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Abstract — A discrete-event digital simulation

model is developed to study traffic flows in M/G/C/C

state-dependent queueing networks. Several perfor-

mance measures are evaluated, namely (i) the block-

ing probability, (ii) throughput, (iii) the expected

number of the customers in the system, and (iv)

expected travel (service) time. Series, merge, and

split topologies are examined with special applica-

tion to pedestrian planning evacuation problems in

buildings. Extensive computational experiments are

presented showing that the simulation model is an

effective and insightful tool to validate analytical ex-

pressions and also to analyze general accessibility in

network evacuation problems especially in high-rise

buildings.
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1 Introduction

Congestion and finite capacity queueing systems are
probably one of the most prevalent facts of modern life.
Congestion usually leads to a decrease in the systems
service rates and finite capacity impedes overall system
throughput. The main focus of this paper are finite ca-
pacity and state dependent service rate networks, which
are appropriate tools for modeling congestion in pedes-
trian [1, 2] and vehicular [3] traffic networks, accumula-
tion conveyor systems [4], and many other systems with
finite capacity and decaying service rates as a function
of increased density of customers.

In particular, this paper is concerned with M/G/C/C
state dependent networks, which following Kendall’s no-
tation stand for Markovian arrival processes, general
state dependent service rates, c parallel servers, and a
total capacity c (including the servers). Additionally,
the service rate is a decreasing function of the number of
customers in the system.

1.1 Motivation

State dependent queueing network models occur
throughout many parts of the world. These networks
must be designed and controlled so that the flow of cus-
tomers through them achieve the best possible perfor-
mance. The dynamic nature of the M/G/C/C state de-
pendent models requires powerful tools for analysis be-
cause of the complex blocking that occurs and the simul-
taneous dynamic updating required to adjust the services
rates of the customers.

We have developed many stationary approaches for
the long-run equilibrium (steady-state) design and anal-
ysis of M/G/C/C state dependent models, yet the non-
stationary or transient nature of these models has re-
mained beyond our capabilities. Thus, we need tools and
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a corresponding methodology to model state-dependent
M/G/C/C models for non-stationary environments. Ex-
amples include traffic control for signalized intersections,
vehicular and pedestrian network evacuation, and many
other transient situations in which networks do not reach
steady-state. In fact, the non-stationary situation is
more prevalent than the stationary one. Certainly it
would be most useful if we could develop an analyti-
cal non-stationary model for M/G/C/C networks, yet
having a discrete-event simulation model is a practical
first-step.

Not only it will be argued that non-stationary models
are important for themselves, but it will be shown in the
paper that non-stationary models complement, enhance,
and help us evaluate the stationary models already de-
veloped.

1.2 Outline

Section 2 details the analytical queueing and congestion
models that form the foundation for the simulation mod-
els used in this paper while Section 3 presents the details
of the discrete event digital simulation model. Section 4
demonstrates validating results for the simulation system
along associated applications. In Section 5, a network
evacuation model of a ten-story building is demonstrated
in order to illustrate the efficacy of the simulation model
in this important application area. Finally, Section 6
summarizes and concludes the paper.

2 Mathematical Models

2.1 Introduction

There are many real traffic systems in which customers
flowing through the system adjust their speed because
of the density of customers in the system. In this sec-
tion of the paper, empirical model results are described
along with consequent analytical representations of the
empirical models of this service system decay rate. As
will be described, linear and exponential decay functions
are quite appropriate in characterizing the service rate
decay function. While the focus will be on the use of
M/G/C/C models for pedestrian traffic, it should be re-
marked that these models are interchangeable for vehic-
ular traffic and whenever state dependent service rates
are appropriate models for the application.

2.2 Notation

As an aid to the reader, a brief section of notation which
is used throughout the paper is provided:

c := corridor capacity in number of occupants;
l := corridor length in meters;

w := corridor width in meters;
Vn := average walking speed for n occupants in a

corridor in m/s;
V1 := average lone occupant walking speed in m/s;
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Figure 1: Average walking speed.

Va := average walking speed when pedestrian den-
sity is 2 ped/m2 in m/s;

Vb := average walking speed when pedestrian den-
sity is 4 ped/m2 in m/s;

γ, β := shape and scale parameters for the exponential
model;

λ := pedestrian arrival rate in ped/s;
N := random variable that denotes the number of

occupants in a corridor;
n := actual number of pedestrians in a corridor;

p(n) := Pr{N = n}, probability of n occupants in the
system, for n = 1, 2, . . . , c;

p(0) := Pr{N = 0}, empty system probability;
p(c) := Pr{N = c}, blocking probability;

θ := throughput in ped/s;
L := E(N), mean (expected) number of occupants

in the system (also known as work-in-process);
W := E[T ], mean waiting time (expected service

time) in seconds;
E[T1] := mean waiting time for lone occupant in sec-

onds.

2.3 Pedestrian Congestion Modeling

Congestion is easily observed in pedestrian circulation ar-
eas, such as corridors, stairwells, shopping malls, ramps,
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elevators etc., and it essentially occurs when the number
of people within the circulation system increases. The in-
crease in traffic density tends to reduce the average speed
of all users. Of course, several factors can affect the av-
erage walking speed, for instance the shape of the sur-
rounding walls, colors, lighting level, and floor materials
in the pedestrian walkway system. While it is known that
males tend to walk faster than females and teenagers,
faster than adults, however, several experimental studies
have shown that all these factors are minor compared
to the total number of pedestrians within the corridor.
And, in fact, this total number changes dynamically over
time. As the number of people increases, it will be more
likely that slower pedestrians block faster pedestrians.
Thus, higher pedestrian densities, defined as the number
of people per unit area, reduce the individual pedestrian
traffic velocity. Thus, pedestrian density can be viewed
as the main factor in determining mean walking speed.

