
Solving to Optimality the Uncapacitated

Fixed-Charge Network Flow Problem

F.R.B. Cruz a,1, J. MacGregor Smith b,2, and G.R. Mateus c,3,4

aPrograma de Pós-Graduação em Engenharia Elétrica, Pontif́ıcia Universidade

Católica de Minas Gerais, 30535-610 - Belo Horizonte - MG, Brazil

bDepartment of Mechanical and Industrial Engineering, The University of

Massachusetts, Amherst, MA 01003, USA

cDepartamento de Ciência da Computação, Universidade Federal de Minas

Gerais, 31270-010 - Belo Horizonte - MG, Brazil

Scope and Purpose

Given a directed network, the uncapacitated fixed-charge network flow problem is
to find a minimum-cost arc combination that provides flows from the supply nodes
to the demand nodes. Associated with all arcs are two costs: the fixed charge of
using the arc and the variable cost depending on the amount of flow the arc ac-
tually carries. This generic model has applications for problems of distribution,
transportation, communication, and routing. In this paper, we use the well-known
branch-and-bound algorithm to exactly solve the problem. We develop a computa-
tionally efficient branching strategy and a reduction technique based on Lagrangean
Relaxation. We also propose a simplification of the branch-and-bound algorithm.
As a result of these strategic improvements, we achieve a significant speed-up in the
solution process.

Abstract

We present the uncapacitated fixed-charge network flow problem and two mathe-
matical programming formulations. We use an exact approach to solve the problem,
the well-known branch-and-bound algorithm. We derive bounds for the algorithm
using Lagrangean Relaxation and also propose an efficient branching strategy which
is based on an important property of the optimal solution. We also use a Lagrangean
Relaxation of the problem to develop a new reduction test. The practical efficiency
of all the procedures is demonstrated through a comprehensive set of computational
experiments.

Preprint submitted to Elsevier 14 August 1997

1 F.R.B. Cruz received his Doctor degree from Universidade Federal de Minas

Gerais, Belo Horizonte, Brazil. His research areas include network optimization
and operations research. During this work, he was a Visiting Research Scholar in
the Department of Mechanical and Industrial Engineering at the University of Mas-
sachusetts at Amherst, USA, supported by the Conselho Nacional de Desenvolvi-

mento Cient́ıfico e Tecnológico (CNPq), Brazil, under grant CNPq 201046/94-6.
Currently, he is a Visiting Associate Professor in the Programa de Pós-Graduação

em Engenharia Elétrica at Pontif́ıcia Universidade Católica de Minas Gerais, Belo
Horizonte, Brazil, supported by FAPEMIG, Brazil, under grant TEC-1927/96. E-
mail: fcruz@dcc.ufmg.br.
2 J. MacGregor Smith received his Ph.D. degree from University of Illinois at
Urbana-Champaign, Illinois, USA. His research areas include combinatorial opti-
mization, mathematical programming, and applied operations research. Currently,
he is a Professor in the Department of Mechanical and Industrial Engineering at the
University of Massachusetts at Amherst, USA. E-mail: jmsmith@ecs.umass.edu.
3 G.R. Mateus received his Doctor degree in 1986 from Universidade Federal do Rio

de Janeiro, Rio de Janeiro, Brazil. His research areas include network optimization
and operations research. Currently, he is a Full Professor in the Departamento de

Ciência da Computação, at Universidade Federal de Minas Gerais, Belo Horizonte,
Brazil. E-mail: mateus@dcc.ufmg.br.
4 To whom all correspondences should be addressed. Address: Caixa Postal 702,
Departamento de Ciência da Computação - UFMG, 30123-970 - Belo Horizonte -
MG, Brazil.

2

1 Introduction

The uncapacitated fixed-charge network flow (UFNF) problem represents an
important class of mixed-integer programming problems. The problems are
defined on a digraph D = (N,A), where N is the set of nodes and A is the set
of arcs. One of the costs involved is the fixed cost of using an arc to send flow
and the other is a variable cost dependent on the amount of flow sent through
the arc. The objective is to determine a minimum cost arc combination that
provides flows from certain supply nodes to a collection of demand nodes,
possibly using intermediate Steiner or transshipment nodes. A single-supply-
node instance of the problem is depicted in Figure 1.

Figure 1

This is clearly an NP-hard optimization problem since it generalizes the
Steiner problem in graphs, among others, and its NP-hardness was shown
in [1]. This generic model has applications for problems of distribution, trans-
portation and communication. It is also useful for certain routing problems
where the network is already in existence. Besides being an important model
by itself, several special cases of the UFNF problem are of substantial interest.
A simple way to obtain special cases is to restrict the network structure, e.g.

as in the transportation problem.

Numerous exact and approximate solutions for the UFNF problems and their
special cases have been published previously. In [2], an analysis of offshore
natural-gas systems was done with the cost model being simplified including
only fixed costs. In [3], the model studied was even more complex than the
UFNF problem, presenting some additional features. However, only heuris-
tic procedures and local optimization techniques were considered. The special
case without Steiner nodes was treated by [4] and [5]. In the former, an exact
branch-and-bound algorithm combined with Benders cuts was studied, and in
the latter, a set of heuristic procedures based on Lagrangean relaxation tech-
nique was developed. In [6], [7] and [8], some special cases were solved using a
branch-and-bound algorithm with fractional cutting-planes. In [9], they intro-
duced a new family of dicut collection inequalities for the general model using
multicommodity extended formulations. Previously in [10], we have developed
ADD and DROP heuristic approaches and in [11], we have implemented sim-
plified branch-and-bound algorithms to solve the UFNF problem.

