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Abstract

In this paper we work on a multi-level network optimization problem that integrates into

the same model important aspects of (i) discrete facility location, (ii) topological network

design, and (iii) network dimensioning. Potential applications for the model are discussed,

stressing its growing importance. The multi-level network optimization problem treated is

defined and a mathematical programming formulation is presented. We make use of a branch-

and-bound algorithm based on Lagrangean relaxation lower bounds to introduce some new

powerful auxiliary algorithms to exactly solve the problem. We conduct a set of computational

experiments that indicate the quality of the proposed approach.
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1 Introduction

The multi-level network optimization (MLNO) problem treated here was introduced recently [16],

and integrates into the same model discrete location, topological network design, and dimensioning

aspects. A multi-level network is illustrated in Figure 1. The MLNO problem is defined on a multi-

weighted digraph D = (N,A) where N is the set of nodes and A is the set of arcs. There are

candidate supply nodes which are grouped into m sets according to their ability to provide a

specific flow type, where m is the number of levels. There are demand nodes also grouped into

m sets. Similarly, all nodes in a specific set require a certain amount of the same flow type.

Transshipment or Steiner nodes may or may not be present. The objective is to determine an

optimum combination of supply nodes and arcs to provide the required flow type to all demand

nodes respecting certain rules of flow conservation and transformation. The costs involved are a

fixed setup cost associated with supply nodes and arcs chosen and a variable cost dependent on

the amount of flow within each arc.

Figure 1 goes around here

A better comprehension about multi-level networks is relevant in theoretical terms because

they can be viewed as a generalization of several important network optimization problems such as

topological network design problems, fixed-charge problems, or uncapacitated location problems.

A bibliography about topological network design problems in general can be found in [44]. Many

network optimization problems within telecommunication applications have been studied including

topological network design problems [28, 7], topological network design and dimensioning problems

[38], and routing problems [5]. The fixed-charge network flow problem [45], which is a special case

that represents an important class of mixed-integer programming problems, was studied in [36] and

[17]. The Steiner problems in graphs [39] is probably the most studied subproblem. Although it is

a classical model, recent new results are being discovered for the problem [33]. The uncapacitated

location problem [22] is another relevant subproblem. The solution of this problem has many

implications in the real world and recent advances continue to be made [24].

The study of multi-level models is also important in practice. Potential applications for the

MLNO problem include the design of the electrical power systems interconnecting the power-

stations and load centers. The MLNO problem is able to represent some of the most important

technical and safety issues involved such as (i) the use of extra-high voltage lines (typically from

275 kV to 1,000 kV) for efficient electric energy transmission, (ii) the use of intermediate (11

kV) and low (220 V) voltage levels in densely occupied zones, (iii) accommodation of all consumer

classes namely domestic, commercial, and industrial, and their different voltage level requirements,

and (iv) problems concerning minimum safety norms for location of high voltage sub-stations and

consumer sub-stations.
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- first, second and m-th level demand nodes

- first, second and m-th level candidade supply nodes

- first, second and m-th level flows

- transshipment nodes

Figure 1: A Multi-level Network
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Telecommunication networks are another possible application for MLNO problems. With the

introduction of digital technology, new services appeared yielding mixed networks demanding dif-

ferent flows, e.g. voice simultaneously with non-voice services such as transmission of digital images

and sounds in multimedia applications, high-speed data, etc. Additionally, different transmission

mediums with different transmission rates have been coexisting for a long time, e.g. radio-links,

optical fibers, and copper cables. The multi-level model could deal with these issues properly.

Little research has been done on the MLNO problem. Multi-level networks have appeared in

some recent works but they do not consider the integration of location, design, and dimensioning

aspects in the same model [19, 7, 6] nor they provide the mathematical formulation and bounds

for the general problem [18, 42].

As a final remark, generally speaking, MLNO problems have been traditionally solved by

methodologies that adopt a strategy of solving partial problems [43, 27, 9]. The overall problem

is separated into smaller subsystems in such a way that it does not cause appreciable errors. The

model we are working with here is a departure from such an approach.

The paper is outlined as follows. In Section 2, we present a mathematical programming

formulation for the MLNO problem. Section 3 is devoted to all algorithms we have developed,

which are a branching variable choice algorithm and a Lagrangean relaxation based reduction

algorithm. Section 4 is intended to present all computational results. In this section, we try

to demonstrate the usefulness of our algorithms using randomly generated problems. Section 5

presents conclusions, final remarks, discussion of open questions, and some possible extensions.

2 Problem Formulation

In the definition of the MLNO problem, we have assumed that (i) the arc cost parameters include

a non-negative fixed cost of using the arc and a non-negative cost per unit of flow, (ii) there is a

cost of transforming flows from one level to another, representing the costs of the hardware that

must be present to interconnect the different level networks, (iii) the supply capacity of the first

level candidate supply nodes equals the sum of all demands in all levels, and (iv) the candidate

supply nodes of all other levels are only “transformation” nodes, receiving flows from one level

and converting them to the adjacent in a 1:1 ratio.

