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Abstract

The well-known product partition model (PPM) is considered for the identification
of multiple change points in the means and variances of normal data sequences. In
a natural fashion, the PPM may provide product estimates of these parameters at
each instant of time, as well as the posterior distributions of the partitions and the
number of change points. Prior distributions are assumed for the means, variances,
and for the probability p that each individual time is a change point. The PPM is
extended to generate the posterior distribution of p and the posterior probability
that each instant of time is a change point. A Gibbs sampling scheme is used to
compute all estimates of interest. The methodology is applied to an important time
series from the Brazilian stock market. A sensitivity analysis is performed assuming
different prior specifications of p.
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1 Introduction

Developed by Hartigan (1990), the product partition model (PPM) is a dy-
namic model useful to the analysis of change point problems. The PPM in-
troduced more flexibility into the analysis of these problems since it considers
the number of change points as a random variable, in opposition to several
well-known methods to identify structural changes that assume the number
of change points as known, e.g. threshold models and the method considered
by Hawkins (2001). As shown by Barry and Hartigan (1992), by applying the
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PPM one can easily obtain product estimates for the parameters of interest at
each individual time, the posterior distribution of the random partition, and
also the posterior distribution of the number of change points.

Barry and Hartigan (1993) and Crowley (1997) applied the PPM to the identi-
fication of multiple change points in normal means and used a Gibbs sampling
approach to obtain the product estimates. However, it would be no trouble
to extend the PPM to identify multiple changes in both means and variances
of normal data and also to apply a Gibbs sampling scheme to compute the
posterior distributions of the random partition and the posterior distributions
of the number of change points. Details can be seen in the papers by Loschi
and Cruz (2002) and by Loschi et al. (2003).

Concerning its timeliness, recently Quintana and Iglesias (2003) provided a
theoretical decision approach to change point problems and linked the PPM
to the Dirichlet process. In one of the most popular versions of the PPM, only
contiguous blocks are allowed and in such cases the prior cohesions, usually
Yao’s (1984) cohesions, are a truncated geometric distribution with parameter
p. Then, Loschi et al. (2003) were the first to assume a prior distribution for p,
in a successful application of the PPM to change-point analysis. However, in
spite of all flexibility that a prior distribution for p may provide, the product
estimates may be considerably influenced by its specifications (see Loschi and
Cruz, 2002).

In this paper, the aim is to extend the PPM as to obtain the posterior dis-
tribution of p and the posterior probabilities that each individual time is a
change point. A Gibbs sampling scheme will be used to estimate the posterior
distribution of p and to estimate the posterior probability that each instant
is a change point. As it will be seen, these extensions not only enrich a data
analysis provided by the PPM but also may be a useful tool to decision-makers
since in general the posterior distribution of the random partition as originally
defined by Barry and Hartigan (1992) put small mass in each partition. Fi-
nally, we will see a successful application of the PPM to the analysis of an
important series of returns of the Brazilian stock market, the BOVESPA in-
dex (Índice da Bolsa de Valores do Estado de São Paulo). Also a sensitivity
analysis will be shown considering different prior specifications of p.

The paper is organized as follows. In Section 2, the PPM and related results
are presented. The PPM is applied to identify multiple change points in nor-
mal means and variances. A new procedure to obtain the posterior distribution
of p and the posterior probability that each instant is a change point is pro-
posed. In Section 3, we describe the computational method usually applied
to obtain the product estimates of means and variances, as well as a Gibbs
sampling scheme to compute all posterior distributions and probabilities afore-
mentioned. In Section 4, the methodology is applied to the BOVESPA index
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and a sensitivity analysis is provided. Finally, Section 5 closes the paper with
concluding remarks.