In this paper, we are tackling the problem exactly by means of a branch-and-
bound algorithm. This enumerative approach is known to be computationally
inefficient because of its combinatorial explosive behavior. Although it is often
only acceptable for small problems instances, this approach is the one of the

3

most preferred to solve exactly NP-hard problems. However, it is also know
that the use of efficient branching strategies and reduction techniques can
significantly enlarge the size of the manageable instances. In this sense, the
focus of this paper is to develop new criteria to choose the branching variables,
to derive a new reduction test and to propose a simplification in the branch-
and-bound algorithm. Of course, we are aware that there always will be cases
where an exact approach may be impossible no matter what computer systems
or algorithms are utilized.

The paper is outlined as follows. In Section 2, the UFNF problem is presented
in a mixed-integer mathematical programming formulation. An alternative
formulation is derived. In Section 3, we shall discuss the solution methods
we are using, the branching strategy we propose and the reduction algorithm
we develop. All algorithms were implemented and our experimental results
are reported in Section 4. Section 5 closes this work with final remarks, open
questions, and some possible extensions.

2 Problem Formulation

A typical mixed-integer mathematical programming formulation for the prob-
lem, over digraph D = (N,A) is:

(M):

min
∑

(i,j)∈A

(cijxij + fijyij) , (1)

s.t.:

∑

j∈δ−(i)

xji −
∑

j∈δ+(i)

xij =







































−
∑

k∈D

dk,

0,

di,

i = s,

∀i ∈ T,

∀i ∈ D,

(2)

xij ≤





∑

k∈D

dk



 yij, ∀(i, j) ∈ A, (3)

xij ≥ 0, ∀(i, j) ∈ A, (4)

yij ∈ {0, 1}, ∀(i, j) ∈ A, (5)

where N is the set of nodes, A is the set of arcs, δ+(i) = {j|(i, j) ∈ A},

4

δ−(i) = {j|(j, i) ∈ A}, s ∈ N is the source node, T ⊆ N is the set of
transshipment or Steiner nodes, D ⊆ N is the set of demand nodes, di is
the demand of node i, fij is the fixed cost of having flow on arc (i, j), and
cij is the variable cost per unit of flow on arc (i, j). It is noticeable that
the only difference between the UFNF problem and the uncapacitated linear
minimum-cost network flow (MCNF) problem is that, in the former, if the flow
is positive, i.e. xij > 0, then its cost is cijxij + fij. Constraints 3 ensure that
characteristic and that simple difference transforms the polynomially solvable
MCNF problem into the NP-hard UFNF problem.

We now postulate an assumption about the UFNF problem. The fixed cost
fij must be non-negative for all arcs (i, j), since otherwise one could set yij

to 1 and eliminate it from the problem. On the other hand, the variable cost
cij is unrestricted. However, to ensure that the objective function is bounded
from below, it is assumed that there are no negative-cost directed cycles with
respect to cij.

During this paper, we also consider an alternative and equivalent formulation
for the UFNF problem. Therefore, let us define K0 ⊆ A as the set of arcs that
have been rejected, yij = 0, K1 ⊆ A as the set of arcs that have been selected,
yij = 1, and K = A \K0 \K1 as the set of arcs in an undefined status. The
UFNF problem can be alternatively represented by the following formulation:

(M ′):

min
∑

(i,j)∈A

(cijxij + fijyij) , (6)

s.t.:

∑

j∈δ−(i)

xji −
∑

j∈δ+(i)

xij =







































−
∑

k∈D

dk,

0,

di,

i = s,

∀i ∈ T,

∀i ∈ D,

(7)

xij ≤





∑

k∈D

dk



 yij, ∀(i, j) ∈ K, (8)

xij ≥ 0, ∀(i, j) ∈ K, (9)

yij ∈ {0, 1}, ∀(i, j) ∈ K, (10)

xij ≤
∑

k∈D

dk, ∀(i, j) ∈ K1, (11)

5

xij ≥ 0, ∀(i, j) ∈ K1, (12)

yij = 1, ∀(i, j) ∈ K1, (13)

xij = 0, ∀(i, j) ∈ K0, (14)

yij = 0, ∀(i, j) ∈ K0. (15)

The above formulation is more convenient than the previous. First, because
it is immediate that the model (M ′) represents exactly the same problem
as model (M) if K1 = K0 = ∅. The model (M ′) also can represent each of
the subproblems generated by the branch-and-bound algorithm in the search
tree. Finally, it can even represent the problem after the application of our
reduction test.

3 Solution Method

We need to employ an enumerative scheme if we intend to solve exactly
this NP-hard optimization problem. Such an enumeration algorithm is fre-
quently called branch-and-bound or implicit enumeration. We use the recursive
branch-and-bound algorithm presented below in which the depth-first search
strategy is in use.

