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Abstract. In this paper we address the topological network design olega service, finite
waiting room, multi-server queueing networks. Severablogies are examined using an ap-
proximation method to estimate the performance of the qongusetworks and an iterative
search method to find the optimal buffer allocation withie tietwork. Extensive computa-
tional results show that the buffer allocations are sounide fesults were quite satisfactory and
in most of the cases tested the approximate analytical testdre within the 95% confidence
intervals estimated by simulation. Additionally, quitéelient topologies may result in a sim-
ilar performance, which may bring flexibility to the planné&inally, it was confirmed that the
coefficient of variation of the service times is significanthie buffer allocation.
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1. INTRODUCTION

The allocation of resources to process a flow of goods reguétdinite queueing network
wherever there is uncertainty about the flows and about theegsing times of these goods at
the nodes of the network. The allocation of resources we @neaerned about here includes
the buffers, the order of the servers, and their interactdmelevant question is how we can
effectively model, accurately predict their performanceasures, and design these stochastic
systems.

In this paper, the aim is to optimize the topology of finite gemg systems. Methods
are sought to allow us to both model and construct algoritttnogptimize these systems. This
paper revisits previous works about single-server (Smi@r&z, 2005) and multi-server (Smith
et al., 2006) finite buffer systems. As such, with multi-sgrgystems, we need to see how
multi-servers affect the optimal buffer allocation and igéiddally how various topologies and
systematic variations in the general service time coefftaé variation play out.

We are given a finite network/(\V, A) of a specified topology, with a set of nodas
with general distributed service times, and a correspandet of arc pairsd, with known
routing probabilities. We seek to determine one of the mmapbirtant performance measures of
this network, the throughput. Because the network has foaipacity, there is blocking in the
network that consequently gives rise to non-product foraratteristics, which makes it very
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difficult to derive the probability distribution of the nurabof customers within the network.
Thus, one is forced to seek effective ways to decompose ti#gm to assess the performance
measures of the system.

The paper is outlined as follows. In Section 2 of the paperdescribe the problem back-
ground and related works. In Section 3, we describe the mratheal programming formula-
tion and, in Section 4, the algorithms we employ for its as&lyln Section 5, we describe our
experimental results and, in Section 6, we conclude witmapesstions for future research.

2. PROBLEM BACKGROUND

The optimal design of finite queueing networks is a quitedliffiproblem for which there
are limited published approaches in the literature. Exppt@aches have been limited to the
assumptions of exponential distributions, but these oootis time Markov Chain (CTMC) ap-
proaches may be limited to moderate sized networks sincst#te space explodes, although
recent advances in solving huge Markov Chains my be fountkititerature (Carrasco, 2006).
Non-exponential service times within networks may be harahialyze exactly, since the mem-
oryless property of the exponential distribution no longpplies. Therefore, approximations
are both reasonable and practical.

In the past two-moment approximations have been very ssftdgSmith, 2003; Smith
& Cruz, 2005; Smith et al., 2006) and we shall also follow tapproach here. Methodolo-
gies for approximating the blocking probability M /G /1/K and M /G /c¢/ K systems have a
long and detailed history, which following Kendall’'s natat stand for systems with Markovian
(exponential) inter-arrival time distribution, Generahdce time distribution, 1 (or) servers
in parallel, and a total capacit]( including the servers. Exact methods are not feasible for
large ¢ and K since the memoryless property of the exponential distiobubo longer ap-
plies. Approximations essentially begin with Gelenbe’pra@ach which is based on a diffusion
approximation (Gelenbe, 1975). Also, formulas based orstbady-state probabilities of in-
finite systems by Schweitzer & Konheim (1978), Tijms (198#)d Sakasegawa et al. (1993)
have been developed. Finally, two-moment approximatiomsrged from Tijms (1992, 1994),
Kimura (1996b,a), and Smith (2003)

Because the buffer allocation problem is a solution to aeget stochastic problem with
a nonlinear objective function and constraints (not foundlosed form), heuristic approaches
have dominated optimal ones. The buffer allocation probltexm been treated by many au-
thors. Approaches include those based on dynamic progmnagnfviamashita & Onvural, 1994),
search methods (Smith & Cruz, 2005), metaheuristics (Hsre al., 2000), and simulation-
based methods (Harris & Powell, 1999).