2 Statistical Models

2.1 The Product Partition Model

Let X1, . . . , Xn be a data sequence and consider the index set I = {1, . . . , n}.
Consider a random partition ρ = {i0, i1, · · · , ib} of set I, 0 = i0 < i1 < · · · <
ib = n, and a random variable B which denotes the number of blocks in
ρ. Consider that each partition divides the data sequence into b contiguous
subsequences, which will be denoted here by X[i(r−1)ir ] = (Xi(r−1)+1, . . . , Xir)

T,
for r = 1, . . . , b. Let c[ij] be the prior cohesion associated with block [ij] = {i+
1, . . . , j}, for i, j ∈ I ∪ {0}, and j > i, that represents the degree of similarity
among the observations in X[ij] and that can be interpreted as transition
probabilities in the Markov chain defined by the change points.

In this paper Yao’s (1984) cohesions are considered. Let p be the probability
that a change occurs at any instant in the sequence. Therefore, the prior
cohesion for block [ij] is given by:

c[ij] =











p(1 − p)j−i−1, if j < n,

(1 − p)j−i−1, if j = n,
(1)

for all i, j ∈ I, i < j, which corresponds to the probability that a new
change takes place after j − i instants, given that a change has taken place
at the instant i. These prior cohesions imply that the sequence of change
points establishes a discrete renewal process with occurrence times identically
distributed with geometric distribution. Such cohesions are appropriate when
it is reasonable to assume that the past change points are noninformative
about the future change points, which is of use for many practical applications.

Let θ1, . . . , θn be a sequence of unknown parameters conditional on which the
random variables X1, . . . , Xn have marginal densities f1(X1|θ1), . . ., fn(Xn|θn),
respectively. The prior distributions of θ1, . . . , θn are built as follows. Given
a partition ρ, one has that θi = θ[i(r−1)ir ], for every i(r−1) < i ≤ ir, and
that θ[i0i1], . . . , θ[i(b−1)ib] are independent, with θ[ij] having prior density π[ij](θ),
θ ∈ Θ[ij], in which Θ[ij] is the parameter space.

Hence, we say that the random quantity (X1, . . . , Xn; ρ) follows a Product
Partition Model (PPM), denoted by (X1, . . . , Xn; ρ) ∼ PPM, if (Barry and
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Hartigan, 1992):

i) the prior distribution of ρ is the following product distribution:

P (ρ = {i0, i1, . . . , ib}) =
Πb

j=1c[i(j−1)ij ]
∑

C Πb
j=1c[i(j−1)ij ]

(2)

in which C is the set of all possible partitions of set I into b contiguous
blocks with endpoints i1, . . . , ib, satisfying the condition 0 = i0 < i1 <
· · · < ib = n, for all b ∈ I;

ii) conditional on ρ = {i0, i1, . . . , ib}, the sequence X1, . . . , Xn has the joint
density given by:

f(X1, . . . , Xn|ρ = {i0, i1, . . . , ib}) = Πb
j=1f[i(j−1)ij ](X[i(j−1)ij ]), (3)

in which f[ij](X[ij]) =
∫

Θ[ij]
f[ij](X[ij]|θ)π[ij](θ)dθ is the density of the ran-

dom vector, called data factor.

Consequently, if (X1, . . . , Xn; ρ) ∼ PPM and a square error loss function is
assumed, the posterior expectation (or the product estimate) of parameter θk

is given by (Barry and Hartigan, 1993):

E(θk|X1, . . . , Xn) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]E(θk|X[ij]), (4)

for k = 1, . . . , n, in which r∗[ij] = P ([ij] ∈ ρ|X1, . . . , Xn) denotes the posterior
relevance of block [ij].

If Yao’s (1984) cohesions are assumed, the conditional prior distributions for
ρ and B are given, respectively, by:

P (ρ = {i0, i1, . . . , ib}|p) = pb−1(1 − p)n−b, b ∈ I, (5)

for every partition {i0, i1, . . . , ib}, satisfying 0 = i0 < i1 < · · · < ib = n, and,

P (B = b|p) = Cn−1
b−1 pb−1(1 − p)n−b, b ∈ I, (6)

in which Cn−1
b−1 denotes the number of distinct partitions of I into b contiguous

blocks.