6

algorithm Solve(M ′)
/* bounding */

compute lower bound L
compute upper bound U and update UBEST

GAP← U−L
U

/* branching */
if L > UBEST then

write ‘Infeasible node reached.’
else if GAP ≤ ε then

write ‘Optimum reached.’
else if K = ∅ then

write ‘Leaf reached.’
else

(i, j)← Chosen Arc ∗
K ← K \ (i, j); K1 ← K1 ∪ (i, j)
Solve(M ′)
K1 ← K1 \ (i, j); K0 ← K0 ∪ (i, j)
Solve(M ′)
K0 ← K0 \ (i, j); K ← K ∪ (i, j)

end if
end if
end if

end algorithm

Now we present the flowchart version of the algorithm. In the description,
Γ is a collection of problems {(M ′)k}, each of which is of the form Zk

M ′ =
min{

∑

(i,j)∈A(cijxij + fijyij) s.t.: (7)–(15), K0 = Kk
0 ⊆ A,K1 = Kk

1 ⊆ A,K =
Kk = A \ Kk

0 \ Kk
1}. Associated with each problem in Γ are a lower bound

Lk ≤ Zk
M ′ and an upper bound Uk ≥ Zk

M ′ . The flowchart of our algorithm
we use is depicted in Figure 2 which mirrors the classic branch-and-bound
algorithm presented in [12]. To transform the recursive algorithm above into
this non-recursive flowchart, we applied the well known procedure, described
in [13]. The policy we use to select a problem (M ′)i from the list Γ is last-in-

first-out which yields a depth-first search strategy. An important property of
this search is that the maximum length of the list Γ is kept as short as possible
with memory economy. Further details on this strategy as well as others can be
found in [12]. If a solution does exist, the algorithm in Figure 2 always solves it
because it can enumerate implicitly all possibilities. For further details, i.e. a
proof of correctness, the reader is encouraged to check on [14]. The algorithm in
its virgin form is computationally inefficient because of its exponential worst-
case time complexity, O(2|A|), and it is only acceptable for small sized problem
instances. However, if we provide tighter lower and upper bounds, an efficient
branching strategy, and effective reduction techniques we can significantly
enlarge the size of manageable problem instances. We now describe how to
compute the tighter bounds Lk and Uk required by the algorithm along with

7

a new strategy to select an arc (i, j) such that (i, j) ∈ Kk, see Figure 2, and
finally a new reduction technique for the problem.

Figure 2

3.1 Lower Bounds

The use of a linear programming (LP) relaxation is an obvious way to get
lower bounds for the problem but we are going to use a Lagrangean relaxation
approach. As noted in [15], applying Lagrangean relaxation to problems such
as the UFNF problem, the lower bounds obtained are no better than the LP
relaxation lower bounds. However, as we shall see shortly, it will be possible
to derive a heuristic based on Lagrangean relaxation that will provide very
tight upper bounds. Besides, the use of the Lagrangean relaxation has been
extensively applied to important subproblems of the UFNF problem with suc-
cessful results. Lagrangean relaxation has been used to solve the distribution
system design problems, [2], the uncapacitated location problem, [16,17], and
telecommunication network oriented problems, [18,19].

Dropping the capacity constraints (8) by means of dual variables wij ≥ 0,
∀(i, j) ∈ K, the following Lagrangean function results:

L(x,y;w) =
∑

(i,j)∈A

(cijxij + fijyij) +
∑

(i,j)∈K

wij



xij −





∑

k∈D

dk



 yij



 . (16)

Consequently, the Lagrangean relaxation of model (M ′) may be written:

(LR
w
):

L(w) = min{L(x,y;w) s.t.: (7), (9)–(15)w ≥ 0}. (17)

For any feasible Lagrangean multiplier vector, w ≥ 0, the Lagrangean relax-
ation optimal solution is a lower bound for the original problem because the
quantity

∑

(i,j)∈K wij[xij
∗− (

∑

k∈D dk)yij
∗] is always non-positive, [15], suppos-

ing that L(w) = L(x∗,y∗;w). Thus, the computation of the lower bounds
reduces to solving two easy (polynomial) subproblems, a MCNF problem in
x and a set-selection problem in y:

8

(LR1):

min
∑

(i,j)∈A

Cijxij, (18)

s.t.:

∑

j∈δ−(i)

xji −
∑

j∈δ+(i)

xij =







































−
∑

k∈D

dk,

0,

di,

i = s,

∀i ∈ T,

∀i ∈ D,

(19)

xij ≥ 0, ∀(i, j) ∈ K, (20)

xij ≤
∑

k∈D

dk, ∀(i, j) ∈ K1, (21)

xij ≥ 0, ∀(i, j) ∈ K1, (22)

xij = 0, ∀(i, j) ∈ K0, (23)

where

Cij =











cij + wij,

cij,

∀(i, j) ∈ K,

∀(i, j) ∈ A \K.
(24)

(LR2):

min
∑

(i,j)∈A

Fijyij, (25)

s.t.:

yij ∈ {0, 1}, ∀(i, j) ∈ K, (26)

yij = 1, ∀(i, j) ∈ K1, (27)

yij = 0, ∀(i, j) ∈ K0, (28)

where

Fij =











fij − wij(
∑

k∈D dk),

fij,

∀(i, j) ∈ K,

∀(i, j) ∈ A \K.
(29)

9

The subproblem in x is solvable with polynomial time complexity, O(|N ||A|),
as shown by [20], by use of a shortest simple paths algorithm for arbitrary
costs developed by [21], since, as our initial assumption, there are no negative
cost circuits 1 . The problem in y is also solvable with polynomial complexity,
O(|A|), as all we need to do is to set to 1 all those yij’s for which Fij < 0.

The traditional way of improving the lower bounds obtained by Lagrangean
relaxation procedures is to apply a subgradient optimization algorithm, e.g.

the method was outlined in [22]. In this paper, we initialize the Lagrangean
multipliers w with 0 only in the first call of the algorithm. All subsequent calls
should not reinitialize them because there is no reason the last previously used
vector would not be used as the starting point w0.

