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Abstract — The problem of service and capacity allo-

cation in state dependent M/G/c/c queueing networks

is analyzed and algorithms are developed to compute

the optimal allocation c. The model is applied to the

modeling of pedestrian circulation systems and ba-

sic series, merge, and split topologies are examined.

Also of interest are applications to problems of evac-

uation planning in buildings. Computational exper-

iments assert the algorithm’s speed, robustness, and

effectiveness. The results obtained indicate that the

pattern of the optimal capacity surprisingly repeats

over different topologies and it is also heavily depen-

dent upon the arrival rate. Additional computational

simulation results are provided to show the accuracy

of the approach in all configurations tested.

Keywords — Queueing networks, buffer allocation, finite ca-

pacity, state dependent.

1 Introduction

Many application problems including those in telecom-
munication, transportation, manufacturing, and service
industries are most appropriately modeled as queueing
networks with finite capacity and state dependent ser-
vice rates. Often, the finite capacities in the queues
and state dependent service rates further increase the
complexity of solutions of these systems. In other cases,
these assumptions may be relaxed. However, this pa-
per is about applications for which it is fundamental to
take into account finite capacities and state dependent
services for the sake of accuracy. Of particular interest

∗On sabbatical leave from the Departamento de Estat́ıstica,
Universidade Federal de Minas Gerais, 31270-901 - Belo Horizonte
- MG, Brazil.

are M/G/c/c state dependent queueing networks, i.e.,
following Kendall’s notation, queues with Markovian ar-
rivals, general state dependent service rates, c parallel
servers, and the total capacity c, including the servers.

Figure 1 illustrates a queueing network configured as
a generic topology. Notice that the classical symbolic
representation for each stochastic node is being used in
this figure, as well as throughout this paper. However,
it is worthwhile mentioning here that actually there is
no queue at each M/G/c/c node since the number of
parallel servers equals the total capacity.

The use of queueing theory for the analysis of conges-
tion has a long and storied existence. In the past, queue-
ing networks have been important tools in the study of
traffic light synchronization, in the analysis of vehicles
at intersections [1], and in the evaluation of traffic flow
by using a simplistic deterministic approach [2]. Nowa-
days, probably due to the increasing speed and reduced
costs of the modern computer systems, more sophisti-
cated models have been developed. These models have
been used in applications such as pedestrian/vehicular
network traffic analysis [3, 4, 5], synthesis [6, 7, 8, 9],
and accumulating conveyor systems [10].

The main reason of this paper is to extend the develop-
ment of algorithms for optimal service and capacity allo-
cation in M/G/c/c state dependent queueing networks,
for a fixed generic network topology. In particular, the
interest lies in pedestrian network applications, config-
ured as a generic combination of basic series, merge, and
split topologies as illustrated in Figure 2, but the ex-
tensions to other networks with state dependent service
rates should be obvious.

The rest of this paper is organized as follows. Sec-
tion 2 presents a mathematical programming formulation
for the service and capacity allocation (SCA) problem.
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Figure 1: A generic network topology.

Section 3 presents the analytical stochastic model used
to describe pedestrian flows and Section 4 describes the
proposed algorithm. Computational experiments with
the proposed algorithm are presented in Section 5. In
order to illustrate the usefulness of the optimization al-
gorithm in evacuation problems, Section 6 is dedicated to
show results for a ten-story building evacuation network.
Finally, Section 7 closes the paper with a summary and
concluding remarks.

2 Problem Statement

2.1 Notation

The notation used throughout the text is provided below:

c corridor capacity in number of occupants;
c capacity vector (c1, c2, . . .)

T;
fi cost per unit of capacity;
l corridor length in meters;

w corridor width in meters;
w width vector (w1, w2, . . .)

T;
Vn average walking speed in a corridor for n oc-

cupants in m/s;
V1 average lone occupant walking speed in m/s;

f(n) Vn/V1, service rate for n occupants;
Va average walking speed when pedestrian density

equals 2 ped/m2 in m/s;
a 2× l×w, number of pedestrians in the corridor

assuming a density of 2 ped/m2;
Vb average walking speed when pedestrian density

equals 4 ped/m2 in m/s;
b 4× l×w, number of pedestrians in the corridor

assuming a density of 4 ped/m2;
γ, β shape and scale parameters for the exponential

model;
λ pedestrian arrival rate in ped/s;

N random variable that denotes the number of
occupants in a corridor;

n actual number of occupants in the corridor;
pn Pr{N = n}, probability of n occupants in the

corridor, for n = 1, 2, . . . , c;
p0 Pr{N = 0}, empty corridor probability;
pc Pr{N = c}, blocking probability;

θ throughput in ped/s;
L E[N ], mean (expected) number of occupants

in the corridor (known as work-in-process);
W E[T ], mean waiting time (expected service

time) in the corridor in seconds;
E[T1] mean waiting time for a lone occupant in the

corridor in seconds.