Additionally, if a prior distribution π(p) is assumed for p, it follows that the
posterior distribution of ρ and the posterior distribution of the number of
blocks B assume, respectively, the forms (Loschi et al., 2003):
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P (ρ = {i0, i1, . . . , ib}|X1, . . . , Xn) =

Πn
j=1f(Xi(j−1)ij )

1
∫

0

pb−1(1 − p)n−bπ(p)dp, (7)

P (B = b|X1, . . . , Xn) =

Cn−1
b−1 Πn

j=1f(Xi(j−1)ij )

1
∫

0

pb−1(1 − p)n−bπ(p)dp. (8)

For further details on how the PPM can be tailored for normal means and
variances, the reader is referred to the paper by Loschi et al. (2003).

Remark: Notice that if p has beta distribution with parameters α and β,

p ∼ B(α, β), the number of change points B−1 has beta-binomial distribution

with parameters n − 1, α and β. In this case, the prior mean and variance of

B are given, respectively, by:

E (B) = (n − 1)
α

α + β
+ 1;

Var(B)= (n − 1)
αβ(α + β + n − 1)

(α + β)2(α + β + 1)
.

Assuming in the prior evaluation that we believe that the number of change

points in the sequence is small, we should choose the hiperparameters α and

β such that the prior distribution of p is concentrated in small values. For

example, we can take small values for α and large values for β as it will be

considered in Section 4.

2.2 PPM Extensions

In general, the posterior distribution of ρ will not provide a good idea about
when changes occurred since each value of ρ usually will receive low mass.
More informative for a decision-maker is to obtain the posterior probability of
each instant to be a change point. This posterior probability can be derived
as follows.

Let Ck be the subset of C that contains all partitions that include the kth
instant as a change point, that is, each partition in Ck assume the form
{i0, . . . , i(l−1), il = k, i(l+1), . . . , ib} for any l ∈ I. The event Ak denotes that
the kth instant is a change point, for k = 2, . . . , n. Thus:
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P (Ak|X1, . . . , Xn) =

=
∑

Ck

P (ρ = {i0, . . . , i(l−1), il = k − 1, i(l+1), . . . , ib}|X1, . . . , Xn)

∝
∑

Ck

Π
(l−1)
j=1 c∗[i(j−1)ij ]

c∗[i(l−1)(k−1)]c
∗

[(k−1)i(l+1)]
Πb

j=l+1c
∗

[i(j−1)ij ]
. (9)

Similarly, the posterior probability for two specific instants i, j, i 6= j, to be
change points can be obtained by computing the probability of Ai ∩ Aj, and
so on.

Let assume that p has prior distribution π(p). It follows that the posterior
probability for Ak is given by:

P (Ak|X1, . . . , Xn) =
∑

Ck

Πn
j=1f(Xi(j−1)ij )

1
∫

0

pb−1(1 − p)n−bπ(p)dp, (10)

for all k = 2, . . . , n.

3 Computational Methods

3.1 Introduction

Suppose that p has prior distribution π(p) and that, given ρ, θk ∈ [ij], for
k = 1, . . . , n, and i, j ∈ I, i < j. Let X[0n] = (X1, . . . , Xn) and θ = (θ1, . . . , θn)
and denote by θ−k the vector (θ1, . . . , θk−1, θk+1, . . . , θn). The full conditional
distributions of p, ρ, and θk are given, respectively, by:

π(p|ρ, θ,X[0n])∝ pb−1(1 − p)n−bπ(p),

π(ρ|p, θ,X[0n])∝
(

Πb
j=1f[i(j−1)ij ](X[i(j−1)ij ])

)

pb−1(1 − p)n−b,

π(θk|ρ, p, θ−k,X[0n])∝ f[ij](θk|X[ij]),

for k = 1, . . . , n. Notice that it is not easy to sample directly from the full
conditional distribution of ρ. In the next section, a method to sampler from
the previous distributions is described.
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3.2 Gibbs Sampling Scheme to the PPM

Let Ui be the auxiliary random quantity that reflects whether or not a change
point occurs at the time i (Barry and Hartigan, 1993):

Ui =











1, if θi = θi+1,

0, if θi 6= θi+1,

for i = 1, . . . , n − 1.

