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Abstract

In change point problems in general we should answer three questions: how many
changes are there? Where are they? And, what is the distribution of the data within
the blocks? In this paper, we develop a new full predictivistic approach for mod-
eling observations within the same block of observation and consider the product
partition model (PPM) for treating the change point problem. The PPM brings
more flexibility into the change point problem because it considers the number of
changes and the instants when the changes occurred as random variables. A full
predictivistic characterization of the model can provide a more tractable way to
elicit the prior distribution of the parameters of interest, once prior opinions will
be required only about observable quantities. We also present an application to the
problem of identifying multiple change points in the mean and variance of a stock
market return time series.

Key words: Uncertainty modeling, normal-inverse-gamma distribution, product
partition model, student-t distribution.

1 Introduction

The student-t distribution is a class of model that can be obtained as a loca-
tion and scale mixture of the normal distribution in which the mixing measure
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is the normal-inverse-gamma distribution. Consequently, the student-t distri-
bution can be constructed in two stages. Firstly, given the location and scale
parameters, a conditional normal distribution is considered. Secondly, a prior
distribution for these location and scale parameters is specified.

In a predictivistic characterization of the process, the first stage is replaced by
an invariance or sufficiency assumption over an infinite sequence of potentially
observable random quantities. For the student-t model above mentioned the
first stage is replaced by the orthogonal invariance, which preserves the vectors
of ones (see, for example, the works of Smith, 1981, and Diaconis et al., 1992,
among others). However, this invariance condition is not enough to identify
the mixing measure. Thus some extra conditions on observable random vari-
ables are necessary to obtain the mixing measure (see the papers by Diaconis
& Ylvisaker, 1979, and Arellano-Valle et al., 1994, for instance). In a full pre-
dictivistic approach, Loschi et al. (2003b) stated the conditions to characterize
such a student-t distribution.

This paper basically revisits previous contributions (Loschi et al., 2003a,b,
2006) used as a basis for an original predictivist justification to the successful
methods developed in the past for multiple change-point identification, but
without any formal justification such as the one present here. Additionally,
the paper shows how this apparently hard way of modeling could be applied to
model the behavior of stock market returns and other similar data sequences.
The multiple change-point problem is treated here in the light of the well-
known product partition model (PPM), proposed by Barry & Hartigan (1993).
However, it is worthwhile noting that some other models also deal with the
change point problem and, in some aspects, do it in a much more natural way,
the so-called Dynamic Linear Model, which can be seen in the book by West
& Harrison (1999), along with other classes of dynamic models in Bayesian
time series analysis and forecasting.

Some of the advantages of the PPM are that it allows the identification of
multiple change points in the parameters, as well as in the functional form
of the distribution function itself. Besides, the PPM brings flexibility into the
analysis because the number of change points is a random variable, unlike
threshold models (Chen & Lee, 1995) and others (Hawkins, 2001; Zmeškal,
2005) that consider the number of change points fixed. Firstly, Barry & Har-
tigan (1993) applied the PPM to the identification of multiple change points
in the means of normal random variables with common variances. Afterwards,
Crowley (1997) provided a new implementation of a Gibbs sampling scheme
for the PPM in order to estimate the normal means, which was extended by
Loschi et al. (2003a) to estimate both the means and the variances. Exten-
sions of the PPM to a more general context can also be found in the papers
by Quintana & Iglesias (2003) and Loschi et al. (2006).
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In order to illustrate the methodology, we apply the predictivistic model devel-
oped to identify multiple change points both in the means µ and variances σ2

of normal data sequentially observed. A conjugate prior distribution is consid-
ered for the parameters, µ and σ2, which is justified within a full predictivistic
setting. In fact, a more tractable way to elicit the prior distribution of µ and
σ2 is proposed, once opinions are required only about observable quantities.
Yao’s algorithm (Yao, 1984) is used to compute the posterior estimates and
a Gibbs sampling scheme is applied to estimate the posterior distributions
of the number of change points and the instants when the changes occurred.
The algorithms were implemented in C++ and the code is available from the
authors upon request. The method was applied to identify multiple change
points in the means and variances of a series of returns of the Chilean stock
market. Different prior distributions were considered for the probability that
a change occurs in any instant of the time and a sensitivity analysis was pro-
vided. As a result, it was seen that the returns in the Chilean stock market
are characterized by changes in the expected returns (means) and volatilities
(measured here as variances).

