviation finds its highest values with257

the highest c2
s.258

Concluding, from the simulation CPU times reported for a single evaluation of the performance measures259

for the queueing networks, it is apparent that simulation based techniques may not be quite effective for260

optimization purposes of these queueing networks, unless the system is very small, because typically hundreds261

or thousands of performance evaluations may be required for the optimization algorithms. On the other hand,262

the analytical results are shown to be quite reliable and satisfactory. Additionally, as this new implementation263

of the GEM is primarily for optimization purposes, we should not worry too much about high deviations264

under overloaded traffic.265

5. Buffer Allocation Algorithm266

5.1. A Lagrangean Relaxation Approach267

The optimization problem that will be examined here is given by Eq. (1), (2), and (3). In the formulation,268

xi becomes the decision variable under optimization control, that is, xi ≡ K, for the ith queue.269

A possible way to solve the problem is through Lagrangean relaxation, a technique that consists in relaxing270

the complicating constraints and including then in the objective function as a penalty. Among the classical271

references to the Lagrangean relaxation, the article by Fisher [5] should be cited. A recently published272

tutorial about the Lagragean relaxation by Lemaréchal [15] is another reference for the technique. One way273

to incorporate the throughput constraint is then through a penalty function. Defining a dual variable α and274

relaxing the constraint (2), the following penalized problem is given:275
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Table 1

Results for the generalized expansion method.

series topology
Λ- i-1 - i-2 - i-3

node #1 node #2 node #3

analytical simulation analytical simulation analytical simulation

ρ c2s θ θ δ ∆%θ θ θ δ ∆%θ θ θ δ ∆%θ CPU∗

0.1 0.5 0.9783 0.9928 0.0011 1.5 0.9783 0.9928 0.0011 1.5 0.9783 0.9928 0.0011 1.5 1.63

1.0 0.9737 0.9910 0.0008 1.7 0.9737 0.9910 0.0008 1.7 0.9737 0.9910 0.0008 1.7 1.68

2.0 0.9643 0.9873 0.0008 2.3 0.9643 0.9873 0.0008 2.3 0.9643 0.9873 0.0008 2.3 1.68

0.2 0.5 1.8530 1.9477 0.0018 4.9 1.8530 1.9477 0.0018 4.9 1.8530 1.9477 0.0018 4.9 3.38

1.0 1.8225 1.9348 0.0013 5.8 1.8225 1.9348 0.0013 5.8 1.8225 1.9348 0.0013 5.8 3.42

2.0 1.7675 1.9072 0.0011 7.3 1.7675 1.9072 0.0011 7.3 1.7675 1.9072 0.0011 7.3 3.38

0.4 0.5 3.1667 3.6389 0.0014 13.0 3.1667 3.6389 0.0014 13.0 3.1667 3.6389 0.0014 13.0 6.75

1.0 3.0333 3.5522 0.0014 14.6 3.0333 3.5522 0.0014 14.6 3.0333 3.5522 0.0014 14.6 6.62

2.0 2.8324 3.3890 0.0019 16.4 2.8324 3.3890 0.0019 16.4 2.8324 3.3890 0.0019 16.4 6.42

split topology
Λ- i-1

- i-2

- i-3

�
�
���

B
B
BBN

0.6

0.4

node #1 node #2 node #3

analytical simulation analytical simulation analytical simulation

ρ c2s θ θ δ ∆%θ θ θ δ ∆%θ θ θ δ ∆%θ CPU∗

1.0 0.5 0.9904 0.9930 0.0010 0.3 0.5939 0.5959 0.0008 0.3 0.3965 0.3970 0.0006 0.1 1.37

1.0 0.9884 0.9912 0.0010 0.3 0.5926 0.5946 0.0008 0.3 0.3958 0.3966 0.0007 0.2 1.43

2.0 0.9842 0.9873 0.0009 0.3 0.5899 0.5925 0.0008 0.4 0.3943 0.3948 0.0007 0.1 1.40

2.0 0.5 1.9322 1.9479 0.0017 0.8 1.1569 1.1682 0.0011 1.0 0.7754 0.7797 0.0010 0.6 3.17