3. MATHEMATICAL MODELS
3.1 Notation
This section presents the notation needed for the paper:
A; :=Poisson arrival rate to node
[t; = mean service rate at noge
¢ = number of servers;
p = A/(pc) = the traffic intensity;

B, := buffer capacity at nodg excludingthose in service;



IX Encontro de Modelagem Computacional CEFET-MG e IPRJ/UERJ ISBN: 978-85-99836-02-6

K := Buffer capacity at nodg includingthose in service;

px = blocking probability of finite queue of siz&;

s> = Var(T,)/E(T,)* :=squared coefficient of variation of the service tifig,
© :=throughput rate.

3.2 Mathematical programming formulation

In this paper, we will consider the following type of optiration problem, which also was
the central objective used by Smith & Cruz (2005) and Smitd.2006)

Z:min(f(x):in), 1)
Vi
subject to:
O(x) = O, 2)
T, € {1,2,...}, VZ, (3)

that minimizes the total buffer allocation,,, «;, constrained to provide the minimum through-
puto”. Inthe above formulatio®? is a threshold throughput value and= K; is the decision
variable, which is the total buffer capacity at théh queue.

In this paper only Markovian arrival processes will be cdesed because exact results can
be derived for these systems. Besides, results for geneixalla are scarce and limited to single
servers (see, for instance, the paper by Kim & Chae, 2003).

3.3 Blocking probabilities in single queues

The blocking probability for an\//M/1/K system withp < 1 is well-known from any
textbook (Gross & Harris, 1985)

_ (A=pp"
Pk = 1— /)K+1 )
If the integrality of K is relaxed, one can expresSin terms ofp andpx and arrive at a
closed-form expression for the buffer size which is the $esalntegerk’ not inferior to

In (1—54{{;;}{,))
B

In two previous papers (Smith, 2003; Smith & Cruz, 2005), désvshowed that once one
has the closed form expression for the pure buffer= K* — 1inanM/M/1/K system, one
can use a two-moment approximation scheme based on Kimamd'sTijms’ work (Kimura,
1996b,a; Tijms, 1992, 1994) to develop the buffer di¥efor general service. Far= 1 and
s, we have an approximation to the optimal buffer si¥efor AM//G/1/K systems

o () + )] @+ vEs - )
B — )
21In(p)



IX Encontro de Modelagem Computacional CEFET-MG e IPRJ/UERJ ISBN: 978-85-99836-02-6

If s> = 1 andc = 1, then the formula yields the same expression as folthia//1/K
formula, when we subtract the space for the server. As onétraigpect, we can continue this
process of developingyx since one can obtail* andpy for different values ot and thus
develop closed form expressions of the buffer size and Idgcgrobabilities forM /G /c/ K
systems (Smith et al., 2006).

3.4 Blocking probabilities in networks of queues

The Generalized Expansion Method (GEM) is a robust and @feeapproximation tech-
nique developed by Kerbache & Smith (1987) to derive peréoroe measures of finite queue-
ing networks. As described in previous papers, this methotiaracterized as a combination of
repeated trials and node-by-node decomposition solutiocgaures. Methodologies for com-
puting performance measures for a finite queueing netwoekpuisnarily the following two
kinds of blocking:

Type I: The upstream node gets blocked if the service on a customer is completed but it
cannot move downstream due to the queue at the downstreaenj bethg full. This is
sometimes referred to as Blocking After Service (BAS) (QaluL990).

Type Il: The upstream node is blocked when the downstream node besangated and ser-
vice must be suspended on the upstream customer regaréligbsthber service is com-
pleted or not. This is sometimes referred to as Blocking Befervice (BBS) (Onvural,
1990).

The GEM uses Type | blocking, which is common in productiod aranufacturing, trans-
portation and other similar systems. Consider a single mattefinite capacity/k” (including
service). This node essentially oscillates between twesta- the saturated phase and the un-
saturated phase. In the unsaturated phase, nbds at most< — 1 customers (in service or
in the queue). On the other hand, when the node is saturatetbre customers can join the
gueue. Refer to Fig. 1 for a graphical representation ofwlwestcenarios.