The paper is organized as follows. In Section 2, the PPM is briefly reviewed
and a predictivistic characterization of the student-t PPM is provided, which
explains in an alternative way the choices adopted for the prior distributions.
In Section 3, the methodology is illustrated to the identification of change
points in the mean return and volatility of ENDESA returns (the Chilean Na-
tional Electricity Company). The return behavior within each block is modeled
taking into account the predictivistic approach. A sensitivity analysis to the
PPM is also provided. Finally, Section 4 closes the paper with final concluding
remarks.

2 The Student-t PPM

In this section we apply the PPM to identify multiple change points in the
mean and variance of normal data observed sequentially through time. We
consider a conjugate analysis and present a new full predictivistic characteri-
zation to the complete model (the likelihood function and prior distribution).

2.1 The product partition model (PPM)

Let X1, . . . , Xn be a data sequence. Consider a random partition ρ of the set
I = {1, . . . , n} and a random variable B that represents the number of blocks
in ρ. Consider that each partition ρ = {i0, i1, . . . , ib}, 0 = i0 < i1 < · · · < ib =
n, divides the sequence X1, . . . , Xn into B = b, b ∈ I, contiguous subsequences,
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which will be denoted byX[i(r−1)ir ] = (Xi(r−1)+1, . . . , Xir)
′, r = 1, . . . , b. Let c[ij]

be the prior cohesion associated to the block [ij] = {i+1, . . . , j}, i, j ∈ I∪{0},
j > i, which represents the degree of similarity among the observations within
X[ij] and can be interpreted as the transition probabilities in the Markov chain
generated by the change points.

Hence, it is said that the random quantity (X1, . . . , Xn; ρ) follows a PPM,
denoted by (X1, . . . , Xn; ρ) ∼ PPM , if:

i) the prior distribution of ρ is the following product distribution

P (ρ = {i0, . . . , ib}) =
Πb

j=1c[i(j−1)ij ]∑
C Πb

j=1c[i(j−1)ij ]

, (1)

in which C is the set of all possible partitions of I into b contiguous blocks
with end points i1, . . . , ib that satisfy the condition 0 = i0 < i1 < · · · <
ib = n, b ∈ I;

ii) conditional on ρ = {i0, . . . , ib}, the sequence X1, . . . , Xn has joint density
given by

f(X1, . . . , Xn|ρ = {i0, . . . , ib}) = Πb
j=1f[ij−1ij ](X[ij−1ij ]), (2)

in which f[ij](X[ij]) is the joint density of the random vector X[ij] =
(Xi+1, . . . , Xj)

′.

Note that the number of blocks in ρ, B, has prior distribution given by

P (B = b) ∝∑
C1

Πb
j=1c[i(j−1)ij ], b ∈ I, (3)

in which C1 is the set of all partitions of I into b contiguous blocks.

The posterior distributions of ρ and B have the same form of the prior dis-
tribution, in which the posterior cohesion for block [ij] is given by c∗[ij] =
c[ij]f[ij](X[ij]). That is, as observed by Barry & Hartigan (1993), the PPM
induces conjugacy.

In the parametric approach of the PPM, a sequence of unknown parameters
θ1, . . . , θn is considered and the sequence of random variables X1, . . . , Xn has
conditional marginal densities f1(X1|θ1), . . ., fn(Xn|θn). In this case, two ob-
servations Xi and Xj, such that i 
= j, are considered in the same block if they
are believed identically distributed. Thus, the block predictive distribution,
Eq. (2), can be obtained as follows

f[ij](X[ij]) =
∫
Θ[ij]

f[ij](X[ij]|θ) π[ij](θ)dθ, (4)
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in which Θ[ij] is the parameter space corresponding to the common parameter,
say, θ[ij] = θi+1 = · · · = θj , which indexes the conditional density of X[ij].