One of the most interesting problems that could be
treated by state dependent queueing systems is related
to pedestrian traffic flows in the circulation systems of
buildings [1, 5, 6, 7]. Figure 1 presents experimental
curves (a through f ) that relate the walking speed of
pedestrians to crowd density, based on various empirical
studies that illustrate that at a mean density of three
pedestrians per square meter (3 ped/m2) walking is re-
duced to a shuffle, and at 5 ped/m2, forward movement
essentially comes to a halt (see Tregenza [5]). Thus, the
corridor capacity equals the largest integer not superior
to five times its area in m2, that is:

c = b5× l× wc, (1)

in which c is the corridor capacity, l is its length in me-
ters, w, its width in meters, and bxc is the largest integer
not superior to x.

Tregenza [5] also affirms that the lone occupant walk-
ing speed is around 1.5 m/s. Note that the flow tends
to stop as n → c but some movement may exist when
n = c. On the other hand, all movement should essen-
tially come to a halt beyond this point, that is, Vn = 0,
for all n ≥ c + 1. Therefore, a straightforward linear
model that complies with these requirements would be:

Vn = V1
c + 1− n

c
, (2)

in which V1 = 1.5 m/s is the lone occupant walking
speed.

However, in light of Figure 1, it seems that an exponen-
tial model might be another reasonable approximation.
Thus, Yuhaski and MacGregor Smith [1] proposed the
following model for uni-directional pedestrian flows:

Vn = V1 exp

[

−

(

n− 1

β

)γ]

, (3)

in which

γ =
ln

[

ln(Va/V1)
ln(Vb/V1)

]

ln
(

a−1
b−1

) , β =
a− 1

[ln (V1/Va)]1/γ
=

b− 1

[ln (V1/Vb)]
1/γ

,

0 1 2 3 4 5 6

m^2/ped

0.
0

0.
5

1.
0

1.
5

pe
d/

m
/s

downwards
upwards
simulation

Figure 2: Fruin’s curves [8] for stairwells.
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Figure 3: Exponential models.

V1 = 1.5 m/s, Va = 0.64 m/s, a = 2lw, Vb = 0.25, and
b = 4lw.

Note the reader that the model was adjusted based on
three representative points of the six curves in Figure 1,
that is, based on the coordinates V1 = 1.5 m/s, for den-
sity 1 ped/m2, Va = 0.64 m/s, for density 2 ped/m2,
and Vb = 0.25 m/s, for density 4 ped/m2. Yuhaski and
MacGregor Smith [1] pointed out that there are other
possibilities, e.g. non-linear regression or piece-wise lin-
ear approximations, but the results would not differ sig-
nificantly. The model seems to be well calibrated since
it reproduces with some accuracy the pattern of Fruin’s
curves [8] for stairwells, as it is seen in Figure 2.

Cheah and MacGregor Smith [9] extended the ex-
ponential model to represent bi-directional and multi-
directional pedestrian flows by using Va = 0.60 m/s and
Vb = 0.21 m/s in Eq. (3), for bi-directional flows, and
Va = 0.56 m/s and Vb = 0.17 m/s, for multi-directional
flows. As it is seen in Figure 3, the results do not differ
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significantly.
While the previous stationary models are effective

tools, we have been unable to compare these stationary
models with a simulation model or other non-stationary
analytical models. As argued earlier, non-stationary en-
vironments are more typical than stationary environ-
ments. Current discrete-event simulation languages are
not effectively capable of dynamically updating the ser-
vice rates of the customers flowing through the system
without significant computational overhead. Thus, the
discrete event simulation model described in the next
section of the paper begins to fulfill this need.

3 Discrete Event Digital Simulation Model

For convenience, the discrete-event digital simulation
model proposed here (more on discrete-event simulation
models, in the book of Fishman [10]) is implemented in
C++, a flexible, powerful, and fast programming en-
vironment. However, there exist nowadays many gen-
eral purpose simulation languages that could be used as
well, including GPSS, SIMSCRIPT, SLAM, and SIMAN,
among others (more details can be found in the paper of
Nance [11]). Unfortunately, these packaged simulation
models do not have sophisticated data structures to deal
with the dynamic updating of the customer or vehicular
service rates as a function of the density of customers in
the system, so they tend to run extremely slow in com-
parison with a dedicated simulation model as developed
in this paper.

3.1 Data Structures

The simulation model is within a broader package that
follows the structure presented in Figure 4. The mod-
ule congestion models is composed by the virtual class
GenCM, that provides general purpose methods such as
the service rate Vn, the capacity c, the expected service
time for lone occupant E[T1], and lone occupant speed
V1. The derivative classes LinCM and ExpCM implement
the linear and exponential services as described earlier
and the module user congestion models adjust linear
and exponential models particularly for the application.
The module analytical model, which implements the
Generalized Expansion Method (GEM) [12, 13], and the
module optimization system will not be discussed in
this paper since the focus here is on the performance eval-
uation rather than optimization. However, additional
details on the GEM will be given in Section 4.

Of main interest here is the module simulation

model, which essentially implements the object MgccSim,
seen in Figure 5, which depicts all data structures
within the object and how they interrelate. Basically,
this object has the number of nodes in the M/G/C/C
state dependent network, nOfNodes, the total simu-
lation time, totalTime, the origin-destination matrix,
arcs, a vector of objects, MgccResource, and an event
queue, MgccEventQueue. The objects MgccResource

keep track of all statistics that might be of interest for

each M/G/C/C queue, which are the sum of blocking,
arrivals, and departures, the sum of overall time within
the system, and the current number of users. Also part
of each MgccResource is the congestion model GenCM,
with methods to access its mean speed (service rate) Vn,
capacity c, and expected service time for lone occupant
E[T1].