Each partition (U s
1 , . . . , U s

n−1), s ≥ 1, is generated by using Gibbs sampling.
Starting from an initial value (U 0

1 , . . . , U0
n−1), the rth element at step s, U s

r , is
generated from the conditional distribution:

Ur|U
s
1 , . . . , U

s
r−1, U

s−1
r+1 , . . . , U s−1

n−1, p
(s−1), θ(s−1);X[0n],

for r = 1, . . . , n − 1.

In order to generate the samples of U above, it is enough to consider the
following ratio:

Rr =
P (Ur = 1|V s

r , p(s−1), θ(s−1);X[0n])

P (Ur = 0|V s
r , p(s−1), θ(s−1);X[0n])

for r = 1, . . . , n − 1, in which V s
r = {U s

1 = u1, . . . , U
s
r−1 = ur−1, U

s−1
r+1 =

ur+1, . . . , U
s−1
n−1 = un−1}.

For the present case, in which p has a beta prior distribution p ∼ B(α, β) with
parameters α > 1 and β > 1, the value Rr becomes:

Rr =
f[xy](X[xy])Γ(n + β − b + 1)Γ(b + α − 2)

f[xr](X[xr])f[ry](X[ry])Γ(b + α − 1)Γ(n + β − b)
, (11)

for b = 1, . . . , n, in which:

x =



























max{i, s.t. : 0 < i < r, U s
i = 0}, if U s

i = 0, for some

i ∈ {1, . . . , r − 1}

0, otherwise,

(12)
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and

y =



























min{i, s.t. : r < i < n, U s−1
i = 0}, if U s−1

i = 0, for some

i ∈ {r + 1, . . . , n − 1}

n, otherwise.

(13)

Consequently, the criterion of choosing the values U s
i , i = 1, . . . , n−1, becomes:

U s
r =











1, if Rr ≥
1−u

u

0, otherwise,

for r = 1, . . . , n − 1, in which u ∼ U(0, 1). Further details on how one could
derive the product estimates and the posterior distribution of the number of
blocks can be found in the paper by Loschi et al. (2003).

3.3 Gibbs Sampling Scheme to the PPM Extensions

Each sample of the posterior distribution of p is generated from the following
beta distribution:

ps|ρ, θ,X[0n] ∼ B(α + bs − 1, n + β − bs), (14)

for s ≥ 1, in which bs is the number of blocks in the sth vector U which is
obtained by noticing that the number of blocks in ρ is given by:

B = 1 +
n−1
∑

i=1

(1 + Ui). (15)

Similarly, the estimates of the posterior probability of the kth instant to be a
change point is:

P (Ak) =
N

T
, (16)

for k = 2, . . . , n, in which N is the number of vectors for which it is observed
that Uk−1 = 0 and T is the total number of vectors generated.
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4 Application

All the algorithms described in the previous sections were coded in C++ and
are available from the authors upon request. In the experiments here presented,
the algorithms were run by a PC, Pentium processor 166 MHz, 32 MB RAM.
The CPU times were around 25 seconds. For the Gibbs sampling scheme, 4,600
samples were generated. From a graph (not shown) it was seen that after only
100 samples the simulation reached the steady state. Thus, the initial 100
samples were discharged for burn-in. Additionally, since no correlation was
found at the sequence of simulated values, a lag of one was chosen. One can
easily find in the literature a discussion about the number of iterations to
be discharged and the lag to be taken. For example, we suggest the book by
Gamerman (1997).
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Fig. 1. BOVESPA series of returns.