2.2 Mathematical Programming Formulation

Assume that the topology of the network of queues is
known beforehand and that it is defined as a graph
G(V, A), in which V is a finite set of nodes (corridors)
and A is a finite set of arcs (connections between pair
of corridors). The service and capacity allocation (SCA)
problem is concerned with how much capacity must be
provided in the nodes so that the blocking probability
is below a specific threshold. In other words, the SCA
problem is to find the smallest integers ci ≥ 0 for which
pci

= Pr{Ni = ci} ≤ ε, for all i ∈ V .
Thus, a possible integer mathematical programming

formulation for the SCA problem is as follows:

z = min
[

g(c) =
∑

∀ i∈V

fici

]

, (1)

s.t.:

pci
≤ ε, ∀ i ∈ V, (2)

ci ∈ {1, . . .}, ∀ i ∈ V, (3)

which minimizes the overall allocation cost
∑

i fici, con-
strained to provide a maximum blocking probability
threshold ε, for all nodes i ∈ V , in which fi is the cost
per unit of capacity.

In spite of the linearity of the objective function, the
SCA problem has inherent complications. One serious
aspect to deal with from a practical point of view is the
intractability of the expressions for pci

in closed form for
any given topology. Notice that, in a topology such as
the one seen in Figure 1, the blocking probability at the
ith node depends on all upstream incoming flows and also
on the blocking probabilities of all downstream nodes.

In fact, one can see in Figure 3 how complex are the
blocking probabilities, pc1

and pc2
, as a function of ca-
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Figure 2: Corridors in basic topologies.

pacities c1 and c2, even in a simple 2-node tandem con-
figuration. Notice that the “flat” areas of the curves
corresponds to the feasible regions, i.e., points for which
pc1

≤ ε and pc2
≤ ε hold.

a) node 1

b) node 2

Figure 3: Blocking probabilities pc1
and pc2

in a 2-node
tandem network.

3 Flow Modeling

3.1 Analytical Model for a Single Traffic Link

An M/G/c/c state dependent model is a reasonable and
a most appropriate conceptual model to describe a single
traffic link because of its finite capacity and of its very
general service mechanism. The limiting probabilities
for the number of users in an M/G/c/c queueing system
have been developed [3] and showed [4] to be stochas-
tic equivalent to a pure Markovian M/M/c/c queueing
model. Thus, these probabilities can be written as fol-
lows:
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p0, (4)

for n = 1, 2, . . . , c, in which

p−1
0 = 1 +

c
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,

is the empty system probability, λ is the arrival rate in
ped/s, E[T1] is the mean waiting (service) time for a
lone occupant in seconds, and f(n) = Vn/V1 is the ser-
vice rate. From Eq. (4), one can derive all performance
measures of interest:























θ = λ
(

1 − pc

)

,

L = E[N ] =

c
∑

n=1

npn,

W = E[T ] = L/θ,

(5)

in which pc is the blocking probability, θ is the through-
put in ped/s, L is the mean number of customers in the
system (also known as work-in-process, WIP), and W ,
derived from Little’s formula, is the mean waiting (ser-
vice) time in seconds.

3.2 Congestion Models

Finally, we derive the service rate f(n) as to be used in
Eq. 4. For instance, a corridor connecting locations i
to j may be considered as a service mechanism for its
occupants since it provides the path for moving from
point i to point j. The number of servers in parallel
equals the nodal capacity which also represents the total
number of users simultaneously allowed in the system,
that is:

c = bk × l × wc, (6)

in which l is the nodal length, w is its width, k is the
maximum pedestrian density in ped/m2, and bxc is the
largest integer not superior to x. Notice that c must be
integer so that it works in the probability calculations
earlier shown.

In accordance to Tregenza’s empirical studies [11],
curves (a) through (f), in Figure 4, the average speed
that a user will move through a corridor depends on sev-
eral factors but mainly this speed is a function of the
number of occupants therein. Also in accordance to the
empirical data from Figure 4, k = 5 ped/m2 represents a
reasonable maximum pedestrian density above which we
could assume that the pedestrian average walking speed
is essentially zero.

Based on these remarks, Yuhaski and MacGregor
Smith [3] developed linear and exponential congestion
models for the average pedestrian walking speed in traf-
fic links:
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Figure 4: Average walking speed for pedestrians.

Vn = V1
c + 1 − n

c
, (7)

and

Vn = V1 exp

[

−

(

n − 1

β

)γ]

, (8)

in which

γ = ln

[

ln(Va/V1)

ln(Vb/V1)

]

/ ln

(

a − 1

b − 1

)

,

β =
a − 1

[ln(V1/Va)]1/γ
=

b − 1

[ln(V1/Vb)]1/γ
,

V1 is the average speed for a lone occupant, assumed
1.5 m/s, Va is the average speed in m/s when the crowd
density is 2 ped/m2, a = 2lw, Vb is the average speed
when the crowd density is 4 ped/m2, and b = 4lw.

