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Abstract

Recent research in mathematical methods for finance suggests that time series for
financial data should be studied with non-stationary models and with structural
changes that include both jumps and heteroskedasticity (with jumps in variance).
It has been recognized that discriminating between variations caused by the con-
tinuous motion of Brownian shocks and the genuine discontinuities in the path of
the process constitutes a challenge for existing computational procedures. This is-
sue is addressed here, using the Product Partition Model (PPM), for performing
such discrimination and the estimation of process jump parameters. Computational
implementation aspects of PPM applied to the identification of change points in
data sequences are discussed. In particular, we analyze the use of a Gibbs sampling
scheme to compute the estimates and show that there is no significant impact of
such use on the quality of the results. The influence of the size of the data sequence
on the estimates is also of interest, as well as the efficiency of the PPM to correctly
identify atypical observations occurring in close instants of time. Extensive Monte
Carlo simulations attest to the effectiveness of the Gibbs sampling implementation.
An illustrative financial time series example is also presented.
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1 Introduction

Classical finance analysis tools were developed in the first seven decades of
the XXth Century basead on the statistical quantification of asset variability.
The employment of the simple assumption of stationary Gaussian stochastic
processes as models for asset prices allowed the derivation of tools for com-
posing optimal portfolios [1], for establishing asset prices [2, 3, 4] and for
calculating option prices [5]. The only parameters that were needed for these
calculations were the asset mean prices, their variance and their covariance
matrix.

In the decade of 60’s, however, empirical studies started to reveal that such as-
sumption of Gaussian stationarity lead to large prediction errors [6, 7]. Several
studies, starting in the middle of the decade of 70’s, pursued better descrip-
tions for the asset price behavior. As an example, Hamilton [8] proposed an
alternative approach to nonstationarity assuming that the first differences in
the observed series follow a nonlinear stationary process rather than a linear
stationary process. Such nonlinearities arise if the process is subject to discrete
shifts in regime.

Two main directions that were developed since then are [9]: (i) considering
the variance of the models to be a variable (the stochastic volatility models),
and (ii) considering discontinuous jumps in the asset price at some time in-
stants, in addition to the usual Brownian motion model. Several recent studies,
however, indicate that these approaches, when considered individually, do not
lead to satisfactory results [9, 10, 11, 12]. Models that allow for joint stochastic
volatility and jumps are more likely to fit the observed data.

A non-trivial task that must be performed in order to allow the usage of models
with both stochastic volatility and jumps is the estimation of the parameters
representing the jump arrival intensity and the distribution of jump size [11]. In
particular, it has been recognized that it is empirically difficult to discriminate
between variations caused by the continuous motion of Brownian shocks and
genuine discontinuities in the path of the process [11]. Eraker [9] and Eraker
et al. [13] proposed a model that considers jumps in the volatility, arguing
that a continuous stochastic model for volatility would be structurally unable
to deal with the phenomena nature.

In this paper we consider the product partition model (PPM) for estimating
the mean and volatility at each instant of time. By using this approach, it is
also possible to identify if the volatility and the mean experiences changes or
jumps through time and when such changes take place.

In time series and data sequence analysis, a change point can be understood as
the instant when a structural change is observed on the behavior of the data
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or simply as when an atypical observation takes place. In financial time series,
for instance, a high rate of occurrence of atypical returns is common. Mainly,
this phenomenon is observed in emerging markets data since these markets are
more susceptible to peaks and valleys. The identification of change points plays
an important role in the analysis of these markets since the rates of occurrence
of atypical returns is taken into account in the evaluation of financial risks
involved [14]. We should also mention that the previous identification of change
points — more specifically, the identification of structural changes — plays an
important role in the analysis of stationarity in time series. In general, the
usual test for a unit root in a time series cannot be used if the series presents
structural changes (see the paper by Perron [15], for extensions of the test for
unit roots in time series with a changing mean).

Change point identification certainly is not a new problem. Indeed, many
papers have been published on the subject, either Bayesian methods, as for
instance the Product Partition Model (PPM) developed by Barry & Hartigan
[16] back in the 90’s, and non-Bayesian approaches, e.g. the papers by Dueker
[17], Hawkins [18], Horváth & Kokoszka [19], and Jandhyala et al. [20]. In
this paper, we choose to consider the PPM, mainly because of all flexibility it
adds to change point analysis as the number of change points is modeled as a
random variable. Additionally, successful applications of the PPM to change
points problems have been reported recently by Crowley [21], Quintana &
Iglesias [22], Loschi & Cruz [23], Loschi et al. [24], Loschi & Cruz [25], and
Loschi et al. [26].