The critical part of the object MgccSimul is the ob-
ject MgccEventQueuewhich implements the event queue.
The event queue is implemented as a linked list dynam-
ically created at running time that keeps all discrete
events. Unexpectedly, after much experimentation, it
was seen that the best way to ensure low CPU times
was to keep the events in the event queue unsorted, with
the burden of inspecting the entire queue to recover the
earliest event (more details on this matter will be given
shortly).

Each object MgccEvent of the event queue con-
tains the indication of which M/G/C/C queue it
relates, whichQueue, the expected occurrence time,
occurTime, the event type (arrival, departure, or
end simulation events), and the entity to which it is
related, MgccEntity. The object MgccEntity represents
each user (pedestrian) of the M/G/C/C state dependent
network and has a unique user identification number, id,
the time it has arrived at the system, sisArrival, the
time it has arrived at the current queue, queueArrival,
the time there was the last state change (an user enters
of leaves the queue), lastChange, and the user’s position
at the last state change, lastPosition. As one may has
already noticed, the architecture used is freely inspired
by the simulation system Arena [14].

3.2 Algorithm

The simulation algorithm in pseudo-code is illustrated
in Figure 6. All this algorithm does is to initialize the
event queue MgccEventQueue by programming the last
event (end simulation) and the first, time-zero, events
(arrival). Then, the algorithm iteratively searches the
earliest event (in the order of occurrence) and processes
it, until the final event (end simulation) is reached.

The arrivals must be treated by the algorithm shown in
Figure 7. At this point, it is possible to schedule the next
arrival at that queue and to include this newly created
event in the event queue. Since the arrivals are assumed
to be coming from a Markovian process, the inter-arrival
times follow the exponential distribution Exp(λi). The
current arrival generates a departure event, that must
be also inserted into the event queue. The occurrence
of that departure is after a delay of l/Vn, in which l is
the length of the respective corridor and Vn, the average
speed for n occupants. The most complex operation in
the algorithm ProcessArrival is to delay the departure
of every user in the queue, that is, to take into consider-
ation the state dependency of the system.

For all entities at that queue, the algorithm
DelayDeparture (not shown) must update the position
since the last change, lastPosition, the time since the
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Figure 4: Generalized M/G/C/C state dependent queueing system.

last change, lastChange, and the event’s new occurrence
time, occurTime (Figure 5), as follows:

lastPosition ← lastPosition + Vn−1 × (t − lastChange),
lastChange ← t,
occurTime ← t + (l − lastPosition)/Vn,

in which t is the current time. Note that since it is pos-
sible that the user is blocked after service, it is necessary
to make sure that the lastPosition does not go beyond
the corridor’s length l after updating.

The departure event treatment is a bit trickier. It is
shown in Figure 8. The departure event involves care-
fully determining the new destination of the customer.
For example, if the corresponding queue is a split node,
then the blocking across the split junction must be care-
fully analyzed. If the destination queue is at capacity,
then the departure from the origin queue must be delayed
(blocking after service) until there is room in the desti-
nation queue. Otherwise, the new departure time of this
entity is reprogrammed by adding a delay of l/Vn, ad-
vancing the departures of all entities at the origin queue,

and delaying all departures at the destination queue.

The algorithm AdvanceDeparture (not shown) follows
the same philosophy as the algorithm DelayDeparture.
The position since the last change, the time since the last
change, and the event’s new occurrence time are updated
as follows:

lastPosition ← lastPosition + Vn+1 × (t − lastChange),
lastChange ← t,
occurTime ← t + (l − lastPosition)/Vn.

Note that, by updating (advancing or delaying) the
occurrence times of all entities at a particular queue, a
previously sorted (by time of occurrence) event queue
would end up unsorted. This is the explanation for a
better overall performance of a simulation model based
on unsorted event queues. It is a bit costly to recover the
earliest event in an unsorted queue, since all the elements
of the queue must be inspected, but it would be even
more costly to keep that queue sorted.
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4 Computational Experiments

All computational experiments were conducted in a PC,
CPU Pentium II 400 MHz, 64 MB RAM, under Win-
dows NT 4.00 operating system, and were divided into
two parts. The first experiments validate the simula-
tion model for a single M/G/C/C queue, since it is well
known that M/G/C/C systems are stochastically equiv-
alent to M/M/C/C systems [9], since that the station-
ary probabilities are exact. The second part validates
the approximate expressions of the GEM [12, 13].

4.1 Simulator Validation

The limiting probabilities for the number of pedestrians
in a M/M/C/C queueing model have been developed be-
fore. It has been shown that M/M/C/C and M/G/C/C
state dependent queues are stochastically equivalent [9],
as well as that the limiting probabilities for the number
of pedestrians in an M/G/C/C state dependent queue-
ing model are as follows [1]:

p(n) =





[

λE[T1]
]n

n!f(n) · · · f(2)f(1)



 p(0), ∀n = 1, 2, . . . , c,

(4)
in which

p(0)−1 = 1 +

c
∑

i=1







[

λE[T1]
]i

i!f(i) · · · f(2)f(1)







is the empty system probability, λ is the arrival rate,
E[T1] = l/V1 is the expected service time of a lone oc-
cupant in a corridor of length l, and f(n) = Vn/V1 is
the service rate, considered to be the ratio of the average
walking speed of n people in the corridor to that of a
lone occupant V1.

From Eq. (4), one can derive all performance measures
of interest:























θ = λ
(

1− p(c)
)

,

L = E(N) =

c
∑

n=1

(

np(n)
)

,

W = L/θ,

(5)

in which p(c) is the blocking probability, θ is the through-
put, L is the expected number of users in the system
(known as work-in-process, WIP), and W , derived from
Little’s formula, is the mean waiting (service) time in
seconds.