The prior distribution of θ1, . . . , θn is constructed as follows. Given a partition
ρ = {i0, . . . , ib}, b ∈ I, we have that θi = θ[i(r−1)ir ] for every i(r−1) < i ≤ ir,
r = 1, . . . , b, and that θ[i0i1], . . . , θ[i(b−1)ib] are independent, with θ[ij] having
(block) prior density π[ij](θ), θ ∈ Θ[ij].

Hence, the goal is to obtain the marginal posterior distributions of the pa-
rameters ρ, B, and θk, k = 1, . . . , n. The product estimates of θk are given
by

E(θk|X1, . . . , Xn) =
k−1∑
i=0

n∑
j=k

r∗[ij] E(θk|X[ij]), (5)

in which r∗[ij] = P ([ij] ∈ ρ|X1, . . . , Xn) is known as the posterior relevancies.
In order to compute r∗[ij], we will use the recursive algorithm developed by Yao
(1984) but an alternative scheme to compute the posterior relevancies based
on Gibbs sampling was given by Loschi et al. (2003a).

2.2 A Predictivistic Justification for the Student-t PPM

Sometimes it is not an easy task eliciting the prior distributions to solve real
problems. In this section we establish a new full predictivistic characterization
of the student-t PPM for which the likelihood function and prior distribution
of θ = (µ, σ2) are consequences of judgments on observable quantities. As a
by-product this characterization provides a tractable way to elicit the prior
distribution of θ.

As mentioned in the previous section, the student-t distribution is a location
and scale mixture of normal distributions for which the mixing measure is the
normal-inverse-gamma distribution. Thus, it follows that the student-t dis-
tribution can be obtained in two stages. First, given the location and scale
parameters, a conditional normal distribution is specified. Second, we identify
a normal-inverse-gamma distribution as the prior joint distribution for the lo-
cation and scale parameters. By adopting the predictivistic approach, the first
stage is replaced by an assumption about observables. For example, the as-
sumption of invariance under some groups of orthogonal transformation over
infinite sequences of random quantities implies that the law of sequence of ob-
servables can be represented as mixtures of conditionally normally distributed
and independent quantities (for instance, see Smith, 1981).

However, this type of condition does not allow the characterization of the
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mixing measure. Additional conditions must be assumed to obtain the mixing
measure. Based on Diaconis & Ylvisaker (1979), Arellano-Valle et al. (1994)
characterized a scale mixture of a normal distribution by considering invari-
ance under the orthogonal transformation and some additional conditions to
predict X2

n+1. In the full predictivistic approach of Arellano-Valle et al. (1994)
the mixing measure (prior distribution) obtained was the inverse-gamma dis-
tribution. Arellano-Valle et al. (1994) also obtained a characterization for a
location and scale mixture of normal distributions. However, because the char-
acterization depends on non-observable quantities it is not a full predictivistic
characterization of the model. Proposition 1 below improves such partial re-
sult.

Consider X̄n =
1
n

∑n
i=1 Xi and S2

n =
∑n

i=1(Xi − X̄n)
2. We say that an infinite

sequence of random variables, X1, X2, . . . , is O(1)-invariant if for each n ≥ 2
and real values m and r, the conditional distribution of X[0n], given X̄n = m
and S2

n = r2, is uniform on the n-sphere centered in m1n and with ratio r,
that is, on the set Sn = {(x1, . . . , xn) ∈ R

n : x̄n = m,
∑n

i=1(xi − x̄n)
2 = r2}.

Proposition 1 Let X1, X2, . . . be an infinite sequence of O(1)-invariant ran-
dom variables, such that P (X1 = X2) = 0 and



E(X2

3 |X1, X2) = e(X2
1 +X2

2 ) + w,

E(X3|X1, X2) = e(X1 +X2) + u,
(6)

then e ∈ (0, 1/2), u ∈ R, w > u2/(1− 2e) and, for each n ≥ 3,

X[0n] ∼ tn

(
u

1− 2e1n; In +
e

1− 2e1n1
′
n;
1

e
(w − u2

1− 2e);
1 + e

e

)
. (7)

The converse also holds.