Loschi et al. [24] propose an algorithm to compute the posterior relevances
based on Gibbs sampling schemes. These authors apply the algorithm to ana-
lyze two real data sets. The main contributions of this paper include a study
on the PPM to show that the use of approximate schemes such as Gibbs sam-
pling do not seem to compromise the quality of the estimates (called product
estimates). Generated data sets are considered in such a study. Additionally,
extensive Monte Carlo simulation experiments are performed to verify how dif-
ferent sizes of the sequences influence the accuracy of the product estimates
and whether there is difference in this influence when the pattern is kept along
the length of the sequence. We also provide Monte Carlo simulation results
that address the crucial issue of correctly identifying atypical observations
occurring separated by short periods of time. The ultimate goal is to verify
whether the PPM can identify structural changes and atypical observations
occurring in close instants. Finally, we consider the PPM to analyze the Down
Jones Industrial Average (DJIA) series in the period from October, 1995, to
October, 2000. It is also a goal of this paper to identify whether the DJIA
series presents atypical returns as well as heteroskedasticity.

This paper is organized as follows. Section 2 reviews the parametric approach
to the PPM and its application to the normal case with unknown means
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and variances. In Section 3, the methods to compute the product estimates
are described. Section 4 presents results of the Monte Carlo simulation study
performed. Section 5 presents an illustrative example. Finally, Section 6 closes
the paper with final remarks and topics for future research in the area.

2 Product Partition Models

PPM is a powerful dynamic model to analyze change point problems. Con-
sequently, it is a useful model to identify whether a particular parameter of
interest changes throughout the time, or, equivalently, presents cluster struc-
ture.

Denote by ρ a random partition of the set I ∪{0}, in which I = {1, . . . , n}. In
the parametric approach to the PPM presented by Barry & Hartigan [16], a
sequence of unknown parameters θ1, . . . , θn is considered, such that, condition-
ally in θ1, . . . , θn, the sequence of random variables X1, . . . , Xn has conditional
marginal densities f1(X1|θ1), . . . , fn(Xn|θn), respectively. Given a particular
partition ρ = {i0, . . . , ib}, with b ∈ I, such that 0 = i0 < i1 < · · · < ib = n,
we have that θi = θ[ir−1ir], for every ir−1 < i ≤ ir, for r = 1, . . . , b, and
that θ[i0i1], . . . , θ[ib−1ib] are independent, with θ[ij] having (block) prior density
π[ij](θ), θ ∈ Θ[ij], where Θ[ij] is the parameter space corresponding to the
common parameter, say, θ[ij] = θi+1 = · · · = θj , which indexes the joint con-
ditional density of X[ij] = (Xi+1, . . . , Xj)

′. The degree of similarity among the
observations in X[ij] is called prior cohesions and is denoted by c[ij]. In the
parametric case, two observations Xi and Xj, for i 6= j, are in the same block,
if they are identically distributed. Thus, (X1, . . . , Xn; ρ) follows the PPM if:

i) the prior distribution of ρ is the following product distribution

P (ρ = {i0, . . . , ib}) =
Πb

j=1c[ij−1ij ]
∑

C Πb
j=1c[ij−1ij ]

,

in which C is the set of all possible partitions of the set I into b contiguous
blocks with endpoints i1, . . . , ib, satisfying the condition 0 = i0 < i1 <
· · · < ib = n, for all b ∈ I;

ii) conditional in ρ = {i0, . . . , ib}, the sequence X1, . . . , Xn has the joint
density given by

f(X1, . . . , Xn|ρ = {i0, . . . , ib}) =

Πb
j=1

∫

Θ[ij−1ij ]

f[ij−1ij ](X[ij−1ij ]|θ)π[ij−1ij ](θ)dθ. (1)

In accordance with the PPM, the posterior expectation (called the product
estimate) of θk is given by:
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E(θk|X1, . . . , Xn) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]E(θk|X[ij]), ∀ k = 1, . . . , n, (2)

in which r∗[ij] denotes the posterior relevance for block [ij] = {i + 1, . . . , j},
that is,

r∗[ij] = P ([ij] ∈ ρ|X1, . . . , Xn) =
λ[0i]c

∗
[ij]λ[jn]

λ[0n]