1.0 1.9173 1.9352 0.0014 0.9 1.1474 1.1608 0.0009 1.2 0.7699 0.7744 0.0009 0.6 2.85

2.0 1.8892 1.9121 0.0012 1.2 1.1296 1.1469 0.0009 1.5 0.7596 0.7653 0.0009 0.7 2.83

4.0 0.5 3.5683 3.6475 0.0020 2.2 2.1269 2.1884 0.0013 2.8 1.4414 1.4591 0.0010 1.2 5.90

1.0 3.4851 3.5778 0.0016 2.6 2.0747 2.1467 0.0011 3.4 1.4105 1.4310 0.0011 1.4 5.50

2.0 3.3506 3.4542 0.0017 3.0 1.9904 2.0725 0.0012 4.0 1.3602 1.3817 0.0009 1.6 5.48

merge topology

- i-1

- i-2

.4Λ

.6Λ

- i-3

B
B
BBN

�
�
���

node #1 node #2 node #3

analytical simulation analytical simulation analytical simulation

ρ c2s θ θ δ ∆%θ θ θ δ ∆%θ θ θ δ ∆%θ CPU∗

1.0 0.5 0.3995 0.3990 0.0007 -0.1 0.5910 0.5986 0.0011 1.3 0.9904 0.9976 0.0015 0.7 1.05

1.0 0.3994 0.3995 0.0008 0.0 0.5890 0.5977 0.0009 1.4 0.9884 0.9972 0.0011 0.9 1.07

2.0 0.3992 0.3991 0.0006 0.0 0.5850 0.5966 0.0011 1.9 0.9842 0.9957 0.0012 1.2 1.08

2.0 0.5 0.7961 0.7956 0.0010 -0.1 1.1361 1.1875 0.0010 4.3 1.9322 1.9831 0.0014 2.6 2.28

1.0 0.7953 0.7948 0.0013 -0.1 1.1220 1.1843 0.0012 5.3 1.9173 1.9792 0.0021 3.1 2.25

2.0 0.7936 0.7920 0.0010 -0.2 1.0955 1.1763 0.0013 6.9 1.8891 1.9683 0.0016 4.0 2.23

4.0 0.5 1.5718 1.5682 0.0012 -0.2 1.9962 2.3034 0.0014 13.3 3.5681 3.8716 0.0019 7.8 4.68

1.0 1.5655 1.5575 0.0010 -0.5 1.9191 2.2737 0.0013 15.6 3.4845 3.8312 0.0017 9.0 4.60

2.0 1.5530 1.5334 0.0012 -1.3 1.7960 2.2165 0.0012 19.0 3.3490 3.7499 0.0012 10.7 4.52
∗simulation CPU time in minutes.
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L(α) = min






N∑

i=1

xi + α
(
Θmin − Θ(x)

)

︸ ︷︷ ︸

≤0




 (13)276

s.t:277

xi ∈ N, ∀i,

α≥ 0.

Note that for any feasible vector x — that is, a vector x for which the constraints (2) and (3) hold —278

the term α
(
Θmin − Θ(x)

)
must be non-positive and will be a penalty of the objective function related to279

the difference between the threshold throughput, Θmin, and the effective throughput, Θ(x). Thus, it follows280

that L(α) ≤ Z, that is, L(α) is an inferior limit for Z, the optimal solution for the BAP, since removing281

the constraint (2) cannot increase the optimal value Z (for a detailed discussion on this issue, the reader is282

referred to the article by Fisher [5]).283

As a way to approximately solve the BAP we propose to set the threshold throughput Θmin exactly to284

the total external arrival rate Λ, which will then serve as the input to the performance evaluation algorithm,285

described in the earlier section, which will compute the corresponding throughput Θ(x). Thus, under the286

assumption that the threshold throughput Θmin is exactly the total external arrival rate Λ, the best (highest)287

possible inferior limit is given by Theorem 1.288

Theorem 1 If Θmin is exactly the total external arrival rate Λ, then the highest inferior limit, L(α∗) =289

maxα≥0L(α), is achieved for α∗ −→ ∞.290

Proof: It follows from Θ(x) being a non-decreasing function of x, as it is seen in Fig. 7, and also from291

the Lagrangean function, L(α), which is the minimum of linear functions of α,292

L(α) = min
( N∑

i=1

xi

︸ ︷︷ ︸

intercept

+α

slope
︷ ︸︸ ︷
(
Θmin − Θ(x)