Regarding the last assumption, we remark that the ratio 1:1 keeps the model simpler and does

not make it less useful. It would be possible to model whatever ratio by convenient adjustments

on the flow scales. The electrical engineers are used to do so in studying electric power systems

referring all voltages to one side of the transformers.

The following notation is used in the formulation of MLNO problem:

m - number of levels;
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Rl - set of l-th level candidate supply nodes;

Dl - set of l-th level demand nodes;

di - demand of the l-th level demand node i ∈ Dl;

T l - set of l-th level transshipment nodes defined as follows: T l = N \ (Rl ∪ Dl ∪ Rl+1)

for l = 1, 2, . . . , (m − 1), and Tm = N \ (Rm ∪ Dm);

cl
ij - non-negative per unit cost for l-th level flow on arc (i, j) ∈ A;

xl
ij - l-th level flow through arc (i, j) ∈ A;

f l
ij - non-negative fixed cost for using arc (i, j) ∈ A to support l-th level flow;

yl
ij - boolean variable which assumes the value 1 or 0 depending on whether or not the

arc (i, j) is being used to support l-th level flow;

fi - non-negative allocation cost for the l-th level candidate supply node i ∈ Rl;

zi - boolean variable which is set to 1 or 0 depending on whether or not the node i ∈ Rl

is being selected to provide l-th level flow;

M l - capacity on all arcs in the l-th level, but relaxed in this paper and considered a big

enough number, i.e. M l =
∑m

L=l

∑

i∈DL di;

sl - capacity on all l-th level candidate supply nodes, but also relaxed in this paper, i.e.

sl = M l;

δ+(i) - set {j|(i, j) ∈ A};

δ−(i) - set {j|(j, i) ∈ A}.

The MLNO problem may be described by the following mathematical programming formulation

[16]:

(M):

min
m

∑

l=1





∑

(i,j)∈A

(

cl
ijx

l
ij + f l

ijy
l
ij

)

+
∑

i∈Rl

fizi



 , (1)

s.t.:

∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji = −





∑

j∈δ+(i)

xl−1
ij −

∑

j∈δ−(i)

xl−1
ji



 , ∀
i ∈ Rl,
l=2,3,...,m,

(2)

∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji = 0, ∀

i ∈ T l,
l=1,2,...,m,

(3)
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∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji = −di, ∀

i ∈ Dl,
l=1,2,...,m,

(4)

∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji ≤ slzi, ∀

i ∈ Rl,
l=1,2,...,m,

(5)

xl
ij ≤ M lyl

ij , ∀
(i, j) ∈ A,
l=1,2,...,m,

(6)

xl
ij ≥ 0, ∀

(i, j) ∈ A,
l=1,2,...,m,

(7)

yl
ij ∈ {0, 1}, ∀

(i, j) ∈ A,
l=1,2,...,m,

(8)

zi ∈ {0, 1}, ∀
i ∈ Rl,
l=1,2,...,m.

(9)

The objective function (1) minimizes (i) the total variable flow cost for all levels, (ii) the total

fixed cost associated with the use of the arcs, and (iii) the total fixed cost resulting from the

use of the candidate supply nodes. Constraints (2) ensure the network flow conservation between

adjacent levels at each candidate supply node, constraints (3), and (4) are the usual network

flow conservation equalities at each Steiner or transshipment node and at each demand node.

Constraints (5) ensure there is no flow transformation in a candidate supply node if it is not

selected, and constraints (6) express the fact that the flow through an arc must be zero if this arc

is not included in the design.

In this paper, we shall define some auxiliary sets that will be helpful in describing the proposed

algorithms. So let us define J0 ⊆ N , the set of nodes that have been fixed as not-present in an

optimal solution by some algorithm, J1 ⊆ N , the set of nodes that have been fixed as present

in an optimal solution, and J = N \ (J0 ∪ J1), the set of free or not fixed nodes. Similarly, let

us define Kl
0 ⊆ A, the set of arcs fixed as not-present in the l-th level, Kl

1 ⊆ A, the set of arcs

fixed as present, and Kl = A \ (Kl
0 ∪ Kl

1), the set of free or undefined arcs. The formulation

(M), re-written and incorporating these new sets, is able to represent either the problem after

the application of the reduction test as well as all subproblems created by the branch-and-bound

algorithm, as presented in the next section.

3 Algorithm Descriptions

The multi-level network optimization problem is NP-hard since it generalizes other NP-hard

optimization problems such as the Steiner problem in graphs [26] or the uncapacitated location

problem [22]. If the model (M) had only the first level, one supply node, null costs cl
ij and fi,

and more than two demand nodes, it would be simply representing a Steiner problem in graphs.

Thus, solving the MLNO problem means solving an embedded Steiner (NP-hard) problem.

Considering its NP-hardness, one possibility to solve the MLNO problem is to try to find

heuristic algorithms that give good solutions within an acceptable amount of time. An example
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of a widely applied technique is local search in which preselected operations are used in order to

improve an initial solution continuing until no further improvements can be made (e.g. simulated

annealing, [1], and tabu search, [31, 32]). Although rarely, it is possible to predict how well

heuristic algorithms will perform in practice by formally analyzing them beforehand. A number

of results in this area has been obtained for similar problems [3, 37, 11, 34, 2]. Such results are

viewed as proving performance guarantees for heuristic algorithms, which is a vast research field.