Yuhaski and MacGregor Smith [3] also pointed out
that the exponential model could be adjusted based on
3 points averaged over the six curves presented in Fig-
ure 4. Other possibilities also exists, e.g. non-linear
regression or piece-wise linear approximations, but the
results would not differ significantly. Throughout this
paper, it is assumed that Va = 0.64 m/s and Vb = 0.25
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algorithm

read G(V, A)
read routing probabilities pij, ∀ (i, j) ∈ A
read arrival rates λi and fi, ∀ i ∈ V

/* find an initial feasible vector c */
for ∀ i ∈ V do

copt
i
← csup

i
← 2M

end for

/* search optimum solution */
iter← 0
repeat

iter← iter + 1
for ∀ i ∈ V do

/* optimizes ith queue */
OptQueue(i,csup)

end for

/* update best solution */
if g(csup) < g(copt) then

copt ← csup

unmark all nodes

else

exit

end if

end repeat

write copt

end algorithm

algorithm OptQueue(i,csup)
/* recursive labeling step */

for ∀ (j, i) ∈ A do

if node j is unmarked then

OptQueue(j,csup)
mark node j

end if

end for

/* isolate optimum */
j ← 1
cinf
i
← csup

i
← 2j

while p
(c

sup
i

)
6≤ ε,∀ i ∈ V

j ← j + 1
csup
i
← 2j

end while

/* narrow interval */
ccan ← csup

while (csup
i
− cinf

i
) > 1

ccan
i
← (cinf

i
+ csup

i
)/2

if p(ccan
i

) ≤ ε,∀ i ∈ V then

csup
i
← ccan

i
;

else

cinf
i
← ccan

i
;

end if

end while

end algorithm

a) network optimization b) single queue optimization

Figure 5: SCA problem resolution algorithm.

m/s. A discrete-event digital simulation model [12] has
confirmed the accuracy of these settings. Additionally,
it is worthwhile mentioning that Cheah and MacGregor
Smith [4] successfully extended the exponential model to
represent bi-directional and multi-directional pedestrian
flows by using slightly different values for Va and Vb.

3.3 The Generalized Expansion Method

It seems unlikely that exact analytical methods will ever
be available to treat complex topologies such as those
presented in Figure 1. Thus, one is forced to use some
type of approximation such as the Generalized Expan-
sion Method (GEM), proposed by Kerbache and Mac-
Gregor Smith [13, 14]. The GEM is a combination of
repeated trials and node-by-node decomposition approx-
imation methods, with a key characteristic that an artifi-
cial holding node is added preceding each finite queue in
the network in order to register blocked customers that
attempt to enter a finite node when it is at capacity. By
the addition of holding nodes, the queueing network is
“expanded” into an equivalent Jackson network, in which
each node can then be analyzed separately.

Since its development, the GEM has been applied suc-
cessfully to many finite capacity systems [3, 7, 8, 9]. De-
tails on how the GEM is adapted to M/G/c/c state de-
pendent queueing networks will not be given here but
can be found in the literature [4, 9].

4 Proposed Algorithm

In the vast literature on buffer allocation problems, many
of the approaches already described could be adapted to
solve the SCA problem. The algorithm proposed here
is inspired by these approaches [15]. The algorithm is
shown in Figure 5 in pseudo-code.

Figure 5-a show the main algorithm that implements a
variation of the derivative free coordinate search method.
All settings are read and an initial feasible solution is
sought which is to find a large enough capacity to all
nodes that will make sure that no queue will be blocked
at all, i.e., that all the constraints are satisfied. For
convenience, since it will help the local search algorithm
as described as follows, the initial feasible capacity is in
the form 2M, in which M is an integer big enough to
ensure feasibility.

The local search is presented in Figure 5-b. This single
queue optimization algorithm first isolates the optimum
by coming up with an interval whose inferior limit cinf

i is
infeasible and superior limit csup

i is feasible. The follow-
ing steps are to successively halve the initial interval up
to that point they differ by the unity. Then, the supe-
rior limit is the smallest capacity that complies with the
blocking probability requirements for the whole network
and the inferior limit is the largest infeasible capacity.

As a last but not least important note concerning the
local search algorithm, Figure 5-b, it is necessary to en-
sure that no node is locally optimized unless all of its
predecessor nodes were already optimized. After much
experimentation, we observed that the GEM tends to
underestimate the blocking probabilities in situations in

5
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Table 1: Tandem (series) topology results.

max pci

simulation

λ c (ped) w (m) GEM average 95% CI cpu

1.0 41 → 44 → 45 1.04 → 1.11 → 1.14 0.0024 0.0021 [ 0.0013 ;0.0029] 0m 55s

42 → 45 → 46 1.06 → 1.14 → 1.16 0.0010∗ 0.0014 [-0.0001;0.0028] 1m 47s

43 → 46 → 47 1.09 → 1.16 → 1.19 0.0004 0.0004 [ 0.0001 ;0.0006] 2m 1s

41 → 44 → 45→ 46 → 47 1.04 → 1.11 → 1.14→ 1.16 → 1.19 0.0024 0.0021 [ 0.0013 ;0.0029] 6m 22s

42 → 45 → 46→ 47 → 48 1.06 → 1.14 → 1.16→ 1.19 → 1.21 0.0010∗ 0.0024 [-0.0003;0.0051] 3m 56s

43 → 46 → 47→ 48 → 49 1.09 → 1.16 → 1.19→ 1.21 → 1.24 0.0004 0.0004 [ 0.0001 ;0.0006] 3m 6s