Concerning the simulation, the computation is nothing
more difficult (see Figure 5):















p(c) ← sumBlock/sumArr,
θ ← sumDep/totalTime,
L ← sumTime/totalTime,
W ← sumTime/sumDep.

(6)

All simulation results were carried out for 20,000 sec-
onds and 30 replications, for a corridor 8 meters long ×
2.5 meters wide. The results are presented in Tables 1,
2, and 3, and in Figures 9, 10, and 11, which show the
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algorithm Simulate
/* initialize event queue */

Inicitialize(MgccEventQueue);
/* create and insert ‘last’ event */

MgccEvent ← new();
MgccEvent.occurTime ← totalTime;
MgccEvent.type ← end simulation;
Insert(MgccEventQueue,MgccEvent);

/* create and insert ‘first’ events */
for ∀n| λn 6= 0 do

MgccEvent ← new();
MgccEvent.whichQueue ← n;
MgccEvent.occurTime ← 0.0;
MgccEvent.type ← arrival;
Insert(MgccEventQueue,MgccEvent);

end for
/* simulate */

MgccEvent ← GetNext(MgccEventQueue);
while MgccEvent.type 6= end simulation do

if MgccEvent.type = arrival then
ProcessArrival(MgccEventQueue,MgccEvent);

else if MgccEvent.type = departure then
ProcessDeparture(MgccEventQueue,MgccEvent);

else
error, unknown event

end if
MgccEvent ← GetNext(MgccEventQueue);

end while
print results

end algorithm

Figure 6: Simulation algorithm.

behavior of state dependent service rate systems under
different arrival rates, corridor widths, and lengths. The
CPU columns show the times for the total set of 30 repli-
cations. The confidence intervals are too narrow to be
noticeable in the figures and the results seem to indicate
a close agreement of the simulation model.

Table 1 and Figure 9 show the performance measures
under variable arrival rates. Note the dynamic, non-
linear performance of M/G/C/C nodes with the θ × λ
curve being the most dramatic, Figure 9-b. It is seen
that the blocking is low and the throughput is linear up
to 2.7 ped/s, Figure 9-a. That seems to be the limit of
this corridor. From that arrival rate on, the blocking in-
creases, the throughput drops, the number of users also
increases up to the system capacity, and the service time
worsens around 8 times. Arrival rates above 3 ped/s
cannot improve the system throughput that reaches its
limit around θ = 2 ped/s. Surprisingly, the system would
be able to give a higher throughput (around 2.7 ped/s),
under a slightly lower arrival rate of 2.7 ped/s. Note
some divergence between analytical and simulated re-
sults around the arrival rates 2.7 and 3.0.

Under a scenario in which the width is changing, Ta-
ble 2 and Figure 10, it is seen that the simulation and
analytical results are in close agreement, except perhaps
slight differences around the critical width values, 2.0 m,
for λ = 2.5, and 4.0–4.5 m, for λ = 5.0. The corridor’s

algorithm ProcessArrival(EventQueue,Event)
/* program next arrival */

newEvent ← new();
newEvent.whichQueue ← Event.whichQueue;
newEvent.occurTime ∼ Exp(λ)+ Event.occurTime;
newEvent.type ← arrival;
Insert(EventQueue,newEvent);

/* process this arrival */
if queue is blocked then

reject arrival and count it

else

newEvent ← new();
newEvent.whichQueue ← Event.whichQueue;
newEvent.occurTime ← l/Vn+ Event.occurTime;
newEvent.type ← departure;
Insert(EventQueue,newEvent);
count arrival

/* delay departure of every user in this queue
DelayDeparture(EventQueue,Event.whichQueue);

end if

end algorithm

Figure 7: Algorithm ProcessArrival.

algorithm ProcessDeparture(EventQueue,Event)
generate next destination queue d
if final destination then

count departure

/* advance departure of users */
AdvanceDeparture(EventQueue,Event.whichQueue);

else if queue is blocked then

postpone departure and count it

else

/* create and insert departure */
newEvent ← new();
newEvent.whichQueue ← d;
newEvent.occurTime ← l/Vn+ Event.occurTime;
newEvent.type ← departure;
Insert(EventQueue,newEvent);
count departure

count arrival

/* advance departure of users */
AdvanceDeparture(EventQueue,Event.whichQueue);

/* delay departure of users */
DelayDeparture(EventQueue,d);

end if

end algorithm

Figure 8: Algorithm ProcessDeparture.

width appears to be perhaps the most important control
variable, as its increase reduces the blocking probability,
increases the throughput, reduces the number of users
in the system, and reduces the service time. However,
it is also seen that no sensible effect at all is felt after
the critical widths. In other words, there was no further
improvements in the performance measures considered
beyond 2.0 m, for an arrival rate of 2.5 ped/s, and 4.5
m, for an arrival rate of 5.0 ped/s. As a final remark,
note how heavily dependent on the arrival rate the crit-
ical widths are.

Finally, changing the corridor length one can con-
firm once more the accuracy of the simulation model,
as shown in Table 3 and Figure 11. It is remarkable that
the length has a (linear) influence on the average num-
ber of users and in the service time. However, the length
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Table 1: Single node performance measures versus arrival rate.