M/GICi/Ki MIGICi/Kj

Apy (k)

MIG/Cj/Ki

Apj (1-pkj) :
- ®_>ej

Figure 1: Generalized expansion method.
The GEM has the following three stages:

Stage I: Network Reconfiguration;
Stage Il: Parameter Estimation;

Stage lll: Feedback Elimination.
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Details on the GEM will not be given here and can be found ingaper by Kerbache
& Smith (1987). The GEM ultimate goal is to provide an appnoation scheme to update the
service rates of upstream nodes that takes into accounbekibg after service in there, caused
by downstream nodes

it =t ok

To recapitulate, we first expand the network; followed byragpnation of the routing
probabilities, due to blocking, and the service delay in lloé&ding noden; and finally the
feedback arc at the holding node is eliminated. Once these gtages are complete, we have
an expanded network which can then be used to compute therparice measures for the
original network. As a decomposition technique this apphnoalows successive addition of a
holding node for every finite node, estimation of the paramseand subsequent elimination of
the holding node. An important point about this processaswe do not physically modify the
networks, only represent the expansion process througtothware.

4. ALGORITHMS

The primal optimization problem with/ /M /c¢/ K andM /G /c/ K systems that will be ex-
amined here is given by Eqg. (1)—(3). One way to incorporagdlthoughput constraint, Eq. (2),
is through a penalty function approach, such as the Lageangaaxation (for a recently pub-
lished tutorial, see the paper by Lemaréchal, 2003).

Thus, defining a dual variable and relaxing constraint (2), the following penalized prob-
lem is given

7, = min le + a(@T - @(x)) , (4)
vi \ > -
subject to:
T; € {1,2,...}, Vi, (5)
a > 0. (6)

Notice that for any vectok feasible — that is, Eq. (2) and (3) must hold — the term
a(@T — @(x)) must be non-positive and is a penalty of the objective fmctelated to the

difference between the threshold throughgit, and the effective throughpu®l(x). Thus, it
follows thatZ, < Z, that is, 7, is an inferior limit for Z, the optimal solution for the primal
problem, given by Eq. (1)-Eq. (3).

The Lagrangean relaxation of the primal problefp, plus an additional relaxation of the
integrality constraints far;, is a classical unconstrained optimization problem. Irpéduicular
formulation of the problem, the, variables become the decision variables under optimizatio
control. While these are essentially integer variablesy ttan be reasonably approximated by
round off from the nonlinear programming solver.

While the GEM will be used to compute the throughput, Powellgorithm will be used
to search for the optimal buffer vector. Powell's method (fetails, see the book by Himmel-
blau, 1972), locates a minimum of a non-linear functjdx) by successive one-dimensional
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searches from an initial starting poixt” along a set of conjugate directions. These conjugate
directions are generated within the procedure itself. Flaveethod is based on the idea that if

a minimum of a non-linear functiofi(x) is found along conjugate directions in a stage of the
search, and an appropriate step is made in each direct®oy#rall step from the beginning to
thep-th step is conjugate to all of thesub-directions of the search. We have seen reports (Smith
& Cruz, 2005; Smith et al., 2006) of a remarkable successautlpling Powell’'s algorithm and
the GEM.

5. EXPERIMENTAL RESULTS

In this section of the paper, we will provide experimentaulés of the network design
methodology above described. We will present results fortade and three-node queueing
networks, which extend and corroborate in some aspectxfiegimental results presented by
Smith et al. (2006).

5.1 Two-node/three-server Networks

The simplest network is a two-node/three-server topolagglving single and two-servers
arranged in a simple series connection, as seen in Fig. 2. dvike to test what are the
buffers needed for this type of topology and whether oneltapo(i.e. server order) is better
than another.

M/G/2/K M/G/1/K
O Q
topology A
M/G/1/K M/G/2/IK
topology B

Figure 2: Two-node/three-server network topology.