2.0 78 → 78 → 81 1.96 → 1.96 → 2.04 0.0022 0.0128 [ 0.0017 ;0.0240] 5m 16s

79 → 79 → 82 1.99 → 1.99 → 2.06 0.0010∗ 0.0029 [-0.0002;0.0059] 4m 59s

80 → 80 → 83 2.01 → 2.01 → 2.09 0.0004 0.0095 [-0.0042;0.0231] 5m 1s

78 → 78 → 81→ 82 → 82 1.96 → 1.96 → 2.04→ 2.06 → 2.06 0.0023 0.0128 [ 0.0017 ;0.0240] 10m 19s

79 → 79 → 82→ 83 → 83 1.99 → 1.99 → 2.06→ 2.09 → 2.09 0.0010∗ 0.0029 [-0.0002;0.0059] 9m 36s

80 → 83 → 83→ 84 → 84 2.01 → 2.01 → 2.09→ 2.11 → 2.11 0.0004 0.0095 [-0.0042;0.0231] 9m 53s

4.0 150 → 151 → 154 3.76 → 3.79 → 3.86 0.0021 0.0000 [ 0.0000 ;0.0000] 16m 49s

151 → 152 → 155 3.79 → 3.81 → 3.89 0.0010∗ 0.0000 [ 0.0000 ;0.0000] 17m 4s

152 → 153 → 156 3.81 → 3.84 → 3.91 0.0005 0.0000 [ 0.0000 ;0.0000] 16m 46s

150 → 151 → 154→ 156 → 157 3.76 → 3.79 → 3.86→ 3.91 → 3.94 0.0021 0.0000 [ 0.0000 ;0.0000] 41m 42s

151 → 152 → 155→ 157 → 158 3.79 → 3.81 → 3.89→ 3.94 → 3.96 0.0010∗ 0.0000 [ 0.0000 ;0.0000] 40m 24s

152 → 153 → 156→ 158 → 159 3.81 → 3.84 → 3.91→ 3.96 → 3.99 0.0005 0.0000 [ 0.0000 ;0.0000] 40m 55s

∗ optimization algorithm best solution

which there is a severe bottleneck in the final nodes of
the network. As a consequence, if the local search pro-
ceeds randomly over the nodes, the optimal capacity vec-
tor computed may be infeasible. Thus, a labeling initial
step must be programmed, Figure 5-b, in order to avoid
such an undesirable situation. The labeling algorithm is
inspired by Dijkstra’s shortest path algorithm [16], which
is used here in its recursive version.

5 Computational Experiments

The proposed algorithms were coded in C++, a flexible
and efficient programming language. All computational
experiments were carried out on a PC, CPU Pentium II
400 MHz, 256 MB RAM, under Windows NT 4.0 oper-
ating system.

For the sake of the argument, only the exponential con-
gestion model, Eq. 8, was considered. Unitary per-unit
costs fi were assumed but their value does not change the
solutions since the threshold blocking must be satisfied
anyway. A threshold of 0.1% (0.001) was used. Several
topologies were under study, namely series, merges, and
splits (see Figure 2). Experiments were done for 3 and
5-node networks with arrival rates of 1, 2, and 4 ped/s.

A well-known fact, since the works of Yuhaski and
MacGregor Smith [3] and Mitchell and MacGregor Smith
[9], is that the width has a more significant effect than
the length over the performance measures of M/G/c/c
queueing systems. Thus, only homogeneous (same
length) networks were considered and it was assumed
that the widths were under design control. All nodes
were assumed 8.0 meters long.

Additionally, for each network considered, in order to

confirm the accuracy of the optimal solutions, simula-
tions were performed for the optimal and around the
optimal solutions, with slight perturbations on the ca-
pacity of the queues. A discrete-event digital simulation
model [12] was used for this purpose. All simulations
were run for 22,000 seconds, with a burn-in period of
2,000 seconds. In order to compute 95% confidence in-
tervals, 30 replications were performed. The cpu times
reported are only for the simulations. The optimization
algorithm usually takes less than a minute to generate a
solution.

Tables 1, 2, and 3 show the results. Notice in Ta-
ble 1 that the nodes tend to be wider at the end of
the topology. The effect of blocking at the end nodes
is amplified back at the upstream nodes so that some
extra space must be allocated in order to avoid the effect
and to meet the requested performance. Additionally, it
is remarkable that this progressive increasing allocation
pattern repeats over longer networks. However, the pat-
tern was not always observed. It seems that it depends
on the length of the corridors since, in other experimen-
tal set with tandem networks, assuming 8.5 meters long
nodes (not shown), some of the optimal capacities found
were equal for all nodes.

Table 2 and 3 shows the results obtained for split and
merge topologies. For split topologies, unbalanced split-
ting probabilities of 0.6 and 0.4 were considered, and,
as a consequence, unbalanced allocations were obtained
for the nodes following the splitting node. For merging
topologies, the arrival rates at the two front nodes were
balanced and, as expected, balanced capacities were al-
located there. In all 5-node networks, a similar effect as
in the series topologies (i.e., a progressively increasing
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Table 2: Split topology results.