λ Model p(c) θ L W CPU (s)

1.0 Analytical 0.00 1.00 6.02 6.02

Simulation 0.00 1.00 6.00 6.02 33

95% CI [0.00;0.00] [1.00;1.00] [5.99;6.02] [6.02;6.02]

2.0 Analytical 0.00 2.00 14.49 7.24

Simulation 0.00 2.00 14.46 7.24 140

95% CI [0.00;0.00] [1.99;2.00] [14.42;14.49] [7.23;7.25]

2.7 Analytical 0.01 2.66 29.20 10.98

Simulation 0.01 2.67 27.91 10.49 350

95% CI [0.00;0.02] [2.65;2.68] [26.28;29.55] [9.81;11.18]

3.0 Analytical 0.33 2.01 96.96 48.31

Simulation 0.32 2.03 95.21 46.95 890

95% CI [0.32;0.33] [2.02;2.04] [94.52;95.90] [46.37;47.53]

4.0 Analytical 0.51 1.96 99.01 50.53

Simulation 0.51 1.96 98.77 50.43 910

95% CI [0.51;0.51] [1.96;1.96] [98.75;98.79] [50.41;50.45]

1 2 3 4 5 6

lambda (ped/s)

0.
0

0.
2

0.
4

0.
6

p(
c)

length=8m
width=2.5m
analytical
simulation

a) blocking probability

1 2 3 4 5 6

lambda (ped/s)

1.
0

1.
5

2.
0

2.
5

th
et

a 
(p

ed
/s

)

b) throughput

1 2 3 4 5 6

lambda (ped/s)

20
40

60
80

10
0

L 
(p

ed
)

c) work-in-process

1 2 3 4 5 6

lambda (ped/s)

10
20

30
40

50

W
 (

s)

d) mean service time

Figure 9: Single node performance measures versus arrival rate.
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Table 2: Single node performance measures versus width.

λ Width Model p(c) θ L W CPU (s)

2.5 1.0 Analytical 0.68 0.79 39.53 50.02
Simulation 0.68 0.79 39.46 49.98 150

95% CI [0.68;0.68] [0.79;0.79] [39.45;39.46] [49.96;49.99]
1.5 Analytical 0.52 1.19 59.05 49.69

Simulation 0.52 1.19 58.91 49.59 330
95% CI [0.52;0.52] [1.19;1.19] [58.90;58.93] [49.57;49.61]

2.0 Analytical 0.36 1.61 77.71 48.32
Simulation 0.35 1.62 76.87 47.50 580

95% CI [0.35;0.35] [1.61;1.62] [76.63;77.11] [47.23;47.76]
2.5 Analytical 0.00 2.50 21.07 8.43

Simulation 0.00 2.50 21.00 8.41 250
95% CI [0.00;0.00] [2.49;2.50] [20.94;21.06] [8.40;8.43]

3.0 Analytical 0.00 2.50 18.39 7.36
Simulation 0.00 2.50 18.35 7.35 220

95% CI [0.00;0.00] [2.49;2.50] [18.31;18.39] [7.34;7.36]
5.0 2.0 Analytical 0.69 1.56 79.54 51.00

Simulation 0.69 1.56 79.40 50.95 600
95% CI [0.69;0.69] [1.56;1.56] [79.39;79.40] [50.95;50.96]

3.0 Analytical 0.53 2.34 119.10 50.86
Simulation 0.53 2.34 118.83 50.76 1300

95% CI [0.53;0.53] [2.34;2.34] [118.81;118.84] [50.75;50.77]
4.0 Analytical 0.37 3.14 158.24 50.46

Simulation 0.37 3.17 156.04 49.29 2400
95% CI [0.36;0.37] [3.16;3.17] [155.55;156.53] [49.01;49.57]

4.5 Analytical 0.11 4.45 95.66 21.49
Simulation 0.00 4.99 46.80 9.39 1100

95% CI [0.00;0.00] [4.97;5.00] [45.54;48.05] [9.10;9.68]
5.0 Analytical 0.00 5.00 40.94 8.19

Simulation 0.00 5.00 40.88 8.18 960
95% CI [0.00;0.00] [4.99;5.00] [40.80;40.96] [8.18;8.19]
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Table 3: Single node performance measures versus length.

λ Width Model p(c) θ L W CPU (s)

2.5 2.5 Analytical 0.01 2.47 9.08 3.68
Simulation 0.01 2.46 9.03 3.66 110

95% CI [0.01;0.01] [2.46;2.47] [8.94;9.12] [3.63;3.70]
5.0 Analytical 0.00 2.50 14.18 5.68

Simulation 0.00 2.49 14.15 5.67 170
95% CI [0.00;0.00] [2.49;2.50] [14.01;14.28] [5.62;5.73]

7.5 Analytical 0.00 2.50 20.05 8.02
Simulation 0.00 2.49 20.11 8.06 240

95% CI [0.00;0.00] [2.49;2.50] [19.83;20.39] [7.95;8.18]
10.0 Analytical 0.00 2.50 26.01 10.41

Simulation 0.00 2.50 25.94 10.39 310
95% CI [0.00;0.00] [2.49;2.50] [25.86;26.01] [10.38;10.41]

12.5 Analytical 0.00 2.50 32.27 12.91
Simulation 0.00 2.50 32.18 12.89 380

95% CI [0.00;0.00] [2.49;2.50] [32.09;32.27] [12.88;12.91]
5.0 2.5 Analytical 0.60 1.99 30.30 15.19

Simulation 0.60 1.99 30.28 15.19 290
95% CI [0.60;0.60] [1.99;1.99] [30.28;30.29] [15.19;15.20]

5.0 Analytical 0.61 1.95 61.34 31.46
Simulation 0.61 1.95 61.27 31.44 590

95% CI [0.61;0.61] [1.95;1.95] [61.26;61.28] [31.43;31.44]
7.5 Analytical 0.61 1.94 92.36 47.71

Simulation 0.61 1.93 92.19 47.66 850
95% CI [0.61;0.61] [1.93;1.93] [92.19;92.20] [47.65;47.66]

10.0 Analytical 0.61 1.94 124.36 63.94
Simulation 0.61 1.94 124.05 63.85 1200

95% CI [0.61;0.61] [1.94;1.94] [124.04;124.06] [63.84;63.86]
12.5 Analytical 0.61 1.94 155.36 80.18

Simulation 0.61 1.94 154.89 80.03 1500
95% CI [0.61;0.61] [1.94;1.94] [154.87;154.90] [80.02;80.04]
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Figure 12: Basic topologies.

is not an effective control variable because the blocking
probability and the throughput, perhaps the most re-
garded performance measures, are almost independent.
Fortunately, in most of the practical cases, the length is
not under control and it is merely a distance that must
be covered.