. (3)

algorithm

(1) read X1, . . . ,Xn

for all i, j ∈ {0, . . . , n} such that i < j do

(2) f[ij](X[ij])←
∫

Θ[ij]
f[ij](X[ij]|θ)π[ij](θ)dθ

(3) c∗[ij] ← c[ij]f[ij](X[ij])

end for

(4) compute







λ[0j],∀j = 0, . . . , n;

λ[in],∀i = 1, . . . , n;

for all i, j ∈ {0, . . . , n} such that i < j do

(5) r∗[ij] ←
λ[0i]c

∗

[ij]
λ[jn]

λ[0n]

end for

for k = 1 to n do

(6) E(θk|X1, . . . ,Xn)←
∑k−1

i=0

∑n
j=k r∗[ij]E(θk|X[ij])

end for

(7) write E(θ1), . . . , E(θn)
end algorithm

Fig. 1. The PPM algorithm.

The posterior cohesion for block [ij] is given by c∗[ij] =

c[ij]f[ij](X[ij]) and λ[ij] =
∑

Πb
k=1c

∗
[ik−1ik], in which the summation is over all

partitions of {i+1, . . . , j} into b blocks with endpoints i0, i1, . . . , ib, satisfying
the condition i = i0 < i1 < · · · < ib = j. The algorithm for the PPM presented
in pseudo-language is show in Figure 1.

Remark 1 Notice that the PPM assumes only conditional independence for
X1, . . . , Xn, given the sequence of parameters θ1, . . . , θn. Consequently, the
data X1, . . . , Xn can be correlated depending on the prior distribution we as-
sume to describe the uncertainty about θ1, . . . , θn. See, for instance, the normal
case pointed out in the following.

Remark 2 Since the PPM is a dynamic model, which assumes that the para-
meters can change through the time, it is suitable to describe the behavior of
data with non-constant parameters (such as, for instance, the variance).
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For the normal case, it is assumed that θ1 = (µ1, σ
2
1), . . . , θn = (µn, σ

2
n) are

independent. It is also assumed that, given θ1, . . . , θn, the random variables
X1, . . . , Xn are independent and they are such that Xk|µk, σ

2
k ∼ N (µk, σ

2
k), for

k = 1, . . . , n. It is also assumed that the common parameter θ[ij] = (µ[ij], σ
2
[ij])

related to block [ij] has the following conjugate normal-inverted-gamma prior
distribution: µ[ij]|σ2

[ij] ∼ N (m[ij], v[ij]σ
2
[ij]) and σ2

[ij] ∼ IG(a[ij]/2, d[ij]/2), in
which IG(a, d) denotes the inverted-gamma distribution with parameters a
and d, m[ij] ∈ IR, and a[ij], d[ij] and v[ij] are positive values.

As a consequence of such assumptions, it follows that the random vector X[ij]

follows a (j − i)-dimensional Student-t distribution given by:

f(X[ij]) =
K(d[ij], j − i)a

d[ij]/2

[ij]
(

1 + (j − i)v[ij]

)1/2(

a[ij] + q[ij](X[ij])
)(d[ij]+j−i)/2

, (4)

in which K(d, k) = Γ((d + k)/2)/Γ(d/2)/πk/2. Thus, it is assumed that the
observations within the same block are correlated and they have their behavior
described by a distribution with a heavier tail than the normal distribution.

It is also possible to show that the product estimates for µk and σ2
k, for k =

1, . . . , n, are given, respectively, by

µ̂k = E(µk|X1, . . . , Xn) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]m
∗
[ij], (if d∗

[ij] > 1) (5)

and

σ̂2
k = E(σ2

k|X1, . . . , Xn) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]
a∗

[ij]

d∗
[ij] − 2

, (if d∗
[ij] > 2), (6)

in which


















































m∗
[ij] =

(j−i)v[ij]X̄[ij]

(j−i)v[ij]+1
+

m[ij]

(j−i)v[ij]+1
,

v∗
[ij] =

v[ij]