3.2 Upper Bounds

We propose a simple and efficient way of getting upper bounds. The flows ob-
tained after solving the (LR1) are feasible in the primal problem because they
are satisfying the demand requirements. The only additional work necessary
to be done is to compute the cost of these flows using the original costs cij

and adding to it the overhead costs fij for each arc that supports flows.

3.3 Branching Strategies

The strategy of choosing the branching variable is fundamental to the per-
formance of the branch-and-bound algorithm. The use of clever choices of
branching variables coupled with the use of good lower and upper bounds can
reduce significantly the number of nodes explicitly examined in the search tree
with consequent reduction in the processing time. We are using two different
strategies in this work. The simplest way is to choose the first free arc found
accordingly to the procedure shown below.

procedure Chosen Arc First Free
for all (i, j) ∈ A do

if (i, j) ∈ K then
return (i, j)

end if
end for
return FAIL

end procedure

1 The shortest simple path problem with negative cost circuits is NP-hard, as
shown by [20].

10

In Figure 3, we present the flowchart for the algorithm which has a worst-case
time complexity O(|N |2), as the command “if(i, j) ∈ Kthen” can be made
O(1).

Figure 3

However, the optimal solution of the UFNF problem as formulated in model
(M) has an important property that will be very helpful in improving the
performance of the branch-and-bound algorithms. The property is stated by
the following Theorem:

Theorem 1 If the UFNF problem, model (M), has a finite optimum then

there is an optimum positive flow arc set such that at most one arc enters into

each node.

Proof (by contradiction): Let us suppose that Theorem 1 is not satisfied

by any optimal solution and that node m has two entering arcs say (k,m)
and (l,m). There must be a set of arcs forming a directed path without cycles

from the supply node to node m passing through node k, i.e. using arc (k,m),
called Pk. There is also a directed path without cycles using arc (l,m), called

Pl. Without loss of generality, let us suppose that

∑

(i,j)∈Pk

cij ≤
∑

(i,j)∈Pl

cij.

Thus, by disabling arc (l,m) and transferring its flow, xlm, from path Pl to

path Pk, there will be at least the following reduction in the objective function:





∑

(i,j)∈Pl

cij −
∑

(i,j)∈Pk

cij



 xij + flm ≥ 0.

The resulting solution is at least as good as the original and satisfies Theorem 1

contradicting our initial assumption.

Thus, there is a possibly a much better way to choose the first free arc found
that does not violate Theorem 1 and this is described in the following proce-
dure:

11

procedure Chosen Arc No Cycling

/* compute set of reached nodes R */
R← {s}
for all (i, j) ∈ A do

if (i, j) ∈ K1 then
R← R ∪ {i} ∪ {j}

end if
end for

/* search new eligible free arc */
for all (i, j) ∈ A do

if (i, j) ∈ K and i ∈ R and j 6∈ R then
return (i, j)

end if
end for
return FAIL

end procedure

The flowchart of the improved branching strategy is illustrated in Figure 4.
The last command “for all” in the Choose No Cycling Arc procedure is the
most expensive operation finishing after O(|A|) iterations in the worst case.
Its internal command “if (i, j) ∈ K and i ∈ R and j 6∈ R then” can be made
O(1) resulting in an O(|A|) overall worst-case time complexity, surprisingly
the same as in the Choose First Free Arc procedure. Thus, the latter strategy
will perform not worse than the former.

Figure 4

3.4 Reducing the Problem

We now present our algorithm to reduce the problem. The main algorithm
has to be modified. When used, the reduction test must be applied just before
each arc selection.

The new lower bound that would result from forcing the arcs in or out of the
solution can be easily estimated from the Lagrangean relaxation. If the lower
bound resulting from imposing some condition to the Lagrangean relaxation is
greater than the best upper bound, then the condition in consideration cannot
be satisfied in the optimum. This idea is inspired by the reduction procedures
developed in [23] to solve the p-median problem, with very good results in
practice. In [23], some terms of the corresponding Lagrangean function have

12

been used to estimate the increment in the lower bound under the imposed
condition. We propose the reduction procedure below, that uses estimated
lower bounds computed by means of a complete resolution of the Lagrangean
dual problem, L(w), but without subgradient optimizations.

procedure Reduce(M ′)
/* initialize set of arcs recently fixed */

F ← ∅
/* proceed with reduction */

for all (i, j) ∈ A do
if (i, j) ∈ K then

K ← K \ (i, j)
K1 ← K1 ∪ (i, j)
if L(w) > UBEST then

K1 ← K1 \ (i, j)
K0 ← K0 ∪ (i, j)
F ← F ∪ (i, j)

else
K1 ← K1 \ (i, j)
K0 ← K0 ∪ (i, j)
if L(w) > UBEST then

K0 ← K0 \ (i, j)
K1 ← K1 ∪ (i, j)
F ← F ∪ (i, j)

else
K0 ← K0 \ (i, j)
K ← K ∪ (i, j)

end if
end if

end if
end for

end procedure

The flowchart of the reduction test procedure is depicted in Figure 5. The
reduction procedure stops after the examination of each arc exactly once,
O(|A|). Some variations are immediate, e.g. passing through each arc twice,
and so on. Each iteration involves at most two lower bound calculations which
are each O(|N ||A|). We remind the reader that no subgradient optimiza-
tion is performed here. Additionally, at most four set insertions and deletions
are involved which are O(|A|), but the computation of function L(w) dom-
inates. Therefore, the procedure will run with a worst-case time complexity
O(|N ||A|2).