We shall concentrate in another alternative. After acknowledging the apparent inevitability

of exponential time complexity to prove optimality, we will seek to obtain as much improvement

over straightforward exhaustive search as possible. Among the most widely used approaches to

reduce the searching effort are those based on branch-and-bound techniques.

The template of the non-recursive version used here is depicted in Figure 2. In that description,

UBEST is the global upper bound and Γ is a list of unexplored problems (M)i, each of which is of

the form Zi
M = min{cx s.t.: x ∈ Si}, such that Si ⊆ S and Si ∪ Si+1 = S, where S is the set of

feasible solutions. Associated with each problem in Γ are a lower bound Li ≤ Zi
M and an upper

bound U i ≥ Zi
M . For memory economy purposes, the search rule applied was last-in-first-out

which yields a depth-first search strategy.

Figure 2 goes around here

algorithm Branch-and-Bound
UBEST ← +∞
Γ← {(M)0}
while Γ 6= ∅ do

/* search rule */
select and delete a problem (M)i from Γ

/* bound rule */
Compute Lower and Upper Bounds(Li,U i)
update UBEST

/* branch rule */
Reduce[(M)i]
if Li < UBEST and (M)i is not a leaf then

Γ← Γ ∪ {(M)2i+1} ∪ {(M)2i+2}
end if

end while

end algorithm

Figure 2: Branch-and-Bound Algorithm

3.1 Lower Bounds

A well-known technique to derive lower bounds is the Lagrangean relaxation, which is usually

coupled with subgradient optimization procedures [23]. The Lagrangean has been successfully

applied in many similar combinatorial optimization problems, such as location problems [10, 25,
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41], design of distribution systems [30], traveling salesman problems [35], design of computer

networks [27, 28], and to the MLNO problem itself [16], with promising results.

There are many ways to derive a Lagrangean relaxation for model (M). It was proposed to

drop constraints (5) , by using the Lagrangean multipliers vi ≥ 0, and constraints (6), by using

Lagrangean multipliers wl
ij ≥ 0. Then, the Lagrangean function is:

L(x,y, z;v,w1,w2, . . . ,wm) =

m
∑

l=1





∑

(i,j)∈A

(

cl
ijx

l
ij + f l

ijy
l
ij

)

+
∑

i∈Rl

fizi



 +

m
∑

l=1

∑

i∈Rl∩J

vi





∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji − slzi,



 +

m
∑

l=1

∑

(i,j)∈Kl

wl
ij

(

xl
ij − M lyij

)

, (10)

which results in the following Lagrangean relaxation:

(LRv,w1,w2,...,wm):

L(v,w1,w2, . . . ,wm) = min
v,w1,w2,...,wm≥0

L(x,y, z;v,w1,w2, . . . ,wm), (11)

s.t.:

(2)–(4), (7)–(9).

Supposing that L(v,w1,w2, . . . ,wm) = L(x∗,y∗, z∗;v,w1,w2, . . . ,wm), the subgradient vec-

tor γ of the function L at point (v,w1,w2, . . . ,wm) is:

γ =















∑

j∈δ+(i)

xl
ij

∗
−

∑

j∈δ−(i)

xl
ji

∗
− slzi

∗,





i∈Rl∩J,

l=1,2,...,m

,
(

xl
ij

∗
− M lyl

ij

∗
)

(i,j)∈Kl,

l=1,2,...,m











. (12)

Once feasible values for the Lagrangean multipliers v, w1, w2,. . ., and wm are given, the

computation of the function L(v,w1,w2, . . . ,wm) is reduced to solve easy subproblems (in such

context, easy is used in reference to polynomially solvable problems):

L(v,w1,w2, . . . ,wm) = L1(v,w1,w2, . . . ,wm) +

L2(v,w1,w2, . . . ,wm) +

L3(v,w1,w2, . . . ,wm), (13)

where L1(v,w1,w2, . . . ,wm), L2(v,w1,w2, . . . , wm), and L3(v,w1,w2, . . . ,wm) are optimal

solutions of the subproblems shown below.
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Subproblem (L1)

The subproblem (L1) is:

(L1):

L1(v,w1,w2, . . . ,wm) = min
m

∑

l=1

∑

(i,j)∈A

Cl
ijx

l
ij , (14)

s.t.:

∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji = −





∑

j∈δ+(i)

xl−1
ij +

∑

j∈δ−(i)

xl−1
ji



 , ∀
i ∈ Rl,
l=2,3,...,m,

(15)

∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji = 0, ∀

i ∈ T l,
l=1,2,...,m,

(16)

∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji = −di, ∀

i ∈ Dl,
l=1,2,...,m,

(17)

∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji ≤ sl, ∀

i ∈ Rl ∩ J1,
l=1,2,...,m,

(18)

