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Abstract

In this paper we investigate bootstrap techniques applied to the estimation of the
fractional differential parameter in ARFIMA models, d. The novelty is the focus
on the local bootstrap of the periodogram function. The approach is then applied
to three different semiparametric estimators of d, known from the literature, based
upon the periodogram function. By means of an extensive set of simulation exper-
iments, the bias and mean square errors are quantified for each estimator and the
efficacy of the local bootstrap is stated in terms of low bias, short confidence inter-
vals, and low CPU times. Finally, a real data set is analyzed to demonstrate that
the methodology may be quite effective in solving real problems.
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1 Introduction

The ARFIMA(p, d, q) processes belong to the wide class of long-memory mod-
els, for which the observations are not asymptotically independent (Reisen,
1993; Beran, 1994). Mandelbrot & Ness (1968) were two of the pioneers to
present a model to adjust time series with long dependency. They have in-
troduced the fractional Gaussian noise. In the 80’s, Granger & Joyeux (1980)
and Hosking (1981) showed that the ARFIMA(0, d, 0) process presents the
same behavior as the fractional Gaussian noise, while Geweke & Porter-Hudak
(1983) proved the equivalence of these two stochastic processes.

A crucial open question that concerns the estimation of the fractional differ-
ential parameter, d, is how to construct confidence intervals or to perform
hypothesis testing on the parameter. In this paper we will attach the problem
by means of bootstrap approaches, which are resampling procedures (Efron,
1979) successfully applied over the past years in many areas, including time
series in general (Franco & Souza, 2002) and ARFIMA models in particular
(Franco & Reisen, 2004).

Thus, the main contribution of this paper is to present extensive computational
experiments that show evidence in favor of the bootstrap methods developed
by Souza & Neto (1996) and Paparoditis & Politis (1999), and here applied for
the first time to the estimation of d in long-memory time series. Additionally,
bootstrap confidence intervals for d are examined and an application to a real
data set is discussed in details.

The paper is outlined as follows. In Section 2, long-memory models are de-
scribed along with conveniently selected methods for parameter estimation.
The bootstrap methods are detailed in Section 3. Section 4 is dedicated to
present simulation evidences of the efficacy of the local bootstrap method.
Section 5 presents an application to a real data set. Section 6 concludes the
paper with final remarks and topics for future research in the area.

2 Long-memory Models and Parameter Estimation

2.1 ARFIMA(p, d, q) Models

In accordance to Beran (1994), long-memory phenomenon was known before
stochastic models were even developed. Researchers in several fields had no-
ticed that the correlation between observations sometimes decayed at a slower
rate than for data following classical ARMA models. Later on, as a direct
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result of the pioneer research of Mandelbrot & Ness (1968), self-similar and
long-memory processes were introduced in the field of statistics as a basis for
inferences. Since then, this field is experiencing a considerable growth in the
number of research results (for instance, see Franco & Reisen, 2004; Reisen
et al., 2006, and many references therein).

As a natural extension of Box & Jenkins (1976) ARIMA models, let {Xt} be
the ARFIMA(p, d, q) process defined by

φp(B)(1 − B)dXt = θq(B)εt, d ∈ (−0.5, 0.5), (1)

in which {εt} is a white noise process normally distributed with zero mean
and finite variance σ2

ε . Respectively, φp(B) and θq(B) are the autoregressive
and moving average polynomials of order p and q, B is the back-shift operator
defined by BjXt = Xt−j, and (1 − B)d is the fractional differential operator.

In ARFIMA(p, d, q) models, d may assume fractional values and when d ∈
(0.0, 0.5) they are known as long-memory models. In such cases, the process
defined in (1) is stationary and invertible, with spectral density given by

f(ω) = fU(ω)
[

2 sin(ω/2)
]−2d

, ω ∈ (−π, π), (2)

in which fU(ω) is the spectral density function of ARMA(p, q) process, and
Ut = (1 − B)dXt. For an in-depth discussion about ARFIMA models, the
reader is encouraged to check Hosking (1981) and Reisen (1994). For a recent
book with a review of different approaches, see Doukhan et al. (2003).

2.2 Estimation of the Differential Parameter

There have been proposed in the literature many estimators for the fractional
differential parameter. We shall concentrate in estimators based upon the es-
timation of the spectral density function (2), convenient for the bootstrap
approaches investigated here, as it will be seen shortly.

2.2.1 Geweke & Porter-Hudak’s Method - GPH

The first estimator examined here, called GPH, was proposed by Geweke &
Porter-Hudak (1983). Their method consists of taking the logarithm of the
spectral density function (2), and estimating d by means of the regression
equation obtained. Thus, the logarithm of f(ω) is
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ln f(ω) = ln fU(0) − d ln
[

sin(ω/2)
]2

+ ln

[

fU(ω)

fU(0)

]

. (3)

and because f(ω) is unknown, Geweke & Porter-Hudak (1983) proposed to
estimate it by the periodogram function

I(ω) =
1

2π

∣

∣

∣

∣

∣

n−1
∑

k=1

Xte
−iwf

∣

∣

∣

∣

∣

, (4)

which gives

I(ω) =
1

2π

[

R(0) + 2
n−1
∑

k=1

R(k) cos(kw)

]

, (5)

in which R(.) denotes the sample autocovariance ofXt and n is the sample size.
The GPH estimator is obtained by the regression equation between ln I(ω) and

ln
[

2 sin(ω/2)
]2

.

2.2.2 Reisen’s Method - SPR

The second estimator considered, SPR, was proposed originally by Reisen
(1994) and is based upon the smoothed periodogram function

fsp(ω) =
1

2π

n−1
∑

k=1

λ(k)R(k) cos(kw), (6)

in which λ(k) is given by the Parzen lag window

λ(k) =































1 − 6
(

k
m

)2
+ 6

(

|k|
m

)3
, if |k| ≤ m/2,

2

(

1 −
(

|k|
m

)

)3

, if m/2 ≤ |k| ≤ m,

0, otherwise,

m = nβ, 0 < β < 1. The SPR estimator is obtained by the regression equation

between ln fsp(ω) and ln
[

2 sin(ω/2)
]2

.
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2.2.3 Lobato & Robinson’s Method - LBR

The last estimator that will be considered here, called LBR, was proposed
by Robinson (1994) and Lobato & Robinson (1996). This estimator is the
weighted averages of the unlogged periodogram based upon the number of
frequencies, the bandwidth τ , and a constant q ∈ (0.0, 1.0)

LBR(q) = 0.5 −
1

2 ln q
ln

[

F̂ (qωτ )

F̂ (ωτ )

]

, (7)

in which F̂ (ωτ ) = 2π
n

∑[ωτ/2π]
j=1 I(ωj) and [.] means the integer part. Usual

choices are τ = nα and q = 0.5 (Lobato & Robinson, 1996).

3 Bootstrap Methods

Bootstrap methods are resampling techniques, proposed originally by Efron
(1979), designed to approximate the probability distribution function of the
data by an empirical function of a finite sample. Their use in time series must
be judicious because the observations are not independent and the time series
structure may be lost in a careless resampling. Thus, the time series must be
resampled indirectly. Among the promising research results on bootstrapping
related to time series, we could mention Souza & Neto (1996), Paparoditis
& Politis (1999), and Franco & Reisen (2004). Following, we will describe
bootstrap techniques for ARFIMA models, for an in-depth simulation study.

3.1 Nonparametric Bootstrap in the Residuals

In order to avoid resampling directly from the time series, one possibility is to
perform the resample from the residuals of the adjusted model. Thus, let {Xt}
be a time series with n observations modeled as an ARFIMA(p, d, q) model,
as defined in (1).

After properly estimating the parameters φp, θq, and d, the residuals are easily
estimated from

ε̂t = θ̂−1
q (B)φ̂p(B)(1 − B)d̂Xt. (8)

We then resample ε̂t with replacement and construct from the resamples ε∗t
the bootstrap time series
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X∗
t = θ̂q(B)φ̂−1

p (B)(1 −B)−d̂ε∗t . (9)

Because no distribution was specified for the residuals, ε̂t, the approach is
called non-parametric.

3.2 Parametric Bootstrap in the Residuals

Similarly, a parametric version of the bootstrap may be derived, as follows.

The residuals are modeled as εt
i.i.d.
∼ N (0, σ2

εt
). Likewise, after estimating the

parameters φp, θq, and d, the residuals may be calculated by (8), from which
the variance may be estimated, σ̂2

ε̃t
. We then resample with replacement from

distribution N (0, σ̂2
ε̃t
) and finally from (9) the bootstrap time series may be

constructed.

3.3 Local Bootstrap in the Sample Spectral Density Functions

Yet another way of bootstrapping, proposed by Paparoditis & Politis (1999),
is based upon the smoothed periodogram function, fsp(ω), defined in (6), and
on the asymptotic independence of its ordinates. ‘Local’ is due to the way that
the resampling is done, as explained below. The method will be described only
for I(ωj) but it is equivalent for fsp(ω).

Let I(ωj), j = 1, . . . , N , be the periodogram ordinates of {Xt}, in which
N = [n/2] and [.] means the integer part. Assuming that the spectral density
function, f(ω), defined in (2) is smooth, the periodogram replicates can be
obtained locally, i.e., by sampling the frequencies that are in a neighborhood
of the frequency of interest, ω.

Thus, the local bootstrap can be summarized as follows. The procedure is also
illustrated in Figure 1.

(1) Select a resampling width kn, in which kn ∈ N and kn ≤ [N/4].
(2) Define i.i.d. discrete random variables S1, . . . , SN that assume values in

the set {0,±1, . . . ,±kn}.
(3) Each one of the 2kn+1 ordinates can be resampled with equal probability

pkn,s =
1

2kn + 1
.

(4) The bootstrap periodogram is defined by
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I∗(ωj)= I(ωj+Sj
), j = 1, . . . , [n/2],

I∗(ωj)= I(−ωj), ωj < 0,

I∗(ωj)= 0, ωj = 0.

Paparoditis & Politis (1999) have showed that the local bootstrap is asymp-
totically valid and that some care should be taken for the choice of the resam-
pling widths kn, in the case of a finite sample size n. In particular, an optimal
resampling width can be obtained from

kn,j = n4/5



















9f 2(ωj)

8π4

[

f (2)(ωj)
]2



















1/5

, (10)

in which it is assumed that f (2)(ωj) 6= 0.

I(w
)

0 w_(j-k) w_j w_(j+k) pi

Fig. 1. Local bootstrap in the periodogram function.

3.4 Bootstrap Confidence Intervals

Not only are the punctual estimates needed in practice but also needed are
the precision measures. Thus one may want to compute confidence intervals,
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in a definition taken from Bickel & Doksum (1977):

Definition 1 Let T (X) be an estimate of a parametric function q(ψ). The

random interval [T , T ] composed by the pair of statistics T and T , with T ≤ T
is a confidence interval of level (1 − α)100% for q(ψ) if for all ψ, Pψ[T ≤
q(ψ) ≤ T ] ≥ 1 − α.

In this paper, the confidence intervals will be built based upon the bootstrap.
As defined by Efron & Tibshirani (1993), for each estimator of d, we will gen-
erate Q independent bootstrap samples X∗1, X∗2, . . . , X∗Q, and will estimate
the fractional differential parameter for each one of them, d̂∗i, i = 1, 2, . . . , Q.
The lower and upper bounds of the percentile bootstrap confidence intervals
will be given by [d̂∗(α/2); d̂∗(1−α/2)], in which d̂∗(β) is the Q.(β)-th ordered value
of the bootstrap replications d̂∗i.

4 Simulation Evidence

In order to attest for the efficiency of the bootstrap methods detailed in Sec-
tion 3, we conducted experiments with simulated data. In the simulation study,
we generated 1000 different ARFIMA(0, d, 0) time series, by the algorithms of
Hosking (1984) and Reisen (1993), with parameter d = 0.2, and sizes n = 300
and n = 500. The number of bootstrap replications was Q = 1000 (Efron &
Tibshirani, 1993). The fractional differential parameter was then estimated
by the estimators described in Section 2, GPH, SPR, and LBR. The statistics
used to compare the bootstrap methods were the bias [E(d̂)−d] and the mean
square error (MSE). FORTRAN was the programming language employed be-
ing the code available from the authors upon request.

To select the best resampling widths in the local bootstrap, experiments were
conducted for the estimators GPH, SPR, and LBR, and k = 1, k = 2, k = 5,
k = 15, k = 40, and kj, with j = 1, . . . , [n/2]. The results are presented in
Figure 2. Firstly, notice that the bias are always negative and that by reducing
the resampling width k the bias is reduced and the variance is increased. These
results are in accordance with Paparoditis & Politis (1999). Additionally, in a
direct comparison with Monte Carlo simulations (MC), it appears that k = 1
and k = 2 are the best resampling widths. From now on, we shall use only
these two widths for local bootstrapping.

Once selected the best resampling widths, we shall compare all bootstrap
methods. In Table 1, we see the bias and MSE for all cases tested. The Monte
Carlo estimates are in accordance with known results (see, e.g., Smith et al.,
1997; Franco & Reisen, 2004). Initially, we notice from Table 1 that, in pairs,
the bootstrap methods in the residuals (nonparametric and parametric) and
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Fig. 2. Estimator performances for the local bootstrap compared with Monte Carlo (MC) simulations.
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Table 1
Bias and MSE for d̂.

Estimator

n Method GPH SPR LBR

300 Monte Bias -0.0054 -0.0514 -0.1011

Carlo MSE 0.0445 0.0284 0.0334

Nonparametric Bias -0.0138
∗ -0.1071 -0.1824

Bootstrap MSE 0.0350 0.0295
∗ 0.0485

Parametric Bias -0.0139 -0.1071 -0.1822

Bootstrap MSE 0.0351 0.0295
∗ 0.0484

Local Bias -0.0148 -0.0492
∗

-0.1161
∗

Bootstrap, k = 1 MSE 0.0410
∗ 0.0265 0.0347

Local Bias -0.0207 -0.0554 -0.1187

Bootstrap, k = 2 MSE 0.0356 0.0247 0.0333
∗

500 Monte Bias 0.0010 -0.0389 -0.0531

Carlo MSE 0.0284 0.0219 0.0169

Nonparametric Bias -0.0539 -0.1242 -0.1189

Bootstrap MSE 0.0189 0.0237
∗ 0.0199

Parametric Bias -0.0536 -0.1243 -0.1189

Bootstrap MSE 0.0189 0.0238 0.0199

Local Bias -0.0056
∗

-0.0377
∗

-0.0647
∗

Bootstrap, k = 1 MSE 0.0264
∗ 0.0178 0.0174

Local Bias -0.0116 -0.0426 -0.0666

Bootstrap, k = 2 MSE 0.0244 0.0171 0.0166
∗

∗Closest values to Monte Carlo.

the local bootstrap methods (k = 1 and k = 2) provided similar results.
For n = 300, the local bootstrap methods (for both k) produced the best
bias values comparing to Monte Carlo simulations, for the estimators SPR
and LBR, but for the estimator GPH, the nonparametric bootstrap in the
residuals had the best performance. For the MSE the best performances were
observed for the local bootstrap methods, for the estimators GPH and LBR.

By increasing the sample sizes to n = 500, the superiority of the local boot-
strap is more pronounced. The local bootstrap method with k = 1 simply
presented the best bias values comparing to Monte Carlo simulations, for all
estimators (see in Table 1 values in bold).
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As a note on the computational efficiency of the bootstrap methods considered,
additional advantages for the local bootstrap methods are their low and well-
behaved CPU times. With the help of an IMSL-FORTRAN procedure, we
estimated that the average CPU time for the local bootstrap was ≈ 0.59% of
the time spent by the bootstrap in the residuals. In other words, the average
speed for the bootstrap in the residuals was ≈ 170 times higher than the
average speed for the local bootstrap. Additionally, we noticed that the CPU
time increased slower with the time series sizes n for the local bootstraps
than for the bootstrap in the residuals. For instance, we noticed that the
average CPU time increased by 62% for the bootstrap in the residuals, while
the increase was 28% for the local bootstrap, as the time series sizes increased
from n = 300 to n = 500.

5 Empirical Studies

The time series under study is presented in Figure 3, which is composed by
288 wind speed measurements, in meters per second, for each five minutes,
from 00:00:00 h to 23:55:00 h, in May/17/1991, by the SILSOE Research
Institute. These data can be found in the work of Reisen (1993), which presents
a selection of adjustments of ARFIMA(p, d, q) models and shows that one of
the best models is the ARFIMA(1.0, d, 1.0). The estimate for the fractional
differential parameter around d̂ = 0.3 indicates that the time series presents
long-memory behavior. Forecasts for the data set may be found in Reisen &
Lopes (1999).

In Table 2, we can see the bootstrap 95% confidence intervals for d by the
nonparametric, parametric, and local bootstrap methods. It appears that the
local bootstrap method with k = 1 produces the shortest confidence intervals.
From Figure 4 it is seen that the estimates are quite assymmetric around the
punctual estimates for all bootstrap methods.

Also noticeable from Table 2 is that different estimators provided different
evidences about the significance of d. For all bootstrap confidence intervals
obtained from the LBR estimator, the parameter did not seem to be signif-
icant. However, from the simulation study presented in Figure 2, the LBR
estimates are not the most reliable as they produced the largest bias. Also un-
reliable is the confidence interval from the GPH and nonparametric bootstrap,
which presented the largest width.
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Fig. 3. Wind speed data.

Table 2
Bootstrap 95% confidence intervals and widths for d.

Bootstrap Method Estimates

GPH SPR LBR

0.2886 0.2990 0.1751

Nonparametric [95% ci] [-0.0296; 0.7270] [0.1083; 0.5485] [-0.1963; 0.3470]

width 0.7566 0.4402 0.5433

Parametric [95% ci] [ 0.0169; 0.7189] [0.1135; 0.5517] [-0.1847; 0.3442]

width 0.7020 0.4383 0.5289

Local with k = 1 [95% ci] [ 0.1116; 0.4270] [0.2195; 0.3576] [-0.0279; 0.2695]

width 0.3154
∗

0.1381
∗

0.2974
∗

Local with k = 2 [95% ci] [ 0.0805; 0.4622] [0.1703; 0.3860] [-0.0575; 0.2748]

width 0.3817 0.2156 0.3323

∗Shortest confidence intervals.
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Fig. 4. Bootstrap estimates for d.

13



6 Conclusions and Final Remarks

The main goal of this paper was to find efficient bootstrap approaches for
inferences on the fractional differential parameter in ARFIMA(p, d, q) models,
d. The bootstrap in the residuals has been used before in a similar context
but from the best knowledge of the authors it is the first time that the lo-
cal bootstrap in the periodogram function has been applied for this class of
model. In the evaluation of different resampling widths, k, when k is small
or the size of the series is large, it was seen that the estimates provided are
the best compared to Monte Carlo simulations. Comparing the performance
of the bootstrap in the residuals with the performance of the local bootstrap
methods, we assessed the superiority of the latter not only in terms of preci-
sion of the estimates but also in terms of computational efficiency. Another
disadvantage of the bootstrap in the residuals is that it is dependent on the
model. That is, poorly adjusted models will lead to poor bootstrap estimates
for d. In the application to real time series, the local bootstrap methods also
were superior, presenting the shortest confidence intervals and the lowest CPU
times. Topics for future research in the area include the use of the local boot-
strap method under different estimators for d, as there are many of them
based upon the periodogram function, extensions to the seasonal fractionally
integrated processes (Reisen et al., 2006), and the use of maximum likelihood
methods (Doornik & Ooms, 2003), as they are quite different from the methods
examined here and they have convenient asymptotic properties.
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