Figure 5

13

As a final remark, the O(|A|2) procedure presented below must be activated
in the back-tracking stage in order to reset the problem (M ′) to its status
just before the reduction. This procedure should be applied after the second
recursive call in the main algorithm. Note that in the flowchart version of the
main algorithm, Figure 2, there is no need to apply such a procedure. Once a
problem (M ′)i has created its children, (M ′)2i+1 and (M ′)2i+2, such a problem
will not be used again and it does not have to be reset.

procedure Unreduce(M ′)
for all (i, j) ∈ A do

if (i, j) ∈ F then
K ← K ∪ (i, j)
if (i, j) ∈ K0 then

K0 ← K0 \ (i, j)
else

K1 ← K1 \ (i, j)
end if

end if
end for

end procedure

4 Experimental Results

All tests presented here were performed in a DECstation 3100 running the
operating system ULTRIX V4.2A (Rev. 47) and a preliminary version of the
algorithm coded in the C programming language available from the authors
upon request. The parameter ε in the branch-and-bound algorithm was set
to 10−6 which is close to the precision offered by the compiler used when
representing real numbers under floating point data type.

All test problems came from Euclidean graphs randomly generated using the
scheme outlined in [24] and extensively used by others, e.g. [25], [26], and
[27], for the Steiner problem in graphs. The arc costs Ωij were defined as the
Euclidean distance between the extremities i and j. The problems presented
in Table 1 were generated by a code in C developed by us. Problems presented
in Table 2 are those solved in [26] and [27], made available to us by Beasley
[28].

The demand was considered unitary for all demand nodes. The costs fij and
cij were derived from the distances Ωij using the constant factors 1 and 10.
For each graph, three different instances with different fij/cij ratios were con-
sidered. The problems with ratio 1 : 10 form a class of problems “closer” to

14

the MCNF problem which is polynomially solvable. On the other hand, the
problems with ratio 10 : 1 form a class of problems “closer” to the Steiner

problem which is NP-hard. However, both classes are still NP-hard. For each
test instance, we present the following results for the initial node in the search
tree: the best upper bound, the gap, and the CPU time in seconds excluding
all I/O operations and considering that only a single process was running on
the machine. For the whole tree search, unless we had time overflow, 20,000
seconds, we present the optimal solution, the number of nodes and the CPU
time in seconds spent until the optimum was reached for four combinations:
(i) using the branching strategy of Figure 3, (ii) using the improved branching
strategy of Figure 4, (iii) combining the latter strategy with the reduction
technique presented in Figure 5, and (iv) using the third combination with
the exclusion of the subgradient optimization algorithm after the first node
on the search tree.

Table 1

Table 2

From the results presented in Table 1 and in Table 2, it may be seen that
although offering poor lower bounds, mainly in those problems “closer” to
Steiner problems, the Lagrangean relaxation developed here is a very good
heuristic for solving the UFNF problem. Only in one problem in Table 2, was
the optimum not reached at the first node of the search tree. Of course, the
larger and more dense the instances are, the less likely the optimum will be
reached in the first node.

The results also indicate how positively the improved branching strategy af-
fects the CPU time. The reduction in the processing time caused by the pro-
cedure observed here will also occur in larger networks. The procedure drops
the number of combinations as it disregards all infeasible solutions involving
cycles. The impact of the the reduction algorithm is remarkable. In sparse
instances, the reduction algorithm kept the number of explored nodes sur-
prisingly low. The algorithm was able to solve quickly dense networks if the
number of demand nodes was low and the problems were closer to the MCNF
problems. The problems closer to Steiner problems were really much harder.

An interesting issue emerged during this work was the effect of the subsequent
subgradient optimizations. It was noted in practice that small increments were
obtained in the lower bounds by the subgradient optimization algorithm after
the tree search first node if the Lagrangean multipliers were not reinitialized.
After reducing and fixing variables, the remaining Lagrangean multipliers are
still feasible. Besides, the multipliers are already very good and the lower
bounds obtainable from them are also very good. Therefore, we decided to ap-

15

Table 1. Computational Results for Random Networks (|N | = 16 and |N | = 32)

Tree search
First node Choose First Free Arc Choose No Cycling Arc Plus Reduction Plus Simplification

|N | |A| |D|
fij

Ωij

cij

Ωij
UBEST GAP(%) CPU(s) UOPT Nodes CPU(s) Nodes CPU(s) Nodes CPU(s) Nodes CPU(s)

16 30 4 1 10 5,972 1.50 0.20 5,972 301 23.00 35 2.80 1 0.03 1 0.03
1 1 806 11.00 0.20 806 301 23.00 35 2.70 1 0.03 1 0.03
10 1 2,894 31.00 0.22 2,894 301 25.00 35 3.00 1 0.03 1 0.03

8 1 10 12,250 2.10 0.21 12,250 819 68.00 35 2.90 1 0.04 1 0.04
1 1 1,585 16.00 0.21 1,585 819 68.00 35 2.90 1 0.04 1 0.04
10 1 5,185 49.00 0.22 5,185 819 73.00 35 3.20 1 0.04 1 0.04

60 4 1 10 4,066 4.20 0.52 4,066 9,445 1,900.00 85 19.00 1 0.12 1 0.12
1 1 646 26.00 0.53 646 18,941 3,700.00 259 61.00 31 16.00 57 5.10
10 1 2,400 45.00 0.59 2,400 ** ** 557 150.00 43 23.00 57 5.50

32 62 4 1 10 7,645 4.00 0.64 7,645 ** ** 905 240.00 1 0.18 1 0.18
1 1 1,201 25.00 0.65 1,201 ** ** 905 230.00 1 0.18 1 0.18
10 1 5,566 55.00 0.72 5,566 ** ** 905 250.00 1 0.17 1 0.18