∑

j∈δ+(i)

xl
ij −

∑

j∈δ−(i)

xl
ji = 0, ∀

i ∈ Rl ∩ J0,
l=1,2,...,m,

(19)

xl
ij ≤ M l, ∀

(i, j) ∈ Kl
1,

l=1,2,...,m,
(20)

xl
ij ≤ 0, ∀

(i, j) ∈ Kl
0,

l=1,2,...,m,
(21)

xl
ij ≥ 0, ∀

(i, j) ∈ A,
l=1,2,...,m,

(22)

where

Cl
ij =























































+∞ (i, j) ∈ Kl
0,

cl
ij (i, j) ∈ Kl

1, j 6∈ Rl ∩ J, i 6∈ Rl ∩ J,
cl
ij + vi (i, j) ∈ Kl

1, j 6∈ Rl ∩ J, i ∈ Rl ∩ J,
cl
ij − vj , (i, j) ∈ Kl

1, j ∈ Rl ∩ J, i 6∈ Rl ∩ J,
cl
ij + vi − vj , (i, j) ∈ Kl

1, j ∈ Rl ∩ J, i ∈ Rl ∩ J,
cl
ij + wl

ij (i, j) ∈ Kl, j 6∈ Rl ∩ J, i 6∈ Rl ∩ J,
cl
ij + wl

ij + vi (i, j) ∈ Kl, j 6∈ Rl ∩ J, i ∈ Rl ∩ J,
cl
ij + wl

ij − vj , (i, j) ∈ Kl, j ∈ Rl ∩ J, i 6∈ Rl ∩ J,
cl
ij + wl

ij + vi − vj , (i, j) ∈ Kl, j ∈ Rl ∩ J, i ∈ Rl ∩ J.

(23)

The optimum of (L1) is reachable using a shortest path algorithm. The problem can be solved

level by level. The optimum for the first level is to connect nodes in D1 to nodes in R1 using the

shortest paths and avoiding arcs in set K1
0 . For the second level, the optimum is to connect nodes

in D2 also to nodes in R1 via shortest paths but necessarily using some node in set R2, avoiding

arcs in sets K1
0 and K2

0 , and so on for all remaining levels. The complete algorithm is seen in

Figure 3.

Figure 3 goes around here
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algorithm

/* σl
i is the minimum per unit cost to bring */

/* l-th level flow from set R1 to node i ∈ N ; */
/* function SH(i, j, l) returns the shortest */

/* path length from i to j using costs Cl
ij ; */

L1← 0
for ∀j ∈ R1 do

if j ∈ J then

σ0
j ← 0

else

σ0
j ← +∞

end if

end for

for l← 1 to m do

for ∀j ∈ Dl do

σl
j ← min

i∈Rl

[σl−1

i + SH(i, j, l)]

L1← L1 + σl
j ∗ dj

end for

if l 6= m do

for ∀j ∈ Rl+1 do

if j ∈ J then

σl
j ← min

i∈Rl

[σl−1

i + SH(i, j, l)]

else

σl
j ← +∞

end if

end for

end if

end for

end algorithm

Figure 3: Algorithm for Problem (L1)

The shortest simple path algorithm for arbitrary costs has a worst case time complexity

O(|N | |A|) if there are no negative cost circuits [12]. Thus, from Theorem 1 [16], the algo-

rithm for solving problem (L1) presented in Figure 3 efficiently implemented has worst case time

complexity O(m |N | |A|) which translates to O(m |N |3) in dense networks.

Theorem 1 The problem (L1) on graph G = (N,A) with weights as defined in Equation (23)

does not have negative cost circuits.

Proof (by construction): Let Cl be an arbitrary circuit in the l-th level, A(Cl) ⊆ A be the set

of arcs in that circuit and N(Cl) ⊆ N be the set of nodes in the circuit. From Equation (23), the

per unit cost associated with circuit Cl must be non-negative:

∑

(i,j)∈A(Cl)

Cl
ij =

∑

(i,j)∈A(Cl)

cl
ij +

∑

(i,j)∈A(Cl)∩Kl

wl
ij +

∑

i∈N(Cl)∩Rl∩J

vi −
∑

j∈N(Cl)∩Rl∩J

vj

=
∑

(i,j)∈A(Cl)

cl
ij +

∑

(i,j)∈A(Cl)∩Kl

wl
ij
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≥ 0.

Subproblem (L2)

The subproblem (L2) is a subset selection problem:

(L2):

L2(v,w1,w2, . . . ,wm) = min

m
∑

l=1

∑

(i,j)∈A

(

f l
ij − wl

ijM
l
)

yl
ij , (24)

s.t.:

yl
ij ∈ {0, 1}, ∀

(i, j) ∈ Kl,
l=1,2,...,m,

(25)

yl
ij = 1, ∀

(i, j) ∈ Kl
1,

l=1,2,...,m,
(26)

yl
ij = 0, ∀

(i, j) ∈ Kl
0,

l=1,2,...,m,
(27)

which can be solved by an algorithm with time complexity O(m|A|), or O(m|N |2) for dense

networks.

Subproblem (L3)

Similarly, the problem (L3) is also a subset selection problem:

(L3):

L3(v,w1,w2, . . . ,wm) = min

m
∑

l=1

∑

i∈Rl

(

fi − vis
l
)

zi, (28)

s.t.:

zi ∈ {0, 1}, ∀
i ∈ Rl ∩ J,
l=1,2,...,m,

(29)

zi = 1, ∀
i ∈ Rl ∩ J1,
l=1,2,...,m,

(30)

zi = 0, ∀
i ∈ Rl ∩ J0,
l=1,2,...,m,

(31)

solvable by an algorithm with time complexity O(|N |).