max pci

simulation
λ c (ped) w (m) GEM average 95% CI cpu

1.0 41↗
29

↘21
1.04↗

0.74
↘0.54

0.0025 0.0018 [ 0.0011 ;0.0024] 1m 4s

42↗
30

↘22
1.06↗

0.76
↘0.56

0.0010∗ 0.0008 [ 0.0004 ;0.0012] 1m 3s

43↗
31

↘23
1.09↗

0.79
↘0.59

0.0004 0.0004 [ 0.0001 ;0.0006] 1m 2s

41↗
29

↘21

→ 31

→ 23
1.04↗

0.74
↘0.54

→ 0.79

→ 0.59
0.0025 0.0018 [ 0.0011 ;0.0024] 1m 37s

42↗
30

↘22

→ 32

→ 24
1.06↗

0.76
↘0.56

→ 0.81

→ 0.61
0.0010∗ 0.0008 [ 0.0004 ;0.0012] 1m 36s

43↗
31

↘23

→ 33

→ 25
1.09↗

0.79
↘0.59

→ 0.84

→ 0.64
0.0004 0.0004 [ 0.0001 ;0.0006] 1m 35s

2.0 78↗
49

↘35
1.96↗

1.24
↘0.89

0.0020 0.0046 [ 0.0028 ;0.0065] 2m 58s

79↗
50

↘36
1.99↗

1.26
↘0.91

0.0009∗ 0.0031 [ 0.0010 ;0.0051] 2m 54s

80↗
51

↘37
2.01↗

1.29
↘0.94

0.0004 0.0007 [-0.0001;0.0015] 2m 50s

78↗
49

↘35

→ 50

→ 37
1.96↗

1.24
↘0.89

→ 1.26

→ 0.94
0.0023 0.0107 [ 0.0060 ;0.0154] 4m 50s

79↗
50

↘36

→ 51

→ 38
1.99↗

1.26
↘0.91

→ 1.29

→ 0.96
0.0010∗ 0.0037 [ 0.0012 ;0.0063] 4m 38s

80↗
51

↘37

→ 52

→ 39
2.01↗

1.29
↘0.94

→ 1.31

→ 0.99
0.0004 0.0009 [-0.0004;0.0021] 4m 31s

4.0 150↗
93

↘63
3.76↗

2.34
↘1.59

0.0025 0.0346 [ 0.0117 ;0.0575] 9m 52s

151↗
94

↘64
3.79↗

2.36
↘1.61

0.0011∗ 0.0175 [-0.0005;0.0354] 9m 10s

152↗
95

↘65
3.81↗

2.39
↘1.64

0.0005 0.0004 [ 0.0000 ;0.0009] 8m 39s

150↗
93

↘63

→ 127

→ 63
3.76↗

2.34
↘1.59

→ 3.19

→ 1.59
0.0031 0.0822 [ 0.0509 ;0.1135] 18m 31s

151↗
94

↘64

→ 128

→ 64
3.79↗

2.36
↘1.61

→ 3.21

→ 1.61
0.0014∗ 0.0340 [ 0.0122 ;0.0558] 16m 23s

152↗
95

↘65

→ 129

→ 65
3.81↗

2.39
↘1.64

→ 3.24

→ 1.64
0.0006 0.0090 [-0.0015;0.0194]15m 30s)

∗ optimization algorithm best solution

capacity allocation) was observed in the tandem links.
Finally, one can surprisingly see an economy-of-scale ef-
fect since neither the capacity at the node after merging
equals the sum of capacities of nodes just before merg-
ing in the merge topologies, nor the sum of capacities of
nodes that follow a split equals the capacity of the node
before splitting.

6 Evacuation Networks

In this section, a simple and yet interesting and relevant
application for the SCA problem is illustrated. The ob-
jective is to design an optimal evacuation network for
a ten-story building, see Figure 6. Stairwells 8.5 me-
ters long are assumed to interconnect each floor and
each of them is accessible by a corridor 8.5 meters in
length, forming a 20 node series-merge network, as seen

in Figure 6. Each corridor and stairwell is modeled as
an M/G/c/c state dependent queue and it is assumed
that the widths are under design control. An arrival rate
λ equally assigned for each of the ten floors (queues) is
considered but other configurations could be treated as
well. The arrivals at the middle of the network compli-
cate the analysis since significant blocking can occur if
sufficient capacity is not provided.

Table 4 shows the optimal allocations, for a threshold
value of 0.1% and three different arrival rates of 0.25,
0.50, and 1.0 ped/s. In order to check the accuracy of
this solution, additional simulations were performed. For
each arrival rate, 30 replications were run, for 42,000
seconds with a burn-in of 2,000 seconds. The simulation
times are rather long and are shown in the bottom of the
table. It is possible to confirm within 95% of confidence
that the threshold is respected for all nodes and that all

7
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Table 3: Merge topology results.