8 1 10 12,349 3.60 0.66 12,349 ** ** 4,261 1,100.00 1 0.19 1 0.20
1 1 1,765 25.00 0.64 1,765 ** ** 4,261 1,100.00 1 0.19 1 0.20
10 1 7,066 63.00 0.67 7,066 ** ** 4,261 1,100.00 1 0.20 1 0.20

16 1 10 30,093 2.60 0.69 30,093 ** ** 2,255 640.00 1 0.21 1 0.21
1 1 3,885 20.00 0.69 3,885 ** ** 2,255 641.00 1 0.21 1 0.21
10 1 12,642 63.00 0.73 12,642 ** ** 2,255 670.00 1 0.21 1 0.21

31 1 10 62,499 2.20 0.80 62,499 ** ** 61 22.00 1 0.24 1 0.24
1 1 7,644 18.00 0.77 7,644 ** ** 65 22.00 1 0.24 1 0.25
10 1 21,585 63.00 0.82 21,585 ** ** 65 23.00 1 0.25 1 0.25

124 4 1 10 6,891 3.20 1.90 6,891 ** ** 2,255 2,400.00 9 18.00 9 4.00
1 1 1,026 21.00 1.90 1,016 ** ** ** ** 165 340.00 269 110.00
10 1 3,878 41.00 2.30 3,878 ** ** ** ** 597 1,200.00 969 360.00

8 1 10 14,484 3.00 2.00 14,484 ** ** ** ** 15 35.00 15 9.30
1 1 1,986 21.00 2.00 ** ** ** ** ** ** ** ** **
10 1 6,845 54.00 2.10 ** ** ** ** ** ** ** ** **

16 1 10 25,023 2.30 2.10 25,023 ** ** ** ** 19 46.00 19 13.00
1 1 3,147 18.00 2.70 ** ** ** ** ** ** ** ** **
10 1 8,964 56.00 2.20 ** ** ** ** ** ** ** ** **

248 4 1 10 2,821 5.90 6.40 2,821 ** ** ** ** 63 420.00 63 83.00
1 1 468 31.00 6.40 468 ** ** ** ** 337 2,100.00 367 360.00
10 1 1,926 53.00 6.80 ** ** ** ** ** ** ** ** **

8 1 10 5,200 6.80 6.40 5,200 ** ** ** ** 679 4,900.00 679 1,100.00
1 1 861 37.00 6.60 ** ** ** ** ** ** ** ** **
10 1 3,696 71.00 6.60 ** ** ** ** ** ** ** ** **

∗∗Not available (time overflow)

16

Table 2. Computational Results for Beasley’s Networks [28] (
fij

Ωij
= 1 and

cij

Ωij
= 10)

Tree search

First node Choose First Free Arc Choose No Cycling Arc Plus Reduction Plus Simplification

Problem |N | |A| |D| UBEST GAP(%) CPU(s) UOPT Nodes CPU(s) Nodes CPU(s) Nodes CPU(s) Nodes CPU(s)

B-1 50 126 8 1,222 5.60 2.30 1,222 ** ** ** ** 1 1.10 1 1.10

2 12 2,520 2.80 2.30 2,520 ** ** ** ** 1 3.20 1 2.70

3 24 5,017 3.10 2.40 5,012 ** ** ** ** 495 1,300.00 281 170.00

4 200 8 1,237 5.10 4.90 ** ** ** ** ** ** ** ** **

5 12 1,095 5.20 4.80 1,095 ** ** ** ** 1,676 8,800.00 1,799 1,800.00

6 24 3,208 4.20 5.90 ** ** ** ** ** ** ** ** **

7 75 188 12 2,943 3.40 4.80 2,943 ** ** ** ** 1 4.40 1 4.50

8 18 2,657 3.90 5.00 2,657 ** ** ** ** 9 55.00 7 16.00

9 37 5,874 3.70 5.20 5,874 ** ** ** ** 5 31.00 5 12.00

10 300 12 2,053 5.20 11.00 ** ** ** ** ** ** ** ** **

11 18 3,987 2.70 11.00 3,987 ** ** ** ** 67 1,100.00 61 297.00

12 37 6,948 3.00 12.00 ** ** ** ** ** ** ** ** **

13 100 250 16 4,432 3.70 9.30 4,432 ** ** ** ** ** ** 6,517 19,000.00

14 24 9,117 2.60 9.50 ** ** ** ** ** ** ** ** **

15 49 11,383 2.90 9.40 11,383 ** ** ** ** ** ** 1,923 4,800.00

16 400 16 3,942 3.50 24.00 ** ** ** ** ** ** ** ** **

17 24 5,193 2.40 24.00 ** ** ** ** ** ** ** ** **

18 49 6,360 4.20 24.00 ** ** ** ** ** ** ** ** **

∗∗Not available (time overflow)

17

ply the subgradient optimization algorithm only once. The results are shown
in the last two columns of Table 1 and Table 2. In some instances, if the sub-
gradient optimization algorithm is used only once, it was possible to observe
small increments in the number of explored nodes. However, in all cases the
decrement in the computation time was considerable.