In the first experiment, presented in Table 1, we fix the arrate to the network with = 1
and service rates of the different serversute= 4. We would like to examine what buffers
are needed for these two alternative network topologies.wWealso vary the coefficient of
variation of the service time? to see how the buffer is affected by the service time vaiistbil

In order to evaluate the analytical results, simulatiorsri0 replications, with a warm up
period of 2,000 time units, and 200,000 time units for eachware carried out in Arena (Kelton
et al., 2001). These run length and number of replicatiotisaed the standard deviation of the
statistics of the simulation output to a reasonably aceulatel. The general service times
for the s> = {0.5,2.0} were simulated by a Gamma distribution (Kelton et al., 200The
experiments took place on a Pentium 4 3.0 GHz 2 MB CPU, 1.0 GBIRMAder Windows XP
operating system.

The results seen in Table 1 are impressive. dhe the 9th column of the result tables
refers to the half-width of the 95% confidence intervals (@I)most of the cases, the analytical
throughput value was within the 95% CI. The buffer allocasi@re symmetric for all cases,
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Table 1; Two-node/three-server results.

Simulation
A I 52 c X 0(x) Lo, 0(x)® ] zy
1.0 (4,4) 0.5 (2,1) (3,4) 0.999 8.000 0.997 0.001 9.71
(1,2) (4,3) 0.999 8.000 0.998 0.001 8.78
1.0 (2,1) (3,4) 0.998 9.000 0.997 0.001 9.67
1,2) 4,3) 0.998 9.000 0.997 0.001 10.26

20 (1) (45 0999  10.000 0.999 0.001  10.38
(12  (54) 0999  10.000  0.997 0.001  12.01

* The 95% CI does not cover the analytical result.

and there is not any difference in the optimal solution valfe either topology. Thus, it is

difficult to say whether one topology is better than anoteanply because the optimization
methodology made sure that the resulting buffer allocatere appropriate for each of the
topologies. If one did not optimize the buffer allocatiotisen perhaps one topology might
dominate the other. However, it is difficult to derive heticigules (e.g. always place the
multi-servers first in the topology) prior to an optimizatiprocedure to say which topology is
better.

In another experiment with two-node networks, let us asstinaethe service time of the
two-server node is smaller than the service time of the sisglver node (see Fig. 2). This
represents a bottleneck situation. Let us assume that thieeséime of the two-server queue
hasy = 4 while the service time at the single-server queuezhas8. We get the experimental
results presented in Table 2.

Table 2: Two-node/three-server bottleneck results.

Simulation

A I 52 c X 0(x) Zo, 0(x)® ] zZ

1.0 (4,8) 0.5 (2,1) (3,3) 0.999 7.000 0.997 0.001 8.670
(8,4) (1,2) (3,3) 0.999 7.000 0.999 0.001 6.720
(4,8) 1.0 (2,1) (3,3) 0.999 7.000 0.997 0.001 8.870
(8,4) 1,2) 3,3) 0.999 7.000 0.998 0.001 8.130
(4,8) 2.0 (2,1) (4,3) 0.999 8.000 0.999 0.001 8.320
(8,4) (1,2) (3,4) 0.999 8.000 0.996 0.001 10.930

* The 95% CI does not cover the analytical result.

As in previous experimental results, Table 2 indicates tharte buffer space may be allo-
cated to the two-server node rather than less since thegseprthe bottlenecks. Symmetric
buffer allocations occur and no difference occurs in thectdje function values of the topolo-
gies. Thus, itis difficult to say which topology is better. ditionally, the throughput is within
the 95% ClI in almost all cases.

5.2 Three-node/five-server Networks

Extending the experiments to more complex series netwaskgxamine a three-node/five-
server queueing network. Figure 3 represents the possiidédgies with one single server and
two two-server queues in a series topology.
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M/G/1/K M/G/2/K M/GI2IK

topology A

M/G/2/K M/G/1/K M/G/2IK

O——1 O~

topology B

%

M/G/2/K M/G/2/K M/G/1/K

topology C

Figure 3: Three-nodeffive-server network topology.

The results may be seen in Table 3. Itis interesting that rttemd, the buffer at the single
server, which is the botleneck, is increased in relatioméotivo-server nodes. Additionally, in
the highs? = {2.0}, the buffers are increased in comparison with lew Thus, the effect of
variability is important in the buffer allocation. Concerg which topology is best, once again,
it is difficult to say since all give the sanfé¢x).