3.2 Upper Bounds

There are many possibilities of computing an upper bound for model (M). The method proposed

here takes advantage of the problem (L1) optimal solution. Actually, this solution may be turned

into a feasible solution for model (M) if feasibility of the previously dropped constraints (5) and

(6) is ensured. Using the same arcs as in the optimal solution of problem (L1), we have just to

add to the flow costs cl
ij , the fixed costs of the used arcs f l

ij , and the fixed costs of the used supply

nodes fi. Clearly, the proposed heuristic is polynomial.
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3.3 Branching Strategy

In order to generate the child problems (M)2i+1 and (M)2i+2, the simplest branching strategy

is to choose the first free decision variable, Figure 4. It is easily seen that the worst case time

complexity of such procedure is O(m(|N | + |A|)).

Figure 4 goes around here

procedure Chosen Arc First Free
for l = 1 to m do

/* try to choose a node */

for ∀i ∈ Rl do

if i ∈ J then

return i

end if

end for

/* otherwise try to choose an arc */
for ∀(i, j) ∈ A do

if (i, j) ∈ Kl then

return (i, j), l

end if

end for

end for

return FAIL

end procedure

Figure 4: “Naive” Branching Strategy

However, the branching strategy is fundamental in the performance of branch-and-bound algo-

rithms. The use of clever choices coupled with the use of good lower and upper bounds can reduce

significantly the number of nodes explicitly examined in the branch-and-bound search tree with

consequent reduction in the overall processing time. The optimal solutions of MLNO problems

have an important property that can be very helpful. The property, stated by the Theorem 2, is

an extension of a similar result obtained for the fixed-charge network flow problem [17].

Theorem 2 If the MLNO problem has an optimum solution then there is an optimum positive

flow arc set in such way that at most one arc of each level enters into each node.

Proof (by contradiction): Let us suppose that Theorem 2 is not satisfied by any optimal

solution and that node u has two entering arcs in the l-th level say (s, u) and (t, u). There must

be a set of arcs in the optimal solution forming a directed path without cycles from some l-th level

candidate supply node to node u passing through node s, i.e. using arc (s, u), called Ps. There

must be also a directed path without cycles using arc (t, u), called Pt. Without loss of generality,

let us suppose that
∑

(i,j)∈Ps

cl
ij ≤

∑

(i,j)∈Pt

cl
ij .
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Thus, disabling arc (t, u) and transferring its flow, xtu, from path Pt to path Ps there will be at

least the following reduction in the objective function:





∑

(i,j)∈Pt

cl
ij −

∑

(i,j)∈Ps

cl
ij



 xl
ij + f l

tu ≥ 0.

The resulting solution is at least as good as the original and satisfies Theorem 2, which contradicts

our initial assumption.

Thus, a possibly much better algorithm is to choose the first free decision variable that does

not violate Theorem 2, Figure 5.

Figure 5 goes around here

procedure Chosen Arc No Cycling
/* try to choose a first level candidate supply node */

for ∀i ∈ R1 do

if i ∈ J then

return i

end if

end for

/* otherwise go throughout all levels *
for l = 1 to m do

/* try to choose a (l + 1)-th level candidate supply node */
for ∀i ∈ Rl+1 do

if i ∈ J then

return i

end if

end for

/* otherwise try to choose an arc in the l-th level */
/* compute set of reached nodes T */

T ← ∅
for ∀i ∈ N do

if i ∈ Rl ∩ J1 then

T ← T ∪ {i}
end if

end for

for ∀(i, j) ∈ A do

if (i, j) ∈ Kl
1

then

T ← T ∪ {i} ∪ {j}
end if

end for

/* search new eligible free arc */
if there is i ∈ Dl ∪ (Rl+1 ∩ J1) such that i 6∈ T then

for ∀(i, j) ∈ A do

if (i, j) ∈ Kl and i ∈ T and j 6∈ T then

return (i, j), l

end if

end for

end if

end for

return FAIL

end procedure

Figure 5: Improved Branching Strategy

The choice of a candidate supply node is decided in at most O(|N |) operations. The compu-

tation of set T may be done O(|N |+ |A|). The choice of an arc is decided in at most O(|N |+ |A|)
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operations noting that the statement “if there is i ∈ Dl ∪ (Rl+1 ∩ J1) such that i 6∈ T then”,

Figure 5, may be done O(|N |). So, an O(m(|N | + |A|)) overall worst case time complexity re-

sults, surprisingly the same as in the Chosen Arc First Free procedure. Thus, using the Cho-

sen Arc No Cycling procedure is at most as bad as using the former procedure.

