

PERFORMANCE ANALYSIS OF

NETWORKS OF OPEN ZERO-BUFFER
MULTI-SERVER QUEUES

Frederico R. B. Cruz (UFMG)
fcruz@est.ufmg.br

In this paper we aim to accurately evaluate the performance of open
zero-buffer multi-server general queueing networks. The measure of
interest is the throughput, which is evaluated by mean of a well-know
tool, the Generalized Expansion Metthod (GEM). The GEM is a node-
by-node decomposition method successfully used in the past to
approximately evaluate the performance of finite queues. We compare
the results provided by the GEM with those of simulation. Our
experiments attest for the quality of the GEM. A wide range of testing
instances was analyzed, including different basic topologies. For all
cases tested, the errors were below 16%, which is quite satisfactory for
optimization purposes, to be carried out in the next step of this
research.

Palavras-chaves: Finite queues, bufferless queues, performance
evaluation.

XV INTERNATIONAL CONFERENCE ON INDUSTRIAL
ENGINEERING AND OPERATIONS MANAGEMENT

The Industrial Engineering and the Sustainable Development: Integrating Technology and Management.
Salvador, BA, Brazil, 06 to 09 October - 2009

2

1. Introduction and Motivation
Networks of finite queues without buffers occur in many real-life physical systems in the
semi-process and process industries (for more information, see FRANSOO & RUTTEN,
1994). A zero-buffer production environment might be necessary due to the processing
technology of the product itself or simply due to the absence of any intermediate storage
capacity between two consecutive operations of a job.

A steel production process is described by Hall and Sriskandarajah (1996). Molten steel goes
through a series of operations ranging from ingots, un-molding, reheating, soaking, and
preliminary rolling. In this production process, the steel must pass one operation to another
continuously, without any waiting or buffering of work-in-process, since such waiting would
result in cooling down the steel to a temperature that is not acceptable for the next process.
Hence, either a job is finished and transferred directly to the next process, or it is buffered in
the machine itself until the downstream process is ready to receive another job. Similarly, in
food-processing environments no buffer space is allowed between the cooking operation and
before the canning operation. This is due to the requirement that the product should still be
fresh when it is canned. Similar issues can be found in producing juice and beer. In these cited
examples, restrictions in the processing technology and its characteristics create zero-buffer
production system.

The nature of the product dictates hygienic consideration as one of the critical factor in
production of condiments such as mayonnaise and various types of salad dressing as the
product. As studied by Ramudhin and Ratliff (1995), there is no space for work-in-process
inventory and the product must never wait between two operations. As a last example, third
generation mobile communication networks are characterized by a multi-server zero-buffer
queueing system (TSYBAKOV, 2002). In such systems, arrivals are represented by requests
of audio, data, and video messages, whereas the service time is the message transmission
time. Here, zero-buffers are caused due to simple absence of storage capacity between
operations. Despite the high industrial relevance of zero-buffer networks particularly in
process and semi-process industries, only scant literature is available focusing exclusively on
these types of networks.

Figure 1: A serial zero-buffer queuing network

We are interested in zero-buffer multi-server general queueing networks, seen in Figure 1, as
a queueing network representation for a tandem line. Zero-buffer systems are a special case of
a restricted queueing network. Restricted queueing networks have a finite capacity in each
node, referred to as the total buffer capacity of size Kj. That is, a finite node j can only hold
entities up to a certain quantity Kj including those entities in service. The buffer capacity at
finite node j causes blocking to occur when the arriving quantity to node j exceeds its buffer
capacity Kj (BUZACOTT & SHANTHIKUMAR, 1993). As a consequence, each node in the

3

network might be affected by events at other nodes, leading to the phenomena of blocking and
starvation (PERROS, 1994).

A particular case where a queueing network has a finite capacity but no buffers before servers
is denoted as a zero-buffer queueing network (also denoted in the literature as bufferless, no
intermediate buffers etc.). In this specific case, the buffer space at node j is equal to the
number of server cj in that node, that is, Kj = cj. Given that there is no space to queue, a job in
the upstream node can only enter the downstream node if the servers have finished processing
their jobs (see Figure 1).

In the remaining of this paper, we present briefly the method used for approximate
performance evaluation of open zero-buffer multi-server queueing networks. Following, we
compare the approximations with simulation, for a number of different topologies and setting.
Final remarks and topics for future research in the area conclude the paper.

2. Performance Evaluation Algorithm
The GEM is a robust and effective approximation technique developed by Kerbache and
Smith (1987). It has been successfully used to estimate performance measures for finite
queueing networks. As described in previous papers, this method is basically a combination of
repeated trials and node-by-node decomposition in which each queue is analyzed separately
and then corrections are made in order to take into account the interrelation between the
queues in the network. The GEM uses the blocking after service (BBS) protocol, which is
prevalent in most production and manufacturing, transportation, and other similar systems. In
this section, we present an overview of the method. For more detailed information and
applications of the GEM, the reader is referred to the papers by Kerbache and Smith (1987,
1988, 2000), Jain and Smith (1994), Spinellis et al. (2000), and Smith and Cruz (2005).

The GEM involves three stages, namely, network reconfiguration, parameter estimation, and
feedback elimination. We shall describe them briefly as follows.

2.1 Network reconfiguration
The first step in the GEM includes reconfiguring the network by adding an artificial queue for
each queue that is succeeded by a finite queue, in order to register the blocked entities, as seen
in Figure 2.