max pci

simulation
λ c (ped) w (m) GEM average 95% CI cpu

1.0
23↘

23↗
43

0.59↘

0.59↗
1.09 0.0023 0.1067 [ 0.0401 ;0.1733] 1m 39s

24↘

24↗
44

0.61↘

0.61↗
1.11 0.0008∗ 0.0481 [-0.0019;0.0981] 1m 21s

25↘

25↗
45

0.64↘

0.64↗
1.14 0.0003 0.0289 [-0.0109;0.0687] 1m 15s

23→

23→

24↘

24↗
44

0.59→

0.59→

0.61↘

0.61↗
1.11 0.0028 0.0342 [ 0.0037 ;0.0647] 2m 5s

24→

24→

25↘

25↗
45

0.61→

0.61→

0.64↘

0.64↗
1.14 0.0010∗ 0.0394 [-0.0028;0.0816] 2m 20s

25→

25→

26↘

26↗
46

0.64→

0.64→

0.66↘

0.66↗
1.16 0.0003 0.0042 [-0.0006;0.0091] 1m 39s

2.0
41↘

41↗
80

1.04↘

1.04↗
2.01 0.0024 0.0284 [-0.0108;0.0676] 3m 25s

42↘

42↗
81

1.06↘

1.06↗
2.04 0.0010∗ 0.0093 [-0.0089;0.0275] 3m 4s

43↘

43↗
82

1.09↘

1.09↗
2.06 0.0004 0.0005 [ 0.0002 ;0.0007] 2m 51s

41→

41→

44↘

44↗
82

1.04→

1.04→

1.11↘

1.11↗
2.06 0.0024 0.0088 [-0.0084;0.0259] 5m 23s

42→

42→

45↘

45↗
83

1.06→

1.06→

1.14↘

1.14↗
2.09 0.0010∗ 0.0009 [ 0.0005 ;0.0013] 4m 32s

43→

43→

46↘

46↗
84

1.09→

1.09→

1.16↘

1.16↗
2.11 0.0004 0.0005 [ 0.0002 ;0.0007] 4m 27s

4.0
78↘

78↗
151

1.96↘

1.96↗
3.79 0.0017 0.0015 [ 0.0000 ;0.0029] 8m 50s

79↘

79↗
152

1.99↘

1.99↗
3.81 0.0008∗ 0.0008 [ 0.0000 ;0.0017] 8m 36s

80↘

80↗
153

2.01↘

2.01↗
3.84 0.0003 0.0002 [ 0.0000 ;0.0004] 8m 40s

78→

78→

78↘

78↗
153

1.96→

1.96→

1.96↘

1.96↗
3.84 0.0011 0.0294 [ 0.0088 ;0.0500]16m 32s

79→

79→

79↘

79↗
154

1.99→

1.99→

1.99↘

1.99↗
3.86 0.0010∗ 0.0031 [-0.0001;0.0063]15m 13s

80→

80→

80↘

80↗
155

2.01→

2.01→

2.01↘

2.01↗
3.89 0.0004 0.0022 [-0.0013;0.0057]14m 48s

∗ optimization algorithm best solution

solutions are feasible.

In order to show the optimality of all solutions, per-
turbed configurations were also considered in which 10%
was reduced for each optimal width. The results may
be observed in Table 5. The simulation times are even
longer and blocking increases dramatically. Thus, within
10%, which may represent as little as 4 centimeters in
the upper stories stairwell widths, optimality is reached
in this cases. However, concerning the lower levels, for
which the flows are considerably higher, it is worthwhile
mentioning that, even reduced by 10%, these nodes were
able to accommodate the flow without blocking.

The immediate explanation one might think of is that
the width (capacity) reductions at the upper stories cer-
tainly will lead to increases in the blocking at these lev-
els as well as to reductions in the service rates. As a
consequence, downstream (lower level) nodes will not be

congested after all, in spite of their own 10% width re-
ductions. However, simulation results (not shown) seem
to indicate that probably the explanation is not univer-
sal since the GEM actually may be overestimating the
actual blocking probabilities.

Figure 7 shows some additional performance measures
for the optimized 10-story building. Here, one can see a
very close agreement between the analytical and simula-
tion methods. Additionally, the throughput corresponds
exactly to the arrival rate at the node, and the expected
number of customers in the system is maximum. Thus,
minimizing the widths subject to a threshold is roughly
equivalent to an optimization problem as (i) maximizing
the throughput subjected to using the minimum space,
and also to (ii) minimizing the number of users in the
systems subjected to a blocking probability threshold.
Concerning the expected service times (expected delay),

8
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Table 4: Optimal results.

λ = 0.25 λ = 0.50 λ = 1.00

pci
pci

pci

simulation∗ simulation∗ simulation∗

Node w c GEM average [95% IC] w c GEM average [95% IC] w c GEM average [95% IC]

20 0.37 15 0.0010 0.0008 [ 0.0005 ;0.0011] 0.60 25 0.0010 0.0021 [-0.0006;0.0048] 1.07 45 0.0010 0.0162 [ 0.0072 ;0.0253]

19 0.37 15 0.0010 0.0009 [ 0.0005 ;0.0014] 0.60 25 0.0010 0.0011 [ 0.0007 ;0.0014] 1.07 45 0.0010 0.0008 [ 0.0000 ;0.0017]

18 0.37 15 0.0009 0.0009 [ 0.0006 ;0.0011] 0.60 25 0.0008 0.0009 [ 0.0006 ;0.0012] 1.07 45 0.0005 0.0005 [ 0.0003 ;0.0007]

17 0.37 15 0.0009 0.0008 [ 0.0005 ;0.0010] 0.60 25 0.0008 0.0009 [ 0.0007 ;0.0012] 1.07 45 0.0005 0.0006 [ 0.0003 ;0.0008]

16 0.37 15 0.0009 0.0007 [ 0.0005 ;0.0009] 0.60 25 0.0008 0.0009 [ 0.0007 ;0.0012] 1.07 45 0.0005 0.0002 [ 0.0001 ;0.0003]