4.2 Generalized Expansion Method (GEM) Validation

The GEM, proposed by Kerbache and MacGregor Smith
[12, 13], is an analytical model for the analysis and de-
sign of finite queueing networks for an arbitrary topology.
The method is a combination of repeated trials and node-
by-node decomposition approximation methods. Its key
characteristic is to add an artificial holding node pre-
ceding each finite queue in the network in order to reg-
ister blocked customers that attempt to join the finite
node when it is at its capacity. Doing so, the queue-
ing networks are ‘expanded’ into an equivalent Jackson
network in which each node can be decomposed and an-
alyzed separately. Since the GEM was developed, its has
been used successfully in many finite capacity systems
[1, 2, 6, 7, 15]. Details on how the GEM can be adapted
to M/G/C/C state dependent queueing networks will
not be given here but are easily found in the literature
[2, 9].

Few simulation results are available on how well the
GEM approximates the actual performance measures
[3, 9], largely because of the inherent complexity of dy-
namically updating the service rate in the simulation
model. This section provides comparisons for three basic
topologies, series, split and merge (see Figure 12), as it
is seen in Tables 4, 5, and 6. All simulations were run
for 20,000 seconds and 30 replications were performed to
build 95% confidence intervals.

Table 4 shows the results for a three node series topol-
ogy, composed by three corridors 8.0 meters long × 2.5
meters wide and an arrival λ1 = 3.0 ped/s. On can see

the surprisingly accuracy of the GEM in such a case. Al-
most all analytical (approximate) performance measure
were covered by the 95% confidence intervals.

The results for the split topology are shown in Table 5.
The simulation considered three corridors, also 8 × 2.5
meters, a split probability p = 0.6, and an arrival rate
λ1 = 3.0 ped/s. Again, the results confirm the accuracy
of the GEM. Almost all 95% confidence intervals covered
the analytical results.

Finally, Table 6 presents the results for three corridors,
8.0 × 2.5 meters, in a merge topology, for an arrival rate
λ1 = λ2 = 3.0 ped/s. The relative complexity of this
topology may be better understood by the CPU time
spent which is considerably higher than those for the
previous topologies. Here, a remarkable agreement be-
tween analytical and simulation results may be seen for
all queues, for which the confidence intervals are pretty
close to the analytical results. Usually, in optimization
applications for example, the low processing time is very
important since multiple evaluation of alternative config-
urations usually must to be done by the search algorithm.
For these situations, the GEM should be an effective tool.

5 Network Evacuation Applications

One of the main intended uses of the simulation model
is for the network evacuation problem. This problem
occurs in the evacuation of pedestrians from buildings,
naval vessels, chemical plant explosions, as well as for
urban and rural evacuation of vehicular traffic in case of
hurricanes, fires, floods or other natural and man-made
disasters.

In this regard, the queueing network of corridors, stair-
wells, ramps, streets, and passageways become crucial
links for the safe evacuation of the occupants of the af-
fected regions or buildings. Of main concern in this mod-
eling problem is to identify the key bottlenecks constrict-
ing the flow of occupants out of the affected area. Once
the bottlenecks can be identified, then additional capac-
ity can be directed towards alleviating the cause of the
constriction, and thus a safer, more efficient evacuation
process could result.

In the demonstration below, a network evacuation
from a ten-story high rise building is examined, and the
efficacy of the simulation model is shown for this type of
application.

5.1 Example Application

An interesting and relevant application for the simula-
tion system just proposed may be illustrated by the per-
formance analysis of a network evacuation of pedestrian
occupants from a ten-story high-rise building, see Fig-
ure 13. An 8.5 meter in length × 1.2 meter wide stairwell
is assumed to interconnect each floor and each stairwell is
modeled as an M/G/C/C state dependent queue. Thus,
there will be a total of 10 M/G/C/C state dependent
queues in a series-merge network topology. Also assumed
is an arrival rate λ equally assigned for each of the ten
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Table 4: Results for 3-node series topology (λ1 = 3.0).

node 1 node 2 node 3
Analytical Simulation∗ Analytical Simulation∗ Analytical Simulation∗

Measure 95% CI 95% CI 95% CI
p(c) 0.33 0.33 [ 0.32 ; 0.33 ] 0.00 0.01 [ 0.00 ; 0.01 ] 0.00 0.01 [ 0.00 ; 0.03 ]

θ 2.01 2.02 [ 2.01 ; 2.03 ] 2.01 2.02 [ 2.01 ; 2.02 ] 2.01 2.02 [ 2.01 ; 2.02 ]
L 96.96 95.87 [95.35;96.40] 14.56 16.44 [15.00;17.88] 14.56 16.51 [15.23;17.79]
W 48.31 47.53 [47.10;47.96] 7.26 8.15 [ 7.44 ; 8.86 ] 7.26 8.19 [ 7.56 ; 8.81 ]

∗CPU time = 4 minutes 55 seconds

Table 5: Results for 3-node split topology (λ1 = 3.0).

node 1 node 2 node 3
Analytical Simulation∗ Analytical Simulation∗ Analytical Simulation∗

Measure 95% CI 95% CI 95% CI
p(c) 0.33 0.32 [ 0.32 ; 0.33 ] 0.00 0.00 [0.00;0.00] 0.00 0.00 [0.00;0.00]

θ 2.01 2.03 [ 2.02 ; 2.04 ] 1.20 1.22 [1.21;1.23] 0.80 0.81 [0.81;0.82]
L 96.96 95.04 [94.23;95.84] 7.48 7.61 [7.55;7.67] 4.70 4.76 [4.73;4.80]
W 48.31 46.82 [46.16;47.49] 6.21 6.24 [6.23;6.26] 5.86 5.87 [5.86;5.88]

∗CPU time = 2 minutes 58 seconds

floors (queues). The floor arrival rates complicate the
analysis of the model since depending on the flow rates
of the various floors, significant blocking can occur. For
the sake of the argument, the uniform arrival rates for
each floor are used in the experimental results of the pa-
per, however, non-uniform rates could be used as well in
the simulation model.