3.4 Reduction Procedure

The new lower bound that would result from forcing the nodes and arcs in or out of the solution can

be easily estimated from the Lagrangean relaxation. If the lower bound resulting from imposing

some condition of the Lagrangean relaxation is above the best upper bound, then the condition

in consideration cannot be satisfied in the optimum. This idea is an extension of the reduction

procedures developed in [17] to solve the fixed-charge networks flow problem, with very good

results in practice. In [14], some terms of the corresponding Lagrangean function have been

used to estimate the increment in the lower bound under the imposed condition. We propose

a reduction procedure that uses lower bounds computed by means of a complete resolution of

the Lagrangean dual problem, (LRv,w1,w2,...,wm), but without subgradient optimizations. The

algorithm is presented in Figure 6.

Figure 6 goes around here

In the worst case, the loop “repeat statements until condition”, Figure 6, stops after O(|N |+

m|A|) iterations considering the worst case in which only one reduction occurs per iteration. The

statement “for ∀i ∈ Rl ∩ J do statements end for” is O(|N |m|N ||A|) since it involves O(|N |)

lower bound computations which are O(m|N ||A|). Similarly, the statement “for ∀(i, j) ∈ Kl

do statements end for” is O(|A|m|N ||A|). So, the resulting worst case time complexity of the

reduction algorithm is O
(

m2|N ||A|(|N | + m|A|)(|N | + |A|)
)

which is polynomial.

4 Computational Experience

All algorithms developed here were coded in C and are available from the authors upon request. All

tests were performed with the use of a workstation Sun Ultra 1 Model 140, RAM 128 MB, running

the Sun operating system SunOS, Rel. 5.5.1. All CPU times reported are in seconds, excluding

all I/O operations and considering that the processor was dedicated to solve the instance.

The test problems were randomly generated by the following algorithm. Using the uniform

probability distribution, |N | nodes were allocated in a 100 × 100 square and |N | − 1 edges were

defined to ensure a connected network. Additional edges up to the number |A|/2 were generated.

Finally, the undirected graph resulting was converted into a directed graph replacing each edge

by two opposite side arcs. Basic weights Ωij were defined as the Euclidean distance between the

extremities i and j.
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procedure Reduce(M)
/* initialize set of nodes and arcs recently fixed */

FJ ← ∅; FKl ← ∅, l = 1, 2, . . . , m

/* proceed with reduction */
repeat

for l = 1 to m do

/* try to fix free supply nodes */

for ∀i ∈ Rl ∩ J do

J ← J \ {i}; J1 ← J1 ∪ {i}
if L(v,w1,w2, . . . ,wm) > UBEST then

J1 ← J1 \ {i}; J0 ← J0 ∪ {i}; FJ ← FJ ∪ {i}
else

J1 ← J1 \ {i}; J0 ← J0 ∪ {i}
if L(v,w1,w2, . . . ,wm) > UBEST then

J0 ← J0 \ {i}; J1 ← J1 ∪ {i}; FJ ← FJ ∪ {i}
else

J0 ← J0 \ {i}; J ← J ∪ {i}
end if

end if

end for

/* try to fix free arcs */

for ∀(i, j) ∈ Kl do

Kl ← Kl \ {(i, j)}; Kl
1 ← Kl

1 ∪ {(i, j)}
if L(v,w1,w2, . . . ,wm) > UBEST then

Kl
1 ← Kl

1 \ {(i, j)}; Kl
0 ← Kl

0 ∪ {(i, j)}; FKl ← FKl ∪ {(i, j)}
else

Kl
1 ← Kl

1 \ {(i, j)}; Kl
0 ← Kl

0 ∪ {(i, j)}
if L(v,w1,w2, . . . ,wm) > UBEST then

Kl
0 ← Kl

0 \ {(i, j)}; Kl
1 ← Kl

1 ∪ {(i, j)}; FKl ← FKl ∪ {(i, j)}
else

Kl
0 ← Kl

0 \ {(i, j)}; Kl ← Kl ∪ {(i, j)}
end if

end if

end for

end for

until no reduction has occurred

end procedure

Figure 6: Reduction Algorithm

This procedure is similar to that one presented by Aneja [4] that has been extensively used

since then for creating random testing instances for the Steiner problem in graphs [46, 13, 21]. The

uniform probability distribution was also used to compose the sets Dl and Rl, l = 1, 2, . . . ,m, with

the respective cardinalities, each node being chosen at most once. All demands were considered

unitary. The costs f l
ij and cl

ij actually used were derived from the basic weights Ωij using constant

factors as presented in Table 1.

The parameters |N |, |A|, |R1|, |D1|, |R2|, |D2|, f l
ij , cl

ij , and fi assumed several values, thus

trying to cover different networks. The objective is to provide a simplified reference table which

one could use to estimate the actual processing time for the specific network he has on hand.

The second level costs were considered greater than the first level costs, which is a reasonable

assumption in multi-level networks. Usually, the higher levels take advantage of concentrated
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demands and are allowed to use special medium with lower costs. On the other hand, the lower

levels usually must use less efficient mediums with higher costs. For a more detailed study on

one-level networks involving different ratios between fixed and variable costs, see [17].

Table 1 presents the parameters used for each problem tested, the solution obtained in the

first node of the search tree, the GAP = 100% × (UBEST − L0)/UBEST, and the CPU time spent

in the first node. The last column shows the optimal solutions obtained after the hole search.