Proof: From Smith’s Theorem (Smith, 1981), there are random variables µ
and σ2, such that, for every n ≥ 2,

X[0n]|µ, σ2 ∼ N (µ1n, σ
2In),

in which σ2 > 0 with probability one. Consequently, considering that M =∑2
i=1 Xi = 2X̄ and Q =

∑2
i=1 X

2
i = S2 + 2X̄2 and denoting by θ = (θ1, θ2) =

(µ/σ2,−1/2σ2) the natural parameter of the distribution of (M,Q), given
(µ, σ2), we obtain the following conditional density of (M,Q) given θ:
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dPθ(M,Q) = exp{(θ1, θ2)(M,Q)t −D(θ)} dξ(M,Q),

in which dξ(M,Q) = 1
π
√

2
(Q−M2/2)−

1
2dλ, λ is the Lebesgue measure defined

on R
2 and D(θ) = −θ2

1/(2θ2)− log(−θ2).

The vector of partial derivates of D(θ) with respect to the natural parameters
θ1 and θ2 is given by

D′(θ) =

(
−θ1

θ2
,

θ2
1

2θ2
2

− 1

θ2

)
= E{(M,Q)|θ}.

Hence, by using the properties of the conditional expectation and the conditions
in Eq. (6), it follows that

E{D′(θ)|(M,Q)} = E{E{(M,Q)|θ1, θ2}|(M,Q)}
= 2E{E{(X3, X

2
3 )|(µ, σ2)}|X1, X2}

= 2e(X2 +X1; X
2
2 +X2

1 ) + 2(u, w).

From Theorem 3 in Diaconis & Ylvisaker (1979) the following prior density
for (µ, σ2) is obtained

π(µ, σ2)=K
{
1

σ2

} 1
2e

+ 3
2

exp

{
− 1

2eσ2
(w − u2

1− 2e)
}{
1− 2e
eσ2

} 1
2

exp

{
−1− 2e
2eσ2

(
µ− u

1− 2e
)2
}
.

Consequently, Eq. (7) is obtained. The converse is obtained by using the prop-
erties of the student-t distribution.

Proposition 1 extends some partial results from Arellano-Valle et al. (1994)
by providing a full predictivistic characterization of a location and scale mix-
ture of normal distributions. Extensions of this result to student-t linear
models can be found in Loschi et al. (2003b). As a consequence of Propo-
sition 1 the parameters µ and σ2 have the normal-inverse-gamma distribution
µ|σ2 ∼ N

(
u

1−2e
, eσ2

1−2e

)
and σ2 ∼ IG

(
1
2e
(w − u2

1−2e
), 1+e

2e

)
. Note that under

O(1)-invariance assumptions the representations in Eq. (6) are equivalent to
such a specification.

Note also that if we assume that the sequence of observations is O(1)-invariant
and that the conditions in Eq. (6) are also a reasonable assumption for the
sequence, the block predictive distribution considered in Eq. (4) is a student-t
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distribution and the block posterior distribution indicated in Eq. (5), f(θk|X[ij]),
is a normal-inverse-gamma distribution.

3 Applications: The Chilean Stock Market Behavior

The algorithms were coded in C++ and all tests were carried out on a PC, 166
MHz, 32 MB RAM, running Windows 98, and using a freely available compiler
(http://www.delorie.com/djgpp). In the Gibbs sampling scheme, we generate
5,000 samples starting from a vector of zeros. The convergence was reached
after 1,000 iterations, which were discarded. A lag of 1 was selected since the
correlation among the vectors was low. We have tried different starting points
and confirmed in practice that once convergence is reached, different starting
points will not lead to significantly different results (results not shown).