) )

,293

with non-negative intercepts and non-negative slopes with294

lim
x→∞

(
Θmin − Θ(x)

)
= 0,295

which results in a non-decreasing convex envelopment, as it is seen in Fig. 8.296

297

The best Lagrangean multiplier α, as defined by Theorem 1, is not practical because one would need that298

(
Θmin − Θ(x)

)
= 0,299

which yields xi → ∞, ∀ i. On the other hand, if a small difference, say
(
Θmin − Θ(x)

)
= ε, is acceptable, it300

must hold that301
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α
(
Θmin − Θ(x)

)
≤ 1,302

because, otherwise, it would be better to spend one more unity of buffer space to some ith queue, xi,303

to increase Θ(x) (remind that Θ(x) is a non-decreasing function of x). Thus, it is possible to define a304

corresponding αε as follows305

αε ≤ 1/
(
Θmin − Θ(x)

)
,306

which, assuming
(
Θmin − Θ(x)

)
≤ 10−3, yields αε = 103.307

5.2. Search Algorithm308

The Lagrangean relaxation of the BAP, L(α), plus an additional relaxation of the integrality constraints309

for xi, is a classical unconstrained optimization problem. Among all possible algorithms to solve the BAP,310

a derivative free search algorithm was used, which is shown in Fig. 9, for its simplicity, and also efficiency,311

as it will be seen.312

The algorithm starts by reading the inputs, that is, the number of vertexes in the networks, V , the313

number of arcs, A, the routing matrix P ≡ [p(i,j)], which defines the probabilities of an entity to choose one314

or another path. Also read are the vector of external arrival rates, Λ, service rates, µ, squared coefficient of315

variation of service rates, c2
s, and an initial buffer allocation vector, x(0). With these values, the algorithm316

take the objective function317

f(x) =
N∑

i=1

xi + α
(
Θmin − Θ(x)

)
,

which is optimized only in relation to the first coordinate of vector x, keeping fixed the remaining coordinates.318

The process is repeated for the second coordinate and so on, until the last coordinate is reached. A completely319

17



new vector x(n+1) is obtained and compared with the previous vector x(1). If the Euclidean distance between320

these two vectors is less than a pre-specified value ǫ, the algorithm stops. Otherwise, the whole process keeps321

running until the convergence is reached. Actually, the algorithm is a classical derivative-free direct search322

method.323

algorithm

read G(V, A, P ), Λ, µ, c2
s, x(0)

x(opt) ← x(0)

repeat

x(1) ← x(opt)

for i = 1 until n do

/* unidirectional search */

x(i+1) ← arg minj∈N f(x(i) + je(i))
end for

if f(x(n+1)) < f(x(1)) then

x(opt) ← x(n+1)

end if

until ‖x(opt) − x(1)‖ < ǫ

write x(opt)

end algorithm

Fig. 9. Algorithm for optimal buffer allocation.

6. Experimental Results324

All algorithms were implemented in FORTRAN, taking advantage of the subroutines already developed325

for similar problems [17, 19] and are available upon request. The experiments were run for tandem, split,326

and merge queues, as presented in Fig. 10.327

The arrival rates considered were Λ = Θmin = {1.0, 2.0, 4.0}, the service rates, µi = 10.0, ∀ i, resulting in328

a system utilization ρ = {0.1, 0.2, 0.4}, combined with several values for the squared coefficient of variation,329

c2
s = {0.5, 1.0, 2.0}, and number of nodes, |V | = {3, 7, 15}. The results are presented in Tab. 2.330