It is remarkable that only in 2 cases (problems 6 and 32, Table 1) the optimal solution was not

obtained in the first node. Besides offering large gaps, mainly in those problems with large fi,

the Lagrangean relaxation based heuristics proves to be effective for solving the MLNO problem

instances shown in Table 1.

Table 2 presents a comparison between the two branching strategies and the remarkable effect

of the reduction algorithm working under the Chosen Arc No Cycling procedure. The combined

use of the reduction algorithm and the Chosen Arc No Cycling procedure kept the number of

explored branch-and-bound nodes surprisingly low as well as the CPU time. As an overall gain,

larger instances became tractable by the workstation used.

Finally, the last column shows the CPU times obtained by means of the commercial software

CPLEX [15], running in the same machine used to perform the previous tests. The results seem to

indicate that our approach is competitive. Besides, the procedures developed here could be adapted

and incorporated into commercial softwares as CPLEX, possibly improving their performance as

well.

Table 1 goes around here

Table 2 goes around here

5 Conclusions

In this paper, we have dealt with a multi-level network optimization (MLNO) problem and stressed

its importance in theoretical and practical terms. The problem was formulated and a branch-

and-bound algorithm based on Lagrangean relaxation was used to introduce a new strategy for

branching based on an optimum solution property and to develop a new reduction test based

on Lagrangean relaxation. Although computationally inefficient with exponential worst case time

complexity, the branch-and-bound algorithm may be quite useful in practice for certain sized prob-

lem instances as our computational results have demonstrated. Additionally, it was proved that

the branching strategy and the reduction algorithm can accommodate larger problem instances.

Some questions remain open such as whether there would be better methods for generating the

bounds the branch-and-bound algorithm uses, better branching strategies, or even more powerful
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Table 1: Results on the First Node

First Node Branch-and-Bound

Problem |N | |A| |R1| |D1| |R2| |D2|
f1

ij

Ωij

c1
ij

Ωij

f2
ij

Ωij

c2
ij

Ωij
fi UBEST GAP(%) CPU(s) Uopt

1 4 6 1 1 1 1 1 8 2 128 0 9,732 0.10 0.02 9,732
2 8 9,732 0.10 0.02 9,732
3 1024 11,780 0.08 0.02 11,780
4 12 1 1 1 1 1 8 2 128 0 12,930 0.20 0.04 12,930
5 8 12,946 0.20 0.04 12,946
6 1024 15,007 0.37 0.05 14,978∗∗

7 8 14 1 1 1 4 1 8 2 128 0 35,232 0.89 0.12 35,232
8 8 35,248 0.89 0.06 35,248
9 1024 37,280 0.84 0.06 37,280
10 2 4 1 8 2 128 0 26,300 0.95 0.06 26,300
11 8 26,316 0.94 0.06 26,316
12 1024 28,348 0.88 0.07 28,348
13 28 1 1 1 4 1 8 2 128 0 28,304 1.20 0.13 28,304
14 8 28,320 1.20 0.13 28,320
15 1024 30,352 1.10 0.13 30,352
16 2 4 1 8 2 128 0 27,685 1.20 0.14 27,685
17 8 27,709 1.30 0.14 27,709
18 1024 30,757 4.50 0.14 30,757
19 56 1 1 2 4 1 8 2 128 0 17,724 1.60 0.37 17,274
20 8 17,748 1.60 0.38 17,748
21 1024 20,796 6.30 0.38 20,796
22 16 30 1 1 2 4 1 8 2 128 0 38,753 0.93 0.19 38,753
23 8 38,769 0.93 0.19 38,769
24 1024 40,801 0.88 0.19 40,801
25 4 4 1 8 2 128 0 37,345 1.10 0.21 37,345
26 8 37,369 1.10 0.21 37,369
27 1024 40,417 3.60 0.22 40,417
28 8 4 1 8 2 128 0 62,241 0.33 0.24 62,241
29 8 62,257 0.33 0.24 62,257
30 1024 64,289 0.32 0.24 64,289
31 60 1 1 4 4 1 8 2 128 0 24,375 1.50 0.54 24,375
32 8 24,399 1.60 0.54 27,102∗∗

33 1024 27,447 5.10 0.63 27,447
34 8 4 1 8 2 128 0 25,418 1.80 0.61 25,418
35 8 25,458 1.90 0.61 25,458
36 1024 30,538 11.00 1.10 30,538
37 120 1 1 2 4 1 8 2 128 0 16,609 1,20 1.70 16,609
38 8 16,633 1,30 1.70 16,633
39 1024 19,681 6,20 1.70 19,681

∗∗ Uopt 6= UBEST
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Table 2: Comparisons for all Algorithms

Branch-and-Bound
Chosen Arc First Free Chosen Arc No Cycling Plus Reduction CPLEX

Problem Nodes CPU(s) Nodes CPU(s) Nodes CPU(s) Nodes CPU(s)