The ultimate goal of this section is to present a sensitivity analysis for the
PPM, developed here for several different degenerate prior distributions for p,
and to identify multiple change-points in the mean and variance (that is, the
expected return and volatility, respectively) of the returns of the ENDESA
stock series from 1987 to 1994, as seen in Figure 1. As usual in finance, the
returns were defined by using the transformation Xt = (Pt − Pt−1)/Pt−1, in
which Pt is the price at month t. Defined in such a way, the returns within
each block can be considered normally distributed, given the expected return
and volatility.

Year

R
et

ur
ns

87 88 89 90 91 92 93 94 95

-0
.2

0.
0

0.
2

0.
4

Fig. 1. Returns of ENDESA.

3.1 Change point and sensitivity analyses

In order to describe the uncertainty of the parameter, θ[ij] = (µ[ij], σ
2
[ij]), we

have adopted the same normal-inverse-gamma prior specification of Loschi
and Cruz (2002), µ[ij]| σ2

[ij] ∼ N (0, σ2
[ij]) and σ2

[ij] ∼ IG(0.01/2, 4/2). A zero
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Fig. 2. Posterior means of µ.
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Fig. 3. Posterior means of σ2.

mean prior was found reasonable for the data under analysis but the model
supports different values for the µ. Different prior specifications here would
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Fig. 4. Posterior distribution of ρ.

Table 1
Prior and posterior probability of the most probable partition.

probability
p prior posterior

0.01 4.007 × 10−7 0.3567
0.10 1.593 × 10−16 0.0173
0.50 2.524 × 10−29 0.0013
0.90 1.161 × 10−13 0.0285

lead to substantially different results, as noticed by Loschi and Cruz (2002).
Additionally, we have considered as prior cohesions a truncated geometric dis-
tribution with parameter p, which are known as Yao’s cohesions (Yao, 1984).
In order to evaluate the influence of several different prior specifications on
the posterior estimates of µ, σ2, B, and ρ, we have chosen p = 0.01, p = 0.1
(both indicating that a small number of changes is expected), p = 0.5, and
p = 0.9 (that is, prior specifications that suggest a high number of change
points in the prior evaluation).

Figures 2 and 3 show the posterior estimates of µ and σ2. The product esti-
mates of µ (σ2) were contrasted with the centered arithmetic moving average
(variance) of order 10 for the means (variances), respectively. It is noticeable
that more instants were identified as change points when high values of p were
considered. We also noticed that similar estimates were obtained for similar

10



   

 

 

 

 

  
                                                                                      

number of blocks

pr
ob

ab
ili

ty

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

p=0.01

            

  
     

  
                                                                          

number of blocks

pr
ob

ab
ili

ty

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

p=0.10

                                          
   

   
                                               

number of blocks

pr
ob

ab
ili

ty

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

p=0.50

                                                                               
  
 
      

       

number of blocks

pr
ob

ab
ili

ty

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

Fig. 5. Posterior distribution of B.

Table 2
Descriptive statistics for the posterior distributions of B.

prior posterior
p mean variance mean variance mode median Q1 Q3

0.01 0.94 0.931 5.093 2.158 4 4 4 6
0.10 9.40 8.460 17.08 9.682 16 17 15 19
0.50 47.0 23.50 50.52 23.44 50 50 47 54
0.90 84.6 8.460 84.75 9.263 85 85 83 87

values of p. For p = 0.1 we observed that the PPM estimates were very similar
to the näıve centered arithmetic moving averages.

Figure 4 presents the most probable partition for different values of p. Simi-
larly to the conclusions drawn earlier, note that high values of p led to more
instants identified as change points. Table 1 presents the prior and posterior
probabilities of the most probable partition. Note that the probability of oc-
currence of the most probable partition increased substantially from the prior
to the posterior evaluation.