15 0.37 15 0.0009 0.0009 [ 0.0006 ;0.0011] 0.60 25 0.0008 0.0008 [ 0.0005 ;0.0010] 1.07 45 0.0005 0.0005 [ 0.0003 ;0.0007]

14 0.37 15 0.0009 0.0008 [ 0.0005 ;0.0010] 0.60 25 0.0008 0.0009 [ 0.0006 ;0.0011] 1.07 45 0.0005 0.0002 [ 0.0001 ;0.0004]

13 0.37 15 0.0009 0.0010 [ 0.0008 ;0.0013] 0.60 25 0.0008 0.0009 [ 0.0007 ;0.0010] 1.07 45 0.0005 0.0006 [ 0.0004 ;0.0009]

12 0.37 15 0.0009 0.0008 [ 0.0006 ;0.0010] 0.60 25 0.0008 0.0007 [ 0.0005 ;0.0008] 1.07 45 0.0005 0.0003 [ 0.0001 ;0.0004]

11 0.37 15 0.0009 0.0009 [ 0.0007 ;0.0011] 0.60 25 0.0008 0.0008 [ 0.0007 ;0.0010] 1.07 45 0.0005 0.0006 [ 0.0004 ;0.0009]

10 0.41 17 0.0001 0.0013 [-0.0010;0.0035] 0.65 27 0.0002 0.0054 [-0.0018;0.0125] 1.07 45 0.0005 0.0466 [ 0.0235 ;0.0696]

9 0.65 27 0.0001 0.0042 [-0.0018;0.0103] 1.12 47 0.0001 0.0051 [-0.0029;0.0131] 2.01 85 0.0003 0.0083 [-0.0036;0.0202]

8 0.93 39 0.0000 0.0000 [ 0.0000 ;0.0001] 1.59 67 0.0000 0.0000 [ 0.0000 ;0.0000] 2.93 124 0.0001 0.0000 [ 0.0000 ;0.0000]

7 1.21 51 0.0000 0.0000 [ 0.0000 ;0.0000] 2.13 90 0.0000 0.0000 [ 0.0000 ;0.0000] 3.89 165 0.0000 0.0000 [ 0.0000 ;0.0000]

6 1.45 61 0.0000 0.0000 [ 0.0000 ;0.0000] 2.65 112 0.0000 0.0000 [ 0.0000 ;0.0000] 4.84 205 0.0000 0.0000 [ 0.0000 ;0.0000]

5 1.78 75 0.0000 0.0000 [ 0.0000 ;0.0000] 3.17 134 0.0000 0.0000 [ 0.0000 ;0.0000] 5.75 244 0.0000 0.0000 [ 0.0000 ;0.0000]

4 1.97 83 0.0000 0.0000 [ 0.0000 ;0.0000] 3.57 151 0.0000 0.0000 [ 0.0000 ;0.0000] 6.72 285 0.0000 0.0000 [ 0.0000 ;0.0000]

3 2.20 93 0.0000 0.0000 [ 0.0000 ;0.0000] 4.04 171 0.0000 0.0000 [ 0.0000 ;0.0000] 7.66 325 0.0000 0.0000 [ 0.0000 ;0.0000]

2 2.44 103 0.0000 0.0000 [ 0.0000 ;0.0000] 4.51 191 0.0000 0.0000 [ 0.0000 ;0.0000] 8.62 366 0.0000 0.0000 [ 0.0000 ;0.0000]

1 2.72 115 0.0000 0.0000 [ 0.0000 ;0.0000] 5.00 212 0.0000 0.0000 [ 0.0000 ;0.0000] 9.59 407 0.0000 0.0000 [ 0.0000 ;0.0000]

∗ cpu: 0h 19m 48s ∗ cpu: 1h 33m 40s ∗ cpu: 7h 01m 40s
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Table 5: Perturbed results.

λ = 0.25 λ = 0.50 λ = 1.00

pci
pci

pci

simulation∗ simulation∗ simulation∗

Node 0.9w c GEM average [95% IC] 0.9w c GEM average [95% IC] 0.9w c GEM average [95% IC]

20 0.33 14 0.0099 0.0411 [ 0.0240 ;0.0583] 0.54 22 0.1075 0.2964 [ 0.2820 ;0.3107] 0.96 40 0.2058 0.3664 [ 0.3507 ;0.3820]

19 0.33 14 0.0099 0.0337 [ 0.0152 ;0.0521] 0.54 22 0.1075 0.1521 [ 0.1242 ;0.1800] 0.96 40 0.2058 0.2137 [ 0.1866 ;0.2408]

18 0.33 14 0.0028 0.0155 [ 0.0022 ;0.0289] 0.54 22 0.0141 0.0216 [ 0.0172 ;0.0260] 0.96 40 0.0288 0.0494 [ 0.0317 ;0.0672]

17 0.33 14 0.0028 0.0105 [ 0.0017 ;0.0194] 0.54 22 0.0141 0.0134 [ 0.0124 ;0.0144] 0.96 40 0.0288 0.0303 [ 0.0275 ;0.0331]