1 11 0.09 9 0.06 1 < 0.01 0 0.01
2 11 0.09 9 0.06 1 < 0.01 0 0.01
3 11 0.09 9 0.06 1 < 0.01 0 0.01
4 21 0.40 15 0.22 3 0.01 3 0.02
5 21 0.34 15 0.22 3 0.01 3 0.01
6 21 0.35 15 0.22 5 0.04 3 0.01
7 6,655 170.00 45 1.10 1 0.01 0 0.01
8 6,655 170.00 45 1.10 1 0.01 0 0.01
9 6,655 170.00 45 1.10 1 0.01 0 0.01
10 4,873 130.00 89 2.40 3 0.01 9 0.01
11 4,655 120.00 87 2.40 1 0.01 11 0.02
12 3,341 89.00 39 1.10 1 0.01 11 0.02
13 > 114,400 ** 275 17.00 1 0.04 104 0.09
14 > 127,100 ** 275 16.00 1 0.04 104 0.09
15 > 167,500 ** 275 16.00 1 0.04 104 0.09
16 > 134,200 ** 479 29.00 1 0.05 124 0.13
17 > 90,500 ** 479 30.00 1 0.05 108 0.12
18 > 71,200 ** 479 28.00 1 0.05 150 0.15
19 > 32,400 ** 19,427 3,200.00 5 2.10 383 0.50
20 > 53,700 ** 19,427 3,100.00 5 2.00 336 0.46
21 > 49,300 ** 19,427 3,100.00 5 2.10 377 0.48
22 > 96,100 ** 875 65.00 3 0.06 0 0.02
23 > 64,400 ** 855 64.00 1 0.05 0 0.01
24 > 103,200 ** 45 3.50 1 0.05 0 0.01
25 > 90,100 ** 7,667 600.00 3 0.07 10 0.02
26 > 33,800 ** 7,125 560.00 1 0.07 19 0.03
27 > 47,700 ** 631 50.00 1 0.07 17 0.03
28 > 95,600 ** > 95,100 ** 3 0.10 1 0.02
29 > 98,000 ** > 83,200 ** 1 0.10 1 0.03
30 > 86,700 ** 79 7.40 1 0.10 1 0.02
31 > 34,700 ** > 37,900 ** 3 0.24 288 0.45
32 > 34,500 ** > 38,300 ** 1 0.24 233 0.40
33 > 31,800 ** 2,505 570.00 3 1.70 294 0.50
34 > 27,900 ** > 35,100 ** 255 120.00 678 1.00
35 > 15,700 ** > 35,300 ** 151 70.00 857 1.30
36 > 15,300 ** > 33,500 ** 27 17.00 31,199 46.00
37 > 9,400 ** > 11,700 ** 3 0.62 804 2.00
38 > 10,100 ** > 11,600 ** 1 0.61 958 2.20
39 > 10,500 ** > 11,300 ** 1 0.84 900 2.30

∗∗ Time overflow (> 8,000.00 seconds)
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reduction tests such as those presented for Steiner problems in graphs [40, 21] and hierarchical

network design problems [20]. Future work might explore these issues and also the development

of polynomial time complexity heuristics perhaps with theoretical performance guarantees similar

to those presented in [8] for the multi-level network design problems which are closely related to

the MLNO problem treated in this paper. Finally, with the emerging emphasis on topological

robustness and reliability [6, 29], it is worth mentioning the importance of the study of enhanced

models with connectivity constraints which is a very promising area for future research.
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Improved approximation algorithms for network design problems. In Proc. 5th ACM-SIAM

Symposium on Discrete Algorithms, pages 223–232, 1994.

[35] M. Held and R. M. Karp. The traveling salesman problem and minimum spanning trees.

Operations Research, 18:1138–1162, 1970.

[36] D. S. Hochbaum and A. Segev. Analysis of a flow problem with fixed charges. Networks,

19:291–312, 1989.

21



[37] P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted

Steiner trees. In Proc. 3rd Symposium on Integer Programming and Combinatorial Optimiza-

tion, pages 323–332, 1993.

[38] H. P. L. Luna, N. Ziviani, and R. M. B. Cabral. The telephonic switching centre network prob-

lem: Formalization and computational experience. Discrete Applied Mathematics, 18:199–210,

1987.

[39] N. Maculan. The Steiner problem in graphs. Annals of Discrete Mathematics, 31:185–212,

1987.

[40] N. Maculan, P. Souza, and A. C. Vejar. An approach for the Steiner problem in directed

graphs. Annals of Operations Research, 33:471–480, 1991.

[41] G. R. Mateus and J. C. P. Carvalho. O problema de localização não capacitado: Modelos e

algoritmos. Investigación Operativa, 2:297–317, 1992.

[42] G. R. Mateus, F. R. B. Cruz, and H. P. L. Luna. An algorithm for hierarchical network

design. Location Science, 2(3):149–164, 1994.

[43] G. R. Mateus and H. P. L. Luna. Combinatorial optimization in telephonic network planning.

In Workshop on Practical Combinatorial Optimization, pages 40–54, Rio de Janeiro, Brazil,

1989. IFORS/ALIO.

[44] M. Minoux. Network synthesis and optimum network design problems: Models, solution

methods and applications. Networks, 19:313–360, 1989.

[45] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley &

Sons, New York, 1988.

[46] R. T. Wong. A dual ascent algorithm for the Steiner problem in directed graphs. Mathematical

Programming, 28:271–287, 1984.

22