From Figure 5 we can note that the posterior distributions for the number of
blocks, B (or for the number of change points, B − 1) have only one mode,
independently on the value assumed for p. We also can note that if p is small,
the posterior distribution of B is centered in low values (see Table 2, for
some descriptive statistics). It is also noticeable that for all values of p the
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probability of having one or more change points in the ENDESA series is 1.0.
Note from Table 2 that the summaries of location (mean, mode, median) of
the posterior distribution of B increase with p, as well as the mean of the prior
distribution of B. We also observe that the posterior variance is higher than
the prior variance for the cases p = 0.01, 0.10, and 0.90, but it is not true
for p = 0.50. It is also noticeable that the posterior variance increases as p
increases for all values of p but for p = 0.90. Finally, it is remarkable that the
inference procedure is quite sensitive to the choice of p and when p = 0.90 we
do not see much gain in information on the posterior mean of B. Note that not
all the models are acceptable. In the example, when B is estimated as 85 for
p = 0.90, it is quite hard to believe that almost all observations form different
blocks. This might be seen as an indication that the model is inappropriate.

3.2 A note on the model specification

We suppose that, conditional on the average stock return and its total stan-
dard deviation, any path followed by the returns within a block presenting
the same average returns and total standard deviation is equally likely to oc-
cur, which is mathematically expressed by the O(1)-invariance assumption
amongst the returns. Hence, assuming extendibility, that is, assuming that all
subsequences (Xi+1, . . . , Xj) are part of an infinite O(1)-invariant sequence,
we have that the joint distribution of the ENDESA returns in the same block,
X[ij], can be represented as a mixture of the product of the normal distribu-
tions N (µ[ij], σ

2
[ij]) (Smith, 1981).

We also assume the conditions in Eq. (6) understanding that they elucidate
the considerations by Mandelbrot (1963), as well as what was suggested by
Maeda (1996) to be reasonable for the Chilean stock market, which is that
large returns tend to be followed by large returns and small returns tend to be
followed by small returns, and changes in this behavior are produced by unan-
ticipated information. These assumptions lead to a predictive distribution with
heavy tails (student-t distribution) for the returns in the same block which
also discloses a structure of correlation amongst the returns. The Chilean stock
market is emerging and so more susceptible to the political atmosphere. Con-
sequently it can experience more changes than a developed market and the
student-t distribution is more appropriate to describe the behavior of its stock
returns (Duarte Jr. & Mendes, 1997; Mendes, 2000). Note that the normality
assumption adopted by Hsu (1984) (see also Hawkins, 2001) to describe the
behavior of the Dow Jones Industrial Average is stronger than our assumptions
here that the data are conditionally normally distributed.

Yao’s prior cohesions imply that the sequence of change points establishes a
discrete renewal process with the occurrence times identically distributed fol-
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lowing the geometric distribution. This type of product partition distribution
is adequate to represent reasonably well the situation described by Mandel-
brot (1963), and later by Maeda (1996) for the Chilean stock market, who
established that the changes in the behavior of the series of stock returns
are a consequence of information not previously anticipated, so that the past
change points are non-informative about the future change points.

4 Conclusions

In this paper we have presented a new full predictivistic approach for the
student-t model and showed how this way of modeling can be applied to
model the behavior of the stock market returns. We applied this predictivistic
approach for modeling the block of observations in change point problems.
We identified multiple change points both in the means µ and variances σ2 of
normal data sequentially observed by using an extension of the product parti-
tion model (PPM) developed by Barry & Hartigan (1993). The methodology
was applied to the identification of multiple change points in the mean returns
and volatilities of the ENDESA stock returns. A sensitivity analysis was also
provided.

We perceived that the predictivistic approach may provide a treatable way
to construct the block predictive distribution as well as the block posterior
distributions for the parameters of interest. We concluded that the prior spec-
ifications for p has a strong influence in the posterior distributions of both the
number of change points and the instants when the changes occurred. Also
heavily influenced are the product estimates of the means and variances.

Because p is crucial for the inferences, one could model p by means of a general
prior distribution, which certainly would add a lot of flexibility to the model, as
the analyst could also include uncertainly to the prior information. However,
a predictivistic modeling for a model including prior distributions for p is still
an open research question. In this case, the conjugacy of PPM model is lost
and it is impossible to use Yao’s procedure.
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