Table 3: Three-node/five-server results.

Simulation
A 1 52 c X 0(x) Za 0(x)*® 0 zZ¥
1.0 (4,4,4) 0.5 (1,2,2) (4,3,3) 0.998 12.000 0.999 0.001 94am.
(2,1,2) (3,4,3) 0.998 12.000 0.997 0.001 12.840
(2,2,1) (3,3,4) 0.998 12.000 0.997 0.001 12.520
1.0 (1,2,2) (4,3,3) 0.997 13.000 0.997 0.001 12.680
(2,1,2) (3,4,3) 0.997 13.000 0.997 0.001 12.980
(2,2,1) (3,3,4) 0.997 13.000 0.996 0.001 13.520
2.0 (1,2,2) (5,4,4) 0.998 15.000 0.998 0.001 15.390
(2,1,2) (4,5,4) 0.998 15.000 0.999 0.001 13.840
(2,2,1) (4,4,5) 0.998 15.000 1.000 0.001 13.430
* The 95% CI does not cover the analytical result.

In order to determine the effect of thé on the buffer allocation, let us isolate one con-
figurationc = (1,2,2) and varys? to see how the buffer allocation changes. Table 4 presents
the results. When? = 0, the buffer allocation is not different at the single seraede in
relation to the two-server nodes, and then changes aloxe).3, when the buffer at the single
node becomes larger than at the two-server nodes. Thisyisnteresting and somewhat unpre-

dictable showing that the buffer allocation may be susbépto slight changes in the service
time variability, s2.

6. SUMMARY AND CONCLUSIONS

We have shown a recently developed approach to the buffecadibn problem of finite
open queueing networks with general service and multipteess. We have described both the
derivation of the blocking probability formulas used in #eperiments and the optimization
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Simulation

A 1 52 c X 0(x) Za 0(x)*® 0 zZ8

1.0 (4,4,4) 0.0 (1,2,2) (3,3,3) 0.998 11.00 0.997 0.001 az.2
0.1 (1,2,2) (3,3,3) 0.998 11.00 0.996 0.001 13.10
0.2 1,2,2) (3,3,3) 0.998 11.00 0.996 0.001 13.14
0.3 1,2,2) (3,3,3) 0.997 12.00 0.995 0.001 14.50
0.4 1,2,2) (4,3,3) 0.998 12.00 0.999 0.001 10.89
0.5 (1,2,2) (4,3,3) 0.998 12.00 0.999 0.001 10.98
0.6 (1,2,2) (4,3,3) 0.998 12.00 0.999 0.001 11.26
0.7 1,2,2) (4,3,3) 0.998 12.00 0.998 0.001 12.00
0.8 1,2,2) (4,3,3) 0.997 13.00 0.998 0.001 12.06
0.9 (1,2,2) (4,3,3) 0.997 13.00 0.998 0.001 12.08

* The 95% CI does not cover the analytical result.

methodology. Numerous experiments illustrating the scape limitations of the approach
have been shown.

In general, the buffer allocations derived by the algorghsymmetric for the cases tested,
made sense. The results were quite satisfactory as in mtst ahses tested the approximate
analytical results were within the 95% confidence intereatgmated by simulation. Another in-
teresting result is that quite different topologies (e@pplogies A and B in the two-node/three-
server networks) may result in a similar performance, ofrseluf the buffer allocation is opti-
mal. Thus it is difficult to derive heuristic rules, such alsvays place the multi-servers first in
the topology’, prior to an optimization procedure to say evhiopology is best. Finally, it was
shown that the coefficient of variation of the service tingesignificant in the buffer allocation
for both uniform and bottlenecked server networks. We hoype the reader had sensed the
power of this approach and the ability we now have to tackdsehcomplex network planning
and design problems.

6.1 Open Questions

This research could evolve in many directions. It includesous applications of the algo-
rithm to practical networks, such as in manufacturing arsgexbly problems, facility planning
and layout design, telecommunication, and computer sys&mork design problems. Also
we have not examined in any detail the situation in which tivalber of servers is treated as
a decision variable.
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