5 Summary and Conclusions

Exact solutions for the UFNF problem are very difficult since the problem is
NP-hard. Branch-and-bound algorithms are some of the most effective means
for solving these problems, however, they are often acceptable only for small
problem instances because of their exponential running time behavior. We
have proposed a set of supporting algorithmic enhancements that reduce the
computation time consequently enlarging the size of manageable problem in-
stances. We have shown by experiments that our new branching criteria and
our reduction techniques really make faster solutions possible. Additionally,
the ideas behind these supporting procedures are applicable to other simi-
lar problems and subproblems of the UFNF problem. Indeed, we have been
able to extend these ideas to a multi-level network design (MLND) problem.
The MLND problem was introduced in [29] and it is a combination of UFNF
problems and uncapacitated discrete location problems and we have obtained
encouraging results.

Nevertheless, some open questions remain. Would it be possible to develop a
strategy to choose one arc among all free non-cycling arcs instead of choosing
the first available? Would the reduction test be more effective if each arc
were examined more than once? Future work may include investigations of
these questions. Also we may include the development of additional reduction
tests that eliminate arcs and nodes or both from the original problem in a
preprocessing stage, similar to those procedures developed in [30] and [27] for
the Steiner problem in graphs. It is also of interest to investigate how the ideas
developed here could be adapted to algorithms specialized in particular cases
of the UFNF problem, e.g. the fixed charge transportation problem studied
in [6], the Steiner problems in graphs, in [26], or the uncapacitated facility
location problem, in [31].

References

[1] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

18

[2] B. Rothfarb, H. Frank, D.M. Rosembaun, and K. Steiglitz. Optimal design of
offshore natural-gas pipeline systems. Opns Res., 18:992–1020, 1970.

[3] H.P.L. Luna, N. Ziviani, and R.M.B. Cabral. The telephonic switching centre
network problem: Formalization and computational experience. Disc. Appl.

Math., 18:199–210, 1987.

[4] D.S. Hochbaum and A. Segev. Analysis of a flow problem with fixed charges.
Networks, 19:291–312, 1989.

[5] T.L. Magnanti, P. Mireault, and R.T. Wong. Tailoring Benders decomposition
for uncapacitated network design. Math. Programming Study, 26:112–154, 1986.

[6] R.S. Barr, F. Glover, and D. Klingman. A new optimization method for large
scale fixed charge transportation problems. Opns Res., 29:448–463, 1981.

[7] A.V. Cabot and S.S. Erenguc. Some branch-and-bound procedures for fixed-
cost transportation problems. Nav. Res. Logist. Q., 31:145–154, 1984.

[8] U. Suhl. Solving large scale mixed integer programs with fixed charge variables.
Math. Programming, 32:165–182, 1985.

[9] R. L. Rardin and L. A. Wolsey. Valid inequalities and projecting the
multicommodity extended formulation for uncapacitated fixed charge network
flow problems. Eur. J. Opl Res., 71:95–109, 1993.

[10] G.R. Mateus, F.R.B. Cruz, and H.P.L. Luna. An algorithm for hierarchical
network design. Location Science, 2(3):149–164, 1994.

[11] F.R.B. Cruz, J. MacGregor Smith, and G.R. Mateus. A branch-and-bound
algorithm to solve the multi-level network optimization problem. Technical
Report RT030/95, Departamento de Ciência da Computação, UFMG, Belo
Horizonte, Brazil, 1995. (under review with Networks).

[12] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization,
chapter II.4 - General Algorithms, pages 349–382. John Wiley & Sons, New
York, 1988.

[13] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms, chapter 1 -
Introduction, pages 20–24. Computer Science Press, Inc., Potomac, MD, 1978.

[14] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms, chapter 8
- Branch-and-Bound, pages 370–421. Computer Science Press, Inc., Potomac,
MD, 1978.

[15] M.L. Fisher. An application oriented guide to Lagrangean relaxation. Interfaces,
15:10–21, 1985.

[16] R.D. Galvão and L.A. Raggi. A method for solving to optimality uncapacitated
location problems. Annals of Opns Res., 18:225–244, 1989.

[17] G.R. Mateus and J.C.P. Carvalho. O problema de localização não capacitado:
Modelos e algoritmos. Investigación Operativa, 2:297–317, 1992.

19

[18] B. Gavish. Topological design of telecommunication networks - Local access
design methods. Annals of Opns Res., 33:17–71, 1991.

[19] B. Gavish. Topological design of computer communication networks - The
overall design problem. Eur. J. Opl Res., 58:149–172, 1992.

[20] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear Programming and Networks

Flows. John Wiley & Sons, New York, 2nd edition, 1990.

[21] F. Glover, D. Klingman, and N. Phillips. A new polynomially bounded shortest
path algorithm. Opns Res., 33(1):65–73, 1985.

[22] M. Held, P. Wolfe, and H.D. Crowder. Validation of subgradient optimization.
Math. Programming, 6:62–88, 1974.

[23] N. Christofides and J.E. Beasley. A tree search algorithm for the p-median
problem. Eur. J. Opl Res., 10:196–204, 1982.

[24] Y.P. Aneja. An integer linear programming approach to Steiner problem in
graphs. Networks, 10:167–178, 1980.

[25] R.T. Wong. A dual ascent algorithm for the Steiner problem in directed graphs.
Math. Programming, 28:271–287, 1984.

[26] J.E. Beasley. An SST-based algorithm for the Steiner problem in graphs.
Networks, 19:1–16, 1989.

[27] C.W. Duin and A. Volgenant. Reduction tests for the Steiner problem in graphs.
Networks, 19:549–567, 1989.

[28] J.E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal

of the Opl Res. Society, 41(11):1069–1072, 1990.

[29] F.R.B. Cruz, J. MacGregor Smith, and G.R. Mateus. Algorithms for
the multi-level network optimization problem. Technical Report RT007/96,
Departamento de Ciência da Computação, UFMG, Belo Horizonte, Brazil, 1996.
(under review with Eur. J. Opl Res.).