(j−i)v[ij]+1
,

d∗
[ij] = d[ij] + j − i,

a∗
[ij] = a[ij] + q[ij](X[ij]),

with q[ij](X[ij]) =
∑j

r=i+1(Xr−X̄[ij])
2+

(j−i)(X̄[ij]−m[ij])
2

(j−i)v[ij]+1
, and X̄[ij] = 1

j−i

∑j
r=i+1 Xr.
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With regard to the computation of the relevances defined in (3), r∗[ij], we will
use the prior cohesions for block [ij] proposed by Yao [27]

c[ij] =











p(1− p)j−i−1, if j < n,

(1− p)j−i−1, if j = n,

for all i, j ∈ I, i < j, in which 0 < p < 1 is the probability that a change
occurs at any instant in the sequence. Consequently, for the normal case, the
posterior cohesion of the block [ij] becomes:

c∗[ij] =



































p(1−p)j−i−1K(d[ij],j−i)a
d[ij]/2

[ij]

(1+(j−i)v[ij])
1/2{a[ij]+q[ij](X[ij])}

(d[ij]+j−i)/2 , if j < n,

(1−p)j−i−1K(d[ij],j−i)a
d[ij]/2

[ij]

(1+(j−i)v[ij])1/2{a[ij]+q[ij](X[ij])}
(d[ij]+j−i)/2 , if j = n,

(7)

with K(d, k) = Γ((d + k)/2)/Γ(d/2)/πk/2, which completes the algorithm with
the computation of r∗[ij], from (3). For all the details, the reader is referred to
the paper by Loschi & Cruz [23].

Remark 3 It is straightforward to extend the PPM to identify change points
in a sequence of data whose behavior is described by a distribution in the expo-
nential family, for example. This extension can be found in Loschi et al. [26].
Extensions to linear models using the general PPM can be found in Quintana
& Iglesias [22].

Remark 4 Notice that it is not necessary to consider a conjugate prior dis-
tribution for the parameters Θ[ij]. Assuming the Jeffreys prior, for instance,
the product estimates for µk and σ2

k are given, respectively, by:

µ̂k =
k−1
∑

i=0

n
∑

j=k

r∗[ij]X̄[ij] and σ̂2
k =

k−1
∑

i=0

n
∑

j=k

r∗[ij]

∑j
r=i+1(Xr − X̄[ij])

2

j − i
.

3 Computational Methods for Product Estimates

We will use two methods to obtain the product estimates given in (5) and (6).
Yao’s method is based on a recursive algorithm. The second method is based
on a Gibbs sampling scheme.
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3.1 Yao’s Method

Yao’s method [27] consists of simply considering the following recursive algo-
rithm to calculate the sums λ[ij] defined in (3):



















































































λ[00] = 1,

λ[01] = c∗[01],

λ[0j] = c∗[0j] +
j−1
∑

t=1

λ[0t]c
∗
[tj], ∀j = 2, . . . , n,

λ[in] = c∗[in] +
n−1
∑

t=i+1

λ[tn]c
∗
[it], ∀i = 1, . . . , n− 2,

λ[(n−1)n] = c∗[(n−1)n],

λ[nn] = 1,

in such a way that the PPM algorithm of Figure 1 can be applied. Notice that
the algorithm is polynomial, O(n2).

3.2 Gibbs Sampling Based Method

Since Gelfand & Smith [28] showed how easily a large number of difficult prob-
lems could be approximately solved by Markov Chain Monte Carlo (MCMC)
methods, many hard problems in Bayesian inference became tractable. Gibbs
sampling is one of these MCMC methods and it has been used as a posterior
distribution generation scheme for decades. In this paper, Gibbs sampling is
used to generate samples of vector U = (U1, . . . , Un−1), in which the random
variable Ui reflects whether or not a change point occurs at the time i, that is

Ui =











1, if θi = θi+1,

0, if θi 6= θi+1,

in which i = 1, . . . , n − 1. As noticed by Loschi & Cruz [23], any partition
ρ = {i0, . . . , ib} may be associated to some value of U = (U1, . . . , Un−1).

The method obtains the product estimates of µk and σ2
k as follows. First we

generate T samples of vector U = (U1, . . . , Un−1). The estimate of the posterior
relevance of block [ij], for i, j = 1, . . . , n, i < j, is computed as follows
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r̂∗[ij] =
M

T
, (8)

in which M is the number of vectors in which it is observed that Ui = 0, Ui+1 =
. . . = Uj−1 = 1 and Uj = 0. Thus, the product estimates of µk and σ2

k may be
obtained by substituting the estimate (8) into (5) and (6), respectively. Notice
that likewise Yao’s algorithm, the procedure is also polynomial O(T ).