From Tab. 2, it is seen that the pattern found in the small networks essentially becomes the pattern331

for the large networks. Also, the optimal allocation clearly depends on the coefficient of variation, c2
s. The332

results make sense, are stable, and are symmetrical for the split and merge topologies. Note that the buffer333

allocation is uniform across the series topology. This type of result is similar to the uniform buffer allocation334

results of de Kok [4] but the well-known bowl phenomenon [9] was not obtained here. In turns out that the335

bowl phenomenon is only present in optimal buffer allocations constrained to a maximal number of total336

buffer allocated, as, for instance, in the model presented in the article by Hillier and So [9].337

In order to see how close to optimal the generated patterns are, it is interesting to compare these results338

with simulation. Experiments with ARENA with 200,000 time units, 2,000 time units warm-up and 20339

replications were found to yield fairly stable results and short 95% confidence intervals. For all the non-340
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Λ- g-1 - g-2 - g-3

a) 3-node series topology
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Fig. 10. Topologies tested.
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Table 2

Buffer allocation results.

series topology

|V | 3 7 15

ρ c2s K K K

0.1 0.5 (3 3 3)(∗) (3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3)

1.0 (3 3 3) (3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3)

2.0 (4 4 4) (4 4 4 4 4 4 4) (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4)

0.2 0.5 (5 5 5) (5 5 5 5 5 5 5) (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)

1.0 (5 5 5) (5 5 5 5 5 5 5)(∗) (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)

2.0 (6 6 6) (6 6 6 6 6 6 6) (6 6 6 6 6 6 6 6 6 6 6 6 6 6 6)

0.4 0.5 (7 7 7) (7 7 7 7 7 7 7) (7 7 7 7 7 7 7 7 7 7 7 7 7 7 7)

1.0 (8 8 8) (8 8 8 8 8 8 8) (8 8 8 8 8 8 8 8 8 8 8 8 8 8 8)

2.0 (10 10 10) (10 10 10 10 10 10 10) (10 10 10 10 10 10 10 10 10 10 10 10 10 10 10)

split topology

|V | 3 7 15

ρ c2s K K K

0.1 0.5 (3 3 2) (3 3 2 2 2 2 2) (3 3 2 2 2 2 2 2 2 2 1 2 1 1 1)

1.0 (3 3 2) (3 3 2 2 2 2 2) (3 3 2 2 2 2 2 2 2 2 1 2 1 1 1)

2.0 (4 3 2) (4 3 2 2 2 2 2) (4 3 2 2 2 2 2 2 2 2 1 2 1 1 1)

0.2 0.5 (5 4 3) (5 4 3 3 2 2 2) (5 4 3 3 2 2 2 2 2 2 2 2 2 2 2)

1.0 (5 4 3) (5 4 3 3 3 3 2) (5 4 3 3 2 2 2 2 2 2 2 2 2 2 2)

2.0 (6 4 3) (6 4 3 3 3 3 2) (6 4 3 3 3 3 2 2 2 2 2 2 2 2 2)

0.4 0.5 (7 5 4) (7 5 4 4 3 3 3) (7 5 4 4 3 3 3 3 3 3 2 3 2 2 2)

1.0 (8 6 4) (8 6 4 4 3 3 3) (8 6 4 4 3 3 3 3 3 3 2 3 2 2 2)

2.0 (10 6 5) (10 6 5 5 4 4 3) (10 6 5 5 4 4 3 3 3 3 2 3 2 2 2)

merge topology

|V | 3 7 15

ρ c2s K K K

0.1 0.5 (2 3 3) (2 2 2 2 2 3 3) (1 1 1 2 1 2 2 2 2 2 2 2 2 3 3)

1.0 (2 3 3) (2 2 2 2 2 3 3) (1 1 1 2 1 2 2 2 2 2 2 2 2 3 3)

2.0 (2 3 4) (2 2 2 2 2 3 4) (1 1 1 2 1 2 2 2 2 2 2 2 2 3 4)

0.2 0.5 (3 4 5) (2 2 2 3 3 4 5) (2 2 2 2 2 2 2 2 2 2 2 3 3 4 5)

1.0 (3 4 5) (2 2 3 3 3 4 5) (2 2 2 2 2 2 2 2 2 2 2 3 3 4 5)

2.0 (3 4 6) (2 3 3 3 3 4 6) (2 2 2 2 2 2 2 2 2 3 3 3 3 4 6)