[30] N. Maculan, P. Souza, and A.C. Vejar. An approach for the Steiner problem in
directed graphs. Annals of Opns Res., 33:471–480, 1991.

[31] R.D. Galvão. The use of Lagrangean relaxation in the solution of uncapacitated
facility location problems. Location Science, 1(1):57–79, 1993.

20

k

k
k

k

kk
k

k

k

k k k

k
k

k

k k k
k

k
k k k

kkkk
k

k

k

k

{

{

{

{

{

{
{

{

{

{

{

{

{
{

{

��
��

��
��

k
{

{
...............

.

L
L
L
LL

J
JJ

````̀

C
C
C

�
�
�
��

�����

�
�
�

�
�

�
�

,
,

,
,,

hhhhhh

C
C
C
C

HHHH

Z
Z

ZZ

����

@
@

@
@

@@

@
@

@@

l
l

l
ll

XXXX hhhh

D
D
D
D
D
D

�
�
�� �

�
��

T
T
T

�������

- topological solution

- demand nodes

- Steiner nodes

- supply node

. . . . . . . .
. . . . ...

...
...

..

...............

..........
........

....
....

.........

........

...........

..
..

..
..

..

.......

. . . . . . . . . . . .

...............

........... ..
..
..
..

. . . . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . .
. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . .
........

. . . . . . . . . . . . .

.........
.............

..
..
..
.

..........

...........

........... ...
...

...
..

...
...

...
. ...

...
...

...

............

...........

................
............

..
..
..
.

.........
. . . . . . . . . . . . .

. . . . . .. . . . . . ..........
..........

........ . . . . . . . .. . . . . . . . . .
. . . . . . . .
............

.................

..........

.........................

..
..
..
..
...........

Fig. 1. The Uncapacitated Fixed-charge Network Flow Problem

21



?

Initialization

K0
0 ← ∅; K0

1 ← ∅; K0 ← A

L ← {(M ′)0}; UBEST ← +∞

�����

HHHHH

HHHHH

�����-

N
?

Y
-Termination test

L = ∅ ?

Output

Z0
M ′ ← UBEST

?

Problem Selection and Relaxation

select and delete a problem (M ′)k from L

compute lower bound Lk of (M ′)k

compute upper bound Uk of (M ′)k

�����

HHHHH

HHHHH

�����

N
?

Y
� Lk > UBEST ?

�����

HHHHH

HHHHH

�����

N
?

Y
-

?

Uk < UBEST ?

?

UBEST ← Uk

�����

HHHHH

HHHHH

������

N
?

Y
� Uk−Lk

Uk < ε ?

Pruning

?�

6

Division

select an arc (i, j) such that (i, j) ∈ Kk

K2k+1
0 ← Kk

0 ∪ {(i, j)}; K2k+1
1 ← Kk

1

K2k+1 ← Kk \ {(i, j)}

add problem (M ′)2k+1 to L

K2k+2
0 ← Kk

0 ; K2k+2
1 ← Kk

1 ∪ {(i, j)}

K2k+2 ← Kk \ {(i, j)}

add problem (M ′)2k+2 to L

Fig. 2. Flowchart of the Branch-and-Bound Algorithm

22



?

i← 1; j ← 1

�����

HHHHH

HHHHH

�����

Y
?

N
--

?

arc (i, j) ∈ A?

�����

HHHHH

HHHHH

�����

Y
?

N
-arc (i, j) ∈ Kk?

return arc (i, j)

�

?

j ← j + 1

�����

HHHHH

HHHHH

�����

Y
?

N
� j > |N | ?

?

i← i + 1; j ← 1

�����

HHHHH

HHHHH

�����

Y
?

N
�

6

i > |N | ?

return FAIL

Fig. 3. “Naive” Branching Strategy

23



?

i← 1; j ← 1

�����

HHHHH

HHHHH

�����

Y
?

N
--

?

arc (i, j) ∈ A?

�����

HHHHH

HHHHH

�����

Y
?

N
-arc (i, j) ∈ Kk?

�����

HHHHH

HHHHH

�����

N
?

Y
-

adding
arc (i, j) forms

cycle?

return arc (i, j)

�

?

j ← j + 1

�����

HHHHH

HHHHH

�����

Y
?

N
� j > |N | ?

?

i← i + 1; j ← 1

�����

HHHHH

HHHHH

�����

Y
?

N
�

6

i > |N | ?

return FAIL

Fig. 4. Improved Branching Strategy

24



?

i← 1; j ← 1

�����

HHHHH

HHHHH

�����

Y
?

N
--

?

arc (i, j) ∈ A?

�����

HHHHH

HHHHH

�����

Y
?

N
-arc (i, j) ∈ Kk?

?

set arc (i, j) to 1 and compute L(w)

�����

HHHHH

HHHHH

�����

N
?

Y
- -L(w) > UBEST ? Kk

0 ← Kk
0 ∪ {(i, j)}

?

set arc (i, j) to 0 and compute L(w)

�����

HHHHH

HHHHH

�����

N
?

Y
- -L(w) > UBEST ? Kk

1 ← Kk
1 ∪ {(i, j)}

�

?

j ← j + 1

�����

HHHHH

HHHHH

�����

Y
?

N
� j > |N | ?

?

i← i + 1; j ← 1

�����

HHHHH

HHHHH

�����
Y
-

N
�

6

i > |N | ? return

Fig. 5. Reduction Test Based on Lagrangean Relaxation

25