4 Simulation Study

All the algorithms described earlier were coded in C++, a powerful and effi-
cient programming environment, and are available from the authors upon re-
quest or directly from the web (ftp://ftp.est.ufmg.br/pub/loschi/pub/
mtecar). We conducted Monte Carlo simulation studies in order to analyze the
influence of the size of the sequence in the accuracy of the product estimates.
We also wanted to evaluate the effectiveness of the two methods presented
earlier in Section 3 in presence of atypical observations occurring separated
by short periods of time. The error obtained with different values of p was
also evaluated. Data were generated independently from normal distributions,
with common and low variance and different means. For all scenarios, 20 repli-
cations were considered and for our convenience the variance was set to 0.001.

Additionally, in all scenarios, the following prior distributions for µ[ij] and σ2
[ij]

were assumed

µ[ij]|σ
2
[ij] ∼ N (0.0, σ2

[ij]) and σ2
[ij] ∼ IG (0.01/2, 4/2) .

Notice that the inverted gamma prior distribution above has modal value at
1.67× 10−3, mean at 5.0× 10−3, and infinite variance.

For the method based on Gibbs sampling, 1000 samples of U’s were generated,
starting from a vector of zeros. A burn-in period of 100 and a lag of one
was used, since fast convergence and low autocorrelation were observed. To
compare the methods, the sum of square errors per block were calculated,
defined as the sum of square errors divided by the product between the sample
size and the true number of blocks in the partition.

Tables 1 and 2 show the sizes of all groups tested, n, the probability p con-
sidered, and the scenario. Concerning the notation used for the scenarios, the
representation 321 322 644, for example, stands for a partition into three blocks
of size 32, 32, and 64, generated from normal distributions with means 1, 2,
and 4, respectively.
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Table 1
Groups for sample size and p cases.

group n p scenario
p p p p p p p p 1 32 0.01 320

2 0.5 320

3 0.9 320

4 64 0.01 640

5 0.5 640

6 0.9 640

7 128 0.01 1280

8 0.5 1280

9 0.9 1280

p p

p

p p p p p 10 32 0.01 40 11 270

11 0.5 40 11 270

12 0.9 40 11 270

13 64 0.01 40 11 590

14 0.5 40 11 590

15 0.9 40 11 590

16 128 0.01 40 11 1230

17 0.5 40 11 1230

18 0.9 40 11 1230

p p p p p

p

p p p p p 19 32 0.01 150 11 160

20 0.5 150 11 160

21 0.9 150 11 160

22 64 0.01 310 11 320

23 0.5 310 11 320

24 0.9 310 11 320

25 128 0.01 630 11 640

26 0.5 630 11 640

27 0.9 630 11 640

p p p p p

p

p p 28 32 0.01 270 11 40

29 0.5 270 11 40

30 0.9 270 11 40

31 64 0.01 590 11 40

32 0.5 590 11 40

33 0.9 590 11 40

34 128 0.01 590 11 40

35 0.5 590 11 40

36 0.9 590 11 40

p p p p p p

p p p p

p p p 37 32 0.01 50 14 60 14 60 14 60 14 50

38 0.5 50 14 60 14 60 14 60 14 50

39 0.9 50 14 60 14 60 14 60 14 50

40 64 0.01 50 14 60 14 60 14 60 14 370

41 0.5 50 14 60 14 60 14 60 14 370

42 0.9 50 14 60 14 60 14 60 14 370

43 128 0.01 50 14 60 14 60 14 60 14 1010

44 0.5 50 14 60 14 60 14 60 14 1010

45 0.9 50 14 60 14 60 14 60 14 1010

p p p p p p

p p p p

p p p 46 64 0.01 50 14 60 14 60 14 60

14 60 14 60 14 60 14 60 14 90

47 0.5 50 14 60 14 60 14 60

14 60 14 60 14 60 14 60 14 90

48 0.9 50 14 60 14 60 14 60

14 60 14 60 14 60 14 60 14 90

49 128 0.01 50 14 60 14 60 14 60 14 60 14 60

14 60 14 60 14; 60 14 60 14 60 14 60

14 60 14 60 14 60 14 60 14 60 14 100

50 0.5 50 14 60 14 60 14 60 14 60 14 60

14 60 14 60 14; 60 14 60 14 60 14 60

14 60 14 60 14 60 14 60 14 60 14 100

51 0.9 50 14 60 14 60 14 60 14 60 14 60

14 60 14 60 14; 60 14 60 14 60 14 60

14 60 14 60 14 60 14 60 14 60 14 100
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Table 1
(continued)