The simulation was carried out for 20,000 seconds and
30 replications were made. Longer and shorter simula-
tion times were tested (not shown) but 20,000 seconds
represents the best compromise between low variability
among replications and low CPU time consumption.

5.2 Experimental Results

Table 7 shows the performance measures for each floor,
obtained for four different arrival rates, as well as the re-
spective 95% confidence intervals. The CPU times were
heavily dependent on the arrival rate λ, as it is seen in the
bottom of Table 7. The confidence intervals were narrow,
excepting perhaps for the lower floors under light traffic,
which presented a considerable higher variability, under-
standable because they reflect the accumulated blocking
and congestion of the upper levels.

The importance of the simulation model is that it can
predict the bottleneck of the dynamic network evacua-
tion system and how it moves as a function of the incom-
ing traffic from each floor level. This type of prediction of
the bottleneck is crucial in any network evacuation model
planning, whether it is for pedestrians or for vehicles.

While the issue of the optimal width will not be ad-
dressed in this paper, it will be the subject of future
papers. The simulation model becomes an important
tool in the performance evaluation of alternative build-
ing designs for the optimal egress problem because it can
help planners identify the bottlenecks and correlate the
nonlinear effects of traffic loads on the egress system.

These data can be better appreciated plotted in
graphs, as shown in Figure 14. Here one can see the ef-
fects of the arrival traffic from each floor on the network

performance measures. The blocking probability p(c)
rises very quickly on these equivalent-width stairwells.
The only unknown variable is where the bottleneck will
occur. The bottleneck increases in the upper levels, un-
der heavy traffic. The bottleneck increases in lower lev-
els, under light traffic. Under high traffic, the through-
put rapidly saturates to the system capacity (around 1.0
ped/s), and the number of users trapped between floors
rises quickly to the stairwell capacity of 51 pedestrians,
and the travel time becomes excessive, around 55 sec-
onds, almost 8 times higher than the 6 seconds spent by
a lone occupant.

6 Summary and Conclusion

In this paper, the scope and importance of M/G/C/C
state dependent queueing networks were examined, and
an effective discrete-event digital simulation model was
presented to model these dynamic traffic flows. Some of
the most universal and significant applications where fi-
nite state dependent M/G/C/C networks occur include
pedestrian and vehicular traffic flows where customers
compete for the limited movement space. The simula-
tion model was validated and characteristics of a single
M/G/C/C state dependent queue were discussed. The
simulation model confirmed the accuracy of the Gener-
alized Expansion Method, an approximation technique
largely used in the analysis and syntheses of finite queue-
ing network systems. The simulation model was also
used to analyze the problem of evacuation of a ten-
story building and the results indicate that the simula-
tion model is an extremely valuable tool when planning
emergency egress for buildings.
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Table 6: Results for 3-node merge topology (λ1 = λ2 = 3.0).
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Table 7: Building simulation results.

λ = 1.000a λ = 0.500b λ = 0.250c λ = 0.125d

Floor 95% CI 95% CI 95% CI 95% CI

10 p(c) 0.10 [ 0.10 ; 0.10 ] 0.00 [ 0.00 ; 0.00 ] 0.00 [ 0.00 ; 0.00 ] 0.00 [ 0.00 ; 0.00 ]
θ 0.90 [ 0.90 ; 0.90 ] 0.50 [ 0.50 ; 0.50 ] 0.25 [ 0.25 ; 0.25 ] 0.12 [ 0.12 ; 0.13 ]
L 43.37 [43.05;43.69] 3.46 [ 3.43 ; 3.49 ] 1.51 [ 1.51 ; 1.52 ] 0.73 [ 0.72 ; 0.73 ]
W 48.33 [47.95;48.70] 6.92 [ 6.88 ; 6.97 ] 6.04 [ 6.03 ; 6.04 ] 5.84 [ 5.84 ; 5.84 ]

9 p(c) 0.67 [ 0.67 ; 0.67 ] 0.18 [ 0.17 ; 0.18 ] 0.00 [ 0.00 ; 0.00 ] 0.00 [ 0.00 ; 0.00 ]
θ 0.92 [ 0.91 ; 0.92 ] 0.90 [ 0.90 ; 0.90 ] 0.50 [ 0.50 ; 0.50 ] 0.25 [ 0.25 ; 0.25 ]
L 50.83 [50.83;50.84] 44.55 [44.23;44.87] 3.26 [ 3.25 ; 3.27 ] 1.51 [ 1.50 ; 1.51 ]
W 55.53 [55.48;55.57] 49.48 [49.12;49.85] 6.51 [ 6.51 ; 6.52 ] 6.03 [ 6.03 ; 6.04 ]

8 p(c) 0.66 [ 0.66 ; 0.66 ] 0.59 [ 0.59 ; 0.60 ] 0.00 [ 0.00 ; 0.00 ] 0.00 [ 0.00 ; 0.00 ]
θ 0.92 [ 0.92 ; 0.92 ] 0.92 [ 0.92 ; 0.92 ] 0.75 [ 0.75 ; 0.75 ] 0.37 [ 0.37 ; 0.38 ]
L 50.86 [50.85;50.86] 50.72 [50.70;50.73] 6.48 [ 6.42 ; 6.55 ] 2.34 [ 2.33 ; 2.35 ]
W 55.22 [55.19;55.24] 55.39 [55.35;55.42] 8.65 [ 8.57 ; 8.72 ] 6.26 [ 6.25 ; 6.26 ]