0.4 0.5 (4 5 7) (3 3 3 4 4 5 7) (2 2 2 3 2 3 3 3 3 3 3 4 4 5 7)

1.0 (4 6 8) (3 3 3 4 4 6 8) (2 2 2 3 2 3 3 3 3 3 3 4 4 6 8)

2.0 (5 6 10) (3 4 4 5 5 6 10) (2 2 2 3 2 3 3 3 3 4 4 5 5 6 10)

(∗) Earmarked experiments checked by simulation (see Table 3).

exponential service times, a two-stage gamma distribution was used to capture the general service times341

with non-unit c2
s. The results for some of the series queues are seen in Tab. 3.342

The result for a three-node series topology was analyzed in more detail. Note that the best solutions343

correspond closely to the lowest L(α) (see Tab. 3, in boldface). The general conclusion is that optimization344
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Table 3

Simulation results for tandem queues.

Θ(x)

Λ c2s |V | x average δ L(α) CPU∗

1.0 0.5 3 (2 2 2) 0.9928 0.0011 13.19 1.68

(2 2 3) 0.9928 0.0011 14.18 1.67

(2 3 3) 0.9928 0.0011 15.17 1.68

(3 3 3) 0.9994 0.0012 9.59†,‡ 1.47

(3 3 4) 0.9999 0.0009 10.07 1.70

(3 4 4) 1.0000 0.0009 11.00 1.70

(4 4 4) 1.0000 0.0013 12.00 1.70

2.0 1.0 7 (3 3 3 3 3 3 3) 1.9861 0.0014 34.90 7.27

(4 4 4 4 4 4 4) 1.9966 0.0010 31.40† 7.28

(5 5 5 5 5 5 5) 1.9994 0.0013 35.60‡ 7.28

(6 6 6 6 6 6 6) 1.9996 0.0016 42.40 7.30

(7 7 7 7 7 7 7) 2.0001 0.0021 48.90 7.65

∗CPU time for simulation in Arena in minutes.

†Best solution via simulation.

‡Best solution via optimization algorithm.

algorithm tends to allocate more space than necessary to ensure the desired performance. Also noticeable345

is that the CPU time for the simulations grows quickly as the number of node in the network increases346

indicating that the simulation may not be the most efficient tool for optimizing but it is certainly useful for347

assessing the quality of solutions via other methods.348
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Fig. 11. Running times in function of the topology and number of nodes.

As a final note on the computational performance of the algorithm, it is important to know how it will349

behave with small changes in the input. The running times, in seconds, for the cases studied in Tab. 2350
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are presented in Figure 11, reporting boxplots in function of the topology and the number of nodes in the351

network.352

The running times seem to be independent on the topology but they certainly will increase with the353

number of nodes. This increase, although not too drastic, is followed by an increase in the variability, which354

indicates that the running times may be less predictable for large networks.355

7. Summary and Conclusions356

One major difficulty in dealing with the buffer allocation problem (BAP), in general, and for M/G/1/K357

queues, in particular, is to find good approximations for the performance measures of interest. The BAP is358

much more difficult when queues are configured in networks, in which blocking after service frequently occurs.359

In this paper, some of the most effective approximations for the blocking probability, a crucial performance360

measure for the BAP treated here, were extensively compared. The approximation by Smith [17] seemed to361

be the most accurate for the cases tested and was used here to solve the BAP.362

The algorithm proposed is based on a Lagrangean relaxation, a technique that has been proved efficient in363

solving optimization problems with complicated constraints. The Lagrangean relaxation enables one to avoid364

hard optimization formulations by relaxing complicating constraints and including then into the objective365

function as a penalty. Important properties of the relaxed problem were derived, which made possible the366

development of a search algorithm, considerably simpler than the algorithm previously published for the367

same problem by Smith and Cruz [19]. In comparison with the exact simulation results, the algorithm seemed368

to produce very fast and accurate solutions and can be used in the design of production systems.369

Topics for future research in the area include extensions to systems that have loops, such as systems with370

captive pallets and fixtures. Also of interest is the study of algorithms for multi-server general service time371

queueing networks.372
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