group n p scenario
p p p p p p

p p p p

p p p 52 32 0.01 40 43 40 43 40 43 40 43

53 0.5 40 43 40 43 40 43 40 43

54 0.9 40 43 40 43 40 43 40 43

55 64 0.01 40 43 40 43 40 43 40 43 320

56 0.5 40 43 40 43 40 43 40 43 320

57 0.9 40 43 40 43 40 43 40 43 320

58 128 0.01 40 43 40 43 40 43 40 43 640

59 0.5 40 43 40 43 40 43 40 43 640

60 0.9 40 43 40 43 40 43 40 43 640

p p p p p p

p p p p

p p p 61 64 0.01 40 43 40 43 40 43 40 43 40

43 40 43 40 43 40 43

62 0.5 40 43 40 43 40 43 40 43 40

43 40 43 40 43 40 43

63 0.9 40 43 40 43 40 43 40 43 40

43 40 43 40 43 40 43

64 128 0.01 40 43 40 43 40 43 40 43 40 43 40

43 40 43 40 43 40 43 40 43 40 43

40 43 40 43 40 43 40 43 40 43

65 0.5 40 43 40 43 40 43 40 43 40 43 40

43 40 43 40 43 40 43 40 43 40 43

40 43 40 43 40 43 40 43 40 43

66 0.9 40 43 40 43 40 43 40 43 40 43 40

43 40 43 40 43 40 43 40 43 40 43

40 43 40 43 40 43 40 43 40 43

p

p p

p p p 67 32 0.01 40 281

68 0.5 40 281

69 0.9 40 281

70 64 0.01 40 601

71 0.5 40 601

72 0.9 40 601

73 128 0.01 40 1241

74 0.5 40 1241

75 0.9 40 1241

p p p p

p p p p p 76 32 0.01 160 161

77 0.5 160 161

78 0.9 160 161

79 64 0.01 320 321

80 0.5 320 321

81 0.9 320 321

82 128 0.01 640 641

83 0.5 640 641

84 0.9 640 641

p p p p

p p 85 32 0.01 280 41

86 0.5 280 41

87 0.9 280 41

88 64 0.01 600 41

89 0.5 600 41

90 0.9 600 41

91 128 0.01 1240 41

92 0.5 1240 41

93 0.9 1240 41

4.1 Sample Size and p Case

In order to analyze the influence of different sample sizes on the product
estimates and to evaluate the error for different prior specifications for the
parameter p, several scenarios were examined. We assumed n = 32, 64, and
128, and p = 0.01, 0.5 and 0.9. Figure 2 shows graphs for the errors for the
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Table 1
(continued)