7 p(c) 0.65 [ 0.65 ; 0.66 ] 0.59 [ 0.58 ; 0.59 ] 0.29 [ 0.28 ; 0.29 ] 0.00 [ 0.00 ; 0.00 ]
θ 0.92 [ 0.92 ; 0.92 ] 0.92 [ 0.92 ; 0.92 ] 0.91 [ 0.90 ; 0.91 ] 0.50 [ 0.50 ; 0.50 ]
L 50.85 [50.85;50.86] 50.79 [50.78;50.81] 46.02 [45.83;46.21] 3.25 [ 3.24 ; 3.26 ]
W 55.06 [55.04;55.08] 55.15 [55.13;55.17] 50.85 [50.64;51.07] 6.51 [ 6.50 ; 6.51 ]

6 p(c) 0.64 [ 0.64 ; 0.64 ] 0.57 [ 0.57 ; 0.58 ] 0.54 [ 0.54 ; 0.54 ] 0.00 [ 0.00 ; 0.00 ]
θ 0.93 [ 0.92 ; 0.93 ] 0.92 [ 0.92 ; 0.92 ] 0.92 [ 0.92 ; 0.92 ] 0.62 [ 0.62 ; 0.63 ]
L 50.86 [50.85;50.87] 50.78 [50.76;50.79] 50.41 [50.38;50.44] 4.25 [ 4.23 ; 4.26 ]
W 54.98 [54.96;55.00] 54.97 [54.94;54.99] 54.95 [54.91;54.99] 6.80 [ 6.80 ; 6.81 ]

5 p(c) 0.63 [ 0.62 ; 0.63 ] 0.56 [ 0.55 ; 0.56 ] 0.52 [ 0.52 ; 0.53 ] 0.00 [ 0.00 ; 0.00 ]
θ 0.93 [ 0.93 ; 0.93 ] 0.93 [ 0.92 ; 0.93 ] 0.92 [ 0.92 ; 0.92 ] 0.75 [ 0.75 ; 0.75 ]
L 50.86 [50.86;50.87] 50.79 [50.78;50.81] 50.63 [50.62;50.65] 5.36 [ 5.33 ; 5.38 ]
W 54.93 [54.91;54.95] 54.90 [54.87;54.92] 54.91 [54.88;54.94] 7.16 [ 7.15 ; 7.17 ]

4 p(c) 0.61 [ 0.61 ; 0.61 ] 0.53 [ 0.53 ; 0.54 ] 0.51 [ 0.50 ; 0.51 ] 0.00 [ 0.00 ; 0.00 ]
θ 0.93 [ 0.93 ; 0.93 ] 0.93 [ 0.93 ; 0.93 ] 0.92 [ 0.92 ; 0.92 ] 0.87 [ 0.87 ; 0.87 ]
L 50.86 [50.86;50.87] 50.78 [50.76;50.79] 50.65 [50.62;50.68] 11.22 [10.70;11.74]
W 54.89 [54.88;54.90] 54.81 [54.78;54.83] 54.77 [54.73;54.81] 12.87 [12.29;13.44]

3 p(c) 0.59 [ 0.59 ; 0.60 ] 0.51 [ 0.50 ; 0.51 ] 0.48 [ 0.47 ; 0.48 ] 0.34 [ 0.32 ; 0.36 ]
θ 0.93 [ 0.93 ; 0.93 ] 0.93 [ 0.93 ; 0.93 ] 0.93 [ 0.93 ; 0.93 ] 0.93 [ 0.93 ; 0.94 ]
L 50.86 [50.85;50.87] 50.79 [50.78;50.80] 50.62 [50.59;50.65] 40.26 [37.75;42.77]
W 54.84 [54.83;54.85] 54.77 [54.76;54.79] 54.62 [54.57;54.67] 43.27 [40.45;46.08]

2 p(c) 0.58 [ 0.58 ; 0.58 ] 0.48 [ 0.47 ; 0.48 ] 0.43 [ 0.43 ; 0.44 ] 0.40 [ 0.37 ; 0.43 ]
θ 0.93 [ 0.93 ; 0.93 ] 0.93 [ 0.93 ; 0.93 ] 0.93 [ 0.93 ; 0.93 ] 0.96 [ 0.95 ; 0.97 ]
L 50.86 [50.86;50.87] 50.79 [50.77;50.80] 50.55 [50.44;50.67] 43.16 [40.58;45.74]
W 54.82 [54.80;54.83] 54.72 [54.70;54.74] 54.36 [54.22;54.50] 45.13 [42.13;48.13]

1 p(c) 0.56 [ 0.56 ; 0.56 ] 0.44 [ 0.43 ; 0.44 ] 0.24 [ 0.17 ; 0.31 ] 0.27 [ 0.23 ; 0.31 ]
θ 0.93 [ 0.93 ; 0.93 ] 0.94 [ 0.93 ; 0.94 ] 1.03 [ 0.99 ; 1.08 ] 1.02 [ 0.99 ; 1.04 ]
L 50.85 [50.83;50.86] 50.28 [49.83;50.73] 34.44 [27.25;41.62] 35.73 [31.61;39.85]
W 54.64 [54.62;54.66] 53.64 [52.84;54.43] 35.98 [27.87;44.09] 35.80 [31.23;40.37]

CPU: a1 h 40 min 50 sec b1 h 20 min 40 sec c48 min 00 sec d9 min 42 sec
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Figure 14: Building simulation results.
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