Figure 2: The generalized expansion method (GEM)

2.2 Parameter estimation
In the second stage, the estimation of three important parameters is carried out. The first one
is the blocking probability of the downstream nodes j, given by the well-known Erlang loss
formula (for clarity, we omit the subscripts)

4

()
()

,
!//

!//

0
∑

=

= c

i

c

c

c

c

cp
µλ

µλ

that is, for systems under Markovian arrivals, general services, c parallel servers, and the total
capacity of c users, including those in service.

The second parameter is the probability that an entity is forced back to the holding node hj,
given that it was rejected at the previous trial, pc', which may be approximated by a method
from Labetoulle and Pujolle (1980).

Finally, the third parameter, the service rate for the holding node, may be given by renewal
theory (KLEINROCK, 1975) as

.
1

2
22
jj

j
h µσ

µ
µ

+
=

2.3 Feedback elimination
The repeated visits to the holding node (due to the feedbacks) create dependences in the
arrival process. In order to eliminate the immediate feedback, the entities are given an extra
service time during the first passage through the holding node and the adapted service rate
then becomes

.)'1(' hch p µµ −=

2.4 Summary
In summary, the GEM ultimate goal is to provide an approximation scheme to update the
service rates of the upstream nodes, taking into account the blocking after service that
happens there, caused by the downstream nodes, that is,

.)'(~ 111 −−− +=
jj hcii p µµµ

The throughput at a node i, succeeded by a finite node j, is then obtained as follows
(subscripts were omitted for the sake of clarity),

()
()

,
!/~/

!/~/1)1(

0


















−=−=

∑
=

c

i

c

c

c

c

cp
µλ

µλλλθ

and the overall throughput is obtained simply by adding up the throughput at the last(s)
node(s) of the networks.

3. Computational Experiments
In order to evaluate the quality of the approximations given by the GEM, for zero-buffer
queueing networks, experiments were conducted using three different topologies, namely
series, split, and merge. These topologies were examined in symmetrical and asymmetrical
settings. The configurations are seen in Figure 2.

5

a) series topology

b) split topology

c) merge topology

Figure 2: Topologies examined.

For each topology, several number of nodes, servers, and arrival rates were tested, N ∈ {3, 5,
9}, c ∈ {2, 4, 10}, and λ ∈ {2, 4, 8, 16}, respectively. All servers were considered with
service rate µ = 10. We combined the above parameters in 36 experiments, as seen in Table 1.
In the split topology, Figure 2-b, the arriving jobs were divided into two streams departing
from the fist node in the system. The splitting node is always positioned directly after the first
node. The routing probabilities for both routes are set to be equal to each other (0.5). In the
merge topology, Figure 2-c, the jobs arrive from two different source nodes. The overall
arrival rate is then divided equally for the two source nodes. The last node merges the two
streams.

6

Topology N c λ θ θs δ CPU(mim) Δ%θ
Series 3 (2,2,2) 2 1.996 1.966 0.001 2.0 1.53

 4 3.949 3.952 0.002 5.8 -0.09
 8 7.394 7.424 0.003 12 -0.41
 16 11.50 11.32 0.002 22 1.59
 5 (4,4,4,4,4) 2 2.000 1.999 0.002 5.0 0.05
 4 4.000 3.999 0.002 5.2 0.03
 8 7.988 7.987 0.003 20 0.02
 16 15.61 15.61 0.004 40 0.03
 9 (10,10,…,10) 2 2.000 2.000 0.001 9.0 0.02
 4 4.000 4.000 0.002 18 0.00
 8 8.000 8.002 0.003 36 -0.02
 16 16.00 16.00 0.003 73 -0.01

Merge 3 (2,2,2) 2 2.000 1.991 0.002 1.9 0.45
 4 3.993 3.930 0.001 3.8 1.61
 8 7.900 7.473 0.002 8.2 5.71
 16 14.52 12.54 0.003 14 15.80
 5 (4,4,4,4,4) 2 2.000 1.999 0.001 3.0 0.04
 4 4.000 3.999 0.002 5.8 0.03
 8 7.999 7.993 0.003 12 0.08
 16 15.98 15.88 0.003 24 0.63
 9 (10,10,...,10) 2 2.000 1.999 0.001 5.3 0.04
 4 4.000 4.00 0.003 10 0.05
 8 8.000 7.998 0.003 20 0.03
 16 16.00 16.00 0.005 45 0.00

Split 3 (2,2,2) 2 1.997 1.967 0.002 2.1 1.53
 4 3.957 3.783 0.002 4.8 4.59
 8 7.538 6.785 0.002 8.9 11.1
 16 12.59 10.65 0.002 15 18.2
 5 (4,4,4,4,4) 2 2.000 2.000 0.001 4.5 0.00
 4 4.000 3.996 0.002 5.7 0.10
 8 7.988 7.936 0.003 17 0.65
 16 15.65 15.09 0.004 28 3.69
 9 (10,...,10) 2 2.000 2.000 0.002 12 0.00
 4 4.000 3.999 0.002 13 0.02
 8 8.000 7.999 0.003 25 0.01
 16 16.00 16.00 0.004 150 0.00

Table 1: Results for the symmetrical queueing networks

In order to attest for the quality of the solutions given by the GEM, simulation experiments
were set up. The simulations were conducted using ARENA (KELTON ET AL., 2001). We
used an observation time of 200,000 time units and a warm-up period (see details in
ROBINSON, 2007) of 2,000 time units, for 20 independent replications. Then, we compute
the % deviation for the analytical results of the throughput, defined as ∆%θ = 100%(θ-θs)/θs,
in which θ is the throughput given by the GEM and θs is the (somewhat) exact throughput
given by the simulation. The results are shown in Table 1, in which we see that the analytical
results, although not always as accurate as desirable, are mostly reasonable and acceptable. In