group n p scenario

p

p

p

p

p

94 32 0.01 60 61 62 63 84

95 0.5 60 61 62 63 84

96 0.9 60 61 62 63 84

97 64 0.01 60 61 62 63 404

98 0.5 60 61 62 63 404

99 0.9 60 61 62 63 404

100 128 0.01 60 61 62 63 1044

101 0.5 60 61 62 63 1044

102 0.9 60 61 62 63 1044

p

p

p

p

p

103 64 0.01 60 61 62 63 64 65 66 67 68 69 410

104 0.5 60 61 62 63 64 65 66 67 68 69 410

105 0.9 60 61 62 63 64 65 66 67 68 69 410

106 128 0.01 60 61 62 63 64 65 66 67 68 69

610 611 612 613 614 615 616

617 618 619 620 221

107 0.5 60 61 62 63 64 65 66 67 68 69

610 611 612 613 614 615 616

617 618 619 620 221

108 0.9 60 61 62 63 64 65 66 67 68 69

610 611 612 613 614 615 616

617 618 619 620 221

p

p

p

p

p

109 32 0.01 120 62 43 14.5 25 77

110 0.5 120 62 43 14.5 25 77

111 0.9 120 62 43 14.5 25 77

112 64 0.01 120 62 43 14.5 25 77 3210

113 0.5 120 62 43 14.5 25 77 3210

114 0.9 120 62 43 14.5 25 77 3210

115 128 0.01 120 62 43 14.5 25 77 9610

116 0.5 120 62 43 14.5 25 77 9610

117 0.9 120 62 43 14.5 25 77 9610

p

p

p

p

p

118 64 0.01 120 62 43 14.5 25 77 128 69

411 112 214 716

119 0.5 120 62 43 14.5 25 77 128 69

411 112 214 716

120 0.9 120 62 43 14.5 25 77 128 69

411 112 214 716

121 128 0.01 120 62 43 14.5 25 77 128 139 411

112 214 715 1016 2517 119 1320 823

122 0.5 120 62 43 14.5 25 77 128 139 411

112 214 715 1016 2517 119 1320 823

123 0.9 120 62 43 14.5 25 77 128 139 411

112 214 715 1016 2517 119 1320 823

product estimates of the variances as a function of the errors for the estimates
of the means. Arcs are connecting the results for the same scenarios. We notice
that both methods performed similarly in sequences in which changes did not
occur or occurred only once (scenarios 1 to 36), such a rare event in practice.
Additionally, in sequences in which we had several atypical observations or
structural changes (scenarios 37 to 93), the Gibbs sampling based method
had a superior performance, with smaller square errors for both the estimates
of variances and means. Finally, in staircase style sequences (scenarios 94 to
123), Yao’s method presented lower errors for most of the scenarios.
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Fig. 2. Errors for the mean versus variance – sample size and p cases.

13



Table 2
Groups for atypical observation cases.

group p scenario
1 0.01 200 11 10 11 270

2 200 12 10 12 270

3 200 14 10 14 270

4 200 11 20 11 260

5 200 12 20 12 260

6 200 14 20 14 260

7 200 11 40 11 240

8 200 12 40 12 240

9 200 14 40 14 240

10 200 11 80 11 200

11 200 12 80 12 200

12 200 14 80 14 200

13 200 11 140 11 140

14 200 12 140 12 140

15 200 14 140 14 140

16 200 14 10 12 270

17 200 14 20 12 260

18 200 14 40 12 240

19 200 14 80 12 200

20 200 14 140 12 140

21 200 13 10 12 270

22 200 13 20 12 260

23 200 13 40 12 240

24 200 13 80 12 200

25 200 13 140 12 140

26 200 11 1−1 280

27 200 11 20 1−1 260

28 200 11 60 1−1 220

29 200 11 120 1−1 160

30 200 14 1−4 280

31 200 14 20 1−4 260

32 200 14 60 1−4 220

33 200 14 120 1−4 160

34 200 14 1−1 280

35 200 14 20 1−1 260

36 200 14 60 1−1 220

37 200 14 120 1−1 160

38 200 1−1 14 280

39 200 1−1 20 14 260

40 200 1−1 60 14 220

41 200 1−1 120 14 160

42 200 12 14 280

43 200 11 16 280

44 200 11 14 280

45 0.1 100 12 40 12 40 12 40 12 240

46 100 14 40 14 40 14 40 14 240

47 100 12 80 12 80 12 80 12 120

48 100 14 80 14 80 14 80 14 120

49 100 14 40 11 40 14 40 12 240

50 100 14 80 11 80 14 80 12 120

51 100 14 40 1−4 40 14 40 1−4 240

52 100 14 80 1−4 80 14 80 1−4 120

53 100 14 40 1−1 40 11 40 1−4 240

54 100 14 80 1−1 80 11 80 1−4 120

55 200 14 40 13 40 11 40 15 140

56 200 14 80 13 80 11 80 15 20

57 200 14 40 13 80 11 60 15 20 12 50

58 200 14 40 14 80 14 60 14 20 14 50

4.2 Atypical Observation Case

In this section, the goal is to provide a Monte Carlo simulation study to
analyze the performance of the PPM when atypical observations are observed
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Fig. 3. Errors for the mean versus variance – atypical observation cases.

in close instants. Sequences of size n = 50 and different prior values for p were
considered (see Table 2). The results are shown in Figure 3. In the presence
of atypical observations, both methods performed similarly and the errors for
the estimates for the mean were significantly lower than for the variance. We
notice that the distance between the atypical observations — as well as the
difference between the means of the normal distributions that generated the
atypical data and the remaining observations — had influence in the error.
In general, for all scenarios, smaller errors were observed if the number of
observations among the atypical data increased. The errors were also smaller
for scenarios in which the typical and atypical observations were from normal
distributions with similar mean values. Figure 3 shows graphs for the errors
for the product estimates of the variances as a function of the errors for the
estimates of the means.

As a final remark, when atypical observations occur in close instants, an error
that may happen is to find nonexistent structural change in the data sequence.
For instance, Figure 4 shows the product estimates corresponding to scenarios
3, 6, 9, and 12 (seen in Table 2), and two other similar scenarios (not shown),
by the Gibbs sampling method. By using the PPM, one would identify atypical
observations only when a considerable number of typical observations occurred
between them. In other words, one might assume a real structural change in
the sequence, even if all that had happened was two atypical observations too
close in time. It is also noticeable that all methods identify changes in the
variance that do not occur.