16 0.33 14 0.0028 0.0072 [ 0.0020 ;0.0124] 0.54 22 0.0141 0.0142 [ 0.0133 ;0.0150] 0.96 40 0.0288 0.0287 [ 0.0261 ;0.0314]

15 0.33 14 0.0028 0.0047 [ 0.0025 ;0.0070] 0.54 22 0.0141 0.0143 [ 0.0133 ;0.0154] 0.96 40 0.0288 0.0278 [ 0.0252 ;0.0303]

14 0.33 14 0.0028 0.0030 [ 0.0022 ;0.0038] 0.54 22 0.0141 0.0144 [ 0.0130 ;0.0157] 0.96 40 0.0288 0.0306 [ 0.0280 ;0.0333]

13 0.33 14 0.0028 0.0034 [ 0.0029 ;0.0038] 0.54 22 0.0141 0.0143 [ 0.0133 ;0.0152] 0.96 40 0.0288 0.0270 [ 0.0244 ;0.0296]

12 0.33 14 0.0028 0.0028 [ 0.0023 ;0.0033] 0.54 22 0.0141 0.0136 [ 0.0125 ;0.0148] 0.96 40 0.0288 0.0280 [ 0.0256 ;0.0304]

11 0.33 14 0.0028 0.0031 [ 0.0028 ;0.0035] 0.54 22 0.0141 0.0135 [ 0.0125 ;0.0145] 0.96 40 0.0288 0.0280 [ 0.0253 ;0.0307]

10 0.37 15 0.0071 0.1239 [ 0.0929 ;0.1549] 0.59 25 0.0948 0.4386 [ 0.4211 ;0.4560] 0.96 40 0.1822 0.4598 [ 0.4461 ;0.4735]

9 0.59 24 0.0067 0.1439 [ 0.1106 ;0.1772] 1.01 42 0.0945 0.4552 [ 0.4393 ;0.4711] 1.81 76 0.1768 0.4415 [ 0.4182 ;0.4648]

8 0.84 35 0.0039 0.0631 [ 0.0343 ;0.0919] 1.43 60 0.0604 0.0879 [ 0.0342 ;0.1416] 2.64 112 0.1050 0.0738 [ 0.0149 ;0.1327]

7 1.09 46 0.0025 0.0270 [ 0.0002 ;0.0538] 1.92 81 0.0400 0.0010 [-0.0009;0.0029] 3.50 148 0.0663 0.0110 [-0.0105;0.0325]

6 1.31 55 0.0019 0.0256 [-0.0011;0.0524] 2.39 101 0.0312 0.0000 [ 0.0000 ;0.0000] 4.36 185 0.0440 0.0000 [ 0.0000 ;0.0000]

5 1.60 68 0.0013 0.0200 [-0.0033;0.0434] 2.85 121 0.0257 0.0000 [ 0.0000 ;0.0000] 5.18 220 0.0330 0.0000 [ 0.0000 ;0.0000]

4 1.77 75 0.0011 0.0201 [-0.0034;0.0437] 3.21 136 0.0218 0.0000 [ 0.0000 ;0.0000] 6.05 257 0.0161 0.0000 [ 0.0000 ;0.0000]

3 1.98 84 0.0009 0.0038 [-0.0014;0.0090] 3.64 154 0.0157 0.0000 [ 0.0000 ;0.0000] 6.89 292 0.0124 0.0000 [ 0.0000 ;0.0000]

2 2.20 93 0.0005 0.0002 [-0.0002;0.0005] 4.06 172 0.0092 0.0000 [ 0.0000 ;0.0000] 7.76 329 0.0038 0.0000 [ 0.0000 ;0.0000]

1 2.45 104 0.0001 0.0000 [ 0.0000 ;0.0000] 4.50 191 0.0027 0.0000 [ 0.0000 ;0.0000] 8.63 366 0.0017 0.0000 [ 0.0000 ;0.0000]

∗ cpu: 0h 53m 58s ∗ cpu: 2h 33m 56s ∗ cpu:11h 16m 41s
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Figure 6: A ten-story building.

one can see that they are roughly constant along the
stair-well. The mean waiting (service) time W could be
lower, since it is limited from below by the mean waiting
time for a lone occupant, 8.5/1.5 ≈ 5.7 seconds.

Finally, Figure 8 shows the evacuation times for the
optimized configuration. Although we recognize the im-
portance of low service (evacuation) times in buildings,
we remark that W would not be a good objective to
be optimized since, without any space constraint, that
would lead us to an unbounded optimization problem.

7 Concluding Remarks

A methodology based on M/G/c/c state-dependent
queueing systems, suitable for analysis and synthesis
of systems subject to congestion effects, in particular,
pedestrian networks, was presented. The importance of
the model was stressed and a short review of recent re-
sults on the area was presented. In detail, the application
of the model to pedestrian network planning was dis-
cussed. Computational results were provided to demon-
strate the effectiveness of the approach.

However, many research questions remain open. Fur-
ther tests must to be done under different topologies
and blocking probabilities, as well as under heavier and
lighter arrival rates. In the evacuation area, different
building heights, different distributions of occupants on
the floors, and different floor plan designs could be eval-
uated. Another possibility is to extend the congestion
model to modeling vehicular networks. These are only
some possible directions for future research in the area.
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Figure 7: Performance measures for the optimized ten-
story building.
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