The application focuses on an important index from the Brazilian stock mar-
ket, the BOVESPA index, expressed in terms of monthly returns, from Jan-
uary, 1991, to August, 1999, as seen in Figure 1. As usual in finance, the return
series is defined by the transformation Rt = (Pt − Pt−1)/Pt−1, in which Pt is
the closing price at the tth month.

It seems reasonable to assume that the observations are conditionally inde-
pendent and distributed according to the normal distribution N (µ[ij], σ

2
[ij]).

We shall assume the normal-inverted-gamma distribution, a natural conju-
gate prior distribution, successfully used to model stock market data (Hsu,
1982). For the present case we are adopting the following:

µ[ij]|σ
2
[ij] ∼ N (0.0, σ2

[ij]), and σ2
[ij] ∼ IG(0.01/2, 4/2).
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Fig. 2. Probability function IG(a/2, d/2).

As we can see in Figure 2, the inverted-gamma distribution considered con-
centrates its mass in low values but presents some variability. These specifica-
tions were chosen because the Brazilian market is emerging and therefore more
susceptible to the world political scenario than developed markets (Mendes,
2000). Different settings for a/2 and d/2 that could be adopted for different
markets are seen in Figure 2.

In regard to the parameter p that indexes Yao’s (1984) cohesions, a beta prior
distribution was adopted. Several different prior specifications were considered,
plotted in Figure 7. Firstly, it is possible to be completely non-informative
about p, by assuming for instance a beta prior distribution such as B(1.1, 1.1).
If we assumed prior distributions that concentrate most of its mass in small
values, such as B(1, 50), we would mean that it is reasonable to expect a small
number of changes. On the other hand, a prior distribution with a high average
value, such as B(50, 50), would mean that small blocks of returns and a high
number of change points may be expected a priori.

Figure 3 shows the product estimates of the expected returns and Figure 4,
for the variance (or volatility), for all different prior specifications for p. It
is no surprise that the product estimates were different for different prior
distributions for p as earlier noticed (Loschi and Cruz, 2002). However, it is
remarkable that for all of them change points were identified in the expected
returns around September, 1994, April, 1995, and July, 1997. Additionally,
change points were identified in the volatility around October, 1992, Septem-
ber, 1994, April, 1995, July, 1997, and January, 1999.

Figure 5 presents the posterior probability of each point to be a change point.
It is remarkable that the estimates corresponding to the prior distributions
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Fig. 3. Posterior estimates for µ.
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Fig. 4. Posterior estimates for σ.

B(1.1, 1.1), B(1, 50), and B(5, 50) are almost identical. Based on these esti-
mates it is easily identified three months with “high” probability to be a
change point, namely September, 1994, with probability 64.7%, April, 1995,
with probability 60.4%, and August, 1997, with probability 48.4%. The sce-
nario described by priors B(50, 50) and B(50, 5), would be that of a high assur-
ance of a highly unstable market with high probability of structural changes
expected a priori. As a result, much more months would be identified as change
points, specially after 1995. Since we do not think this was the case, we shall
not go further on analyzing these priors.

Figure 6 depicts the estimates for the posterior probability that each instant
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Fig. 5. Posterior probability of change.
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Fig. 6. Probabilities of change and the most probable partition.

is a change point, by Eq. (16), and the most probable partition, by Eq. (7),
considering the prior we believe is the most appropriate for the Brazilian mar-
ket, i.e., B(5, 50). The most probable posterior partition is ρ = {0, Sep/94,
Apr/95, Mar/96, Aug/97} which occurs with probability 0.004. Notice that
this partition indicates that October, 1994, May, 1995 , April, 1996, and
September, 1997, are change points. However, from Figure 5, a different par-
tition may be formed, by considering those months whose probabilities to be
change points are the highest, that is ρ = {0, Aug/94, Mar/95, Jul/97}. Al-
though the estimated probability of the latter partition is smaller than 0.004
(≈ 0.00134), such a partition is more intuitive than the former. Thus, the prob-
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Fig. 7. Prior and Posterior Distributions of p.