5 Illustrative Example

A simple and yet interesting example will be shown next. Let us consider the
Dow Jones Industrial Average (DJIA) return series recorded fortnightly from
October, 1995, to October, 2000. The ultimate goal of this section is to identify
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Fig. 4. Product estimates for the means by the Gibbs sampling method (* → data;
traced line → real mean; full line → product estimates).

whether the DJIA series presents volatility (measured as variance) clusters as
well as expected return clusters. That is, the main interest is to verify if the
DJIA series presents heteroskedasticity and atypical returns. The advantage of
using such a methodology (if compared with McLeod-Li test, for example) is
that, besides identifying if the Down Jones series presents heteroskedasticity,
we can also identify whether the change is structural or else it is an atypical
value, as well as we can acertain when the changes occurred and in what
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Fig. 5. Product estimates for the mean return and Volatility - DJIA

directions they were.

For modeling the returns, conditionally in the mean return (µ) and in the
volatility (σ2), assume that the returns are normally distributed. Since the
USA market is efficient, few changes are expected in its behavior and the
mean returns can be considered close to zero [18]. Then, let us assume that
the prior distribution for p is the degenerate distribution p = 0.1 and that the
prior distribution for the common parameter Θ[ij] = (µ[ij], σ

2
[ij]) is:

µ[ij]|σ
2
[ij] ∼ N (0, σ2

[ij]) and σ2
[ij] ∼ IG(0.001/2, 8/2).

Notice that under the square loss function the prior Bayes’ estimates for the
mean return and for the volatility are 0 and 1.67 × 10−4, respectively. For
the Gibbs sampling scheme, 10,000 samples were generated. The initial 1,000
samples were discarded and a lag of 10 was considered.

Notice from Figure 5 that the product estimates for the mean returns are close
to zero and reach their minimum at May 2nd fortnight, 1998. It is noticeable
that the mean return is approximately constant from June 1st fortnight, 1996,
to January 1st fortnight, 1998, and from July 2nd fortnight, 1998, to October
2nd fortnight, 2000. The volatility for the DJIA return series is also small
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and experiences few changes. We perceive some important increases in June
2nd fortnight, 1996, and in June 2nd fortnight, 1999. We also observe that
changes in the volatility and in the mean return occur in similar instants and
in opposite directions, that is, the volatility increases when the mean return
decreases. In a descriptive analysis (not shown), we have found three occasions
with atypical returns, which are August 2nd fortnight, 1998 (-0.0098), October
2nd fortnight, 1999 (0.0095), and April 1st fortnight, 2000 (-0.094). These
atypical observations were not detected by the PPM. That is, we noticed the
presence of heteroskedasticity in the DJIA return series, which is in agreement
with Hsu [29] and Hawkins [18]. Contrary to what we expected, for the period
analyzed, we also noticed that there are not atypical observations in the DJIA
return series.

6 Conclusions

Yao’s method and a Gibbs sampling based idea were applied to implement
an extension of the Product Partition Model (PPM). The goal was to deal
with the change-point identification problem both in means and variances of
normal data sequences.

An extensive Monte Carlo simulation study was performed with these two
computational methods. In conclusion, for the scenarios considered in this pa-
per, the results obtained by the approximate Gibbs sampling based algorithm
were not significantly worse than those obtained Yao’s method. Indeed, both
algorithms presented similar errors. However, Yao’s method may be preferable
for staircase-style scenarios. The length of the sequence influenced the accu-
racy of the product estimates and the errors were smaller for longer sequences.
Additionally, in scenarios without changes, smaller errors were observed for
p = 0.01.

We also noticed that by using the PPM, one is likely to misinterpret atypical
observations as structural changes. The PPM usually cannot properly identify
atypical observations that occur separated by short periods of time. In spite of
this, the PPM is a valuable tool in identifying change points in data sequences
as we can see in numerous applications published in the literature.

As an illustrative example, we verified this by means of the results for the Dow
Jones Industrial Average (DJIA) return series. The results indicated that both
methods identified change points in the series and produced similar product
estimates for the means and variances of the returns. Finally, a question that
remains open is how the PPM could be adapted for forecasting. This is only
one of the many possible interesting directions for future research in the area.
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