Table 1
Descriptive statistics for the prior and posterior distributions of p.

Prior Distribution Posterior Distribution

Prior Mean StDev Mean StDev Q1 Median Q3

p ∼ B(1.1, 1.1) 0.5000 0.2795 0.0823 0.0540 0.0464 0.0718 0.1047

p ∼ B(1, 50) 0.0196 0.0192 0.0302 0.0198 0.0149 0.0270 0.0414

p ∼ B(5, 50) 0.0909 0.0384 0.0781 0.0279 0.0583 0.0745 0.0945

p ∼ B(50, 50) 0.5000 0.0498 0.4442 0.0461 0.4138 0.4444 0.4749

p ∼ B(50, 5) 0.9091 0.0384 0.7273 0.0495 0.6956 0.7299 0.7620

abilities of change seems to be a more meaningful tool to identify probable
partitions than by Eq. (7).

Figure 7 shows the prior and posterior distributions for p for some of the prior
distributions considered. It is noticeable that the posterior distribution of p
has a low valued mode (see also Table 1). Assuming that p ∼ B(5, 50) and
considering the square loss function, the Bayes estimate of p is 0.0909 which
decreases for 0.0781 in the posterior evaluation. Similar conclusions can be
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Fig. 8. Posterior distributions of B.

Table 2
Descriptive statistics for the prior and posterior distributions of B.

Prior Distribution Posterior Distribution

Prior Mean StDev Mean StDev Mode Q1 Median Q3

p ∼ B(1.1, 1.1) 52.5 29.1 8.74 5.67 7 6 8 10

p ∼ B(1, 50) 3.02 2.42 4.68 2.37 2 3 5 6

p ∼ B(5, 50) 10.4 4.90 8.40 2.95 7 6 8 10

p ∼ B(50, 50) 52.5 7.19 41.5 6.16 43 37 41 45

p ∼ B(50, 5) 94.6 4.90 66.0 5.59 68 63 66 70

drawn for the other prior distributions. Observe also that the posterior esti-
mates were generally more precise (lower standard deviation) than the prior
estimates, exception made for prior B(50, 5) for which the standard deviation
increased (0.0384 vs. 0.0495, as seen in Table 1).

Figure 8 shows the posterior distribution of the number of block B, Eq. (15),
and Table 2 presents some descriptive statistics for the prior and posterior
distributions of B. As earlier observed concerning p, the posterior distribution
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of B has an unique low mode, for all prior specification. Notice also that the
posterior distributions present lower standard deviation in comparison with
the prior distribution, exception made for prior B(50, 5) (4.90 vs. 5.59, as seen
in Table 2). In conclusion, in the posterior evaluation, the expected number
of change points were lower and the posterior estimates were in general more
accurate (lower standard deviation). In any case the summaries of ρ and B
are sensitive to the prior. Thus, proper prior elicitation becomes crucial.

5 Summary and Conclusions

The classical product partition model (PPM) was considered to the identifi-
cation of multiple change points in the means and variances of normal data
sequences. This paper extends previous work by providing a full Bayesian
analysis for the change point problem by means of both the PPM and Yao’s
(1984) cohesions, and by proposing a method to compute the probability that
each instant of time is a change point.

Conjugate prior distributions were assumed for the means and variances and
a beta prior distribution was considered to describe the prior behavior of the
parameter p that indexes Yao’s (1984) cohesions and represents the probability
to have a change at a given instant of time. The PPM was tailored to provide
new information, namely the posterior distribution of the probability to have
a change in any instant of time and the posterior probability that each instant
is a change point.

The methodology was applied to an important Brazilian stock market data.
Several different prior specifications for p were considered. The results indi-
cated that the new method is quite effective and may provide useful new
information. Mainly, it can be concluded that the posterior probability that
each instant to be a change point provides a better tool for decision-makers
than the posterior distribution on the random partition formed by the instants
when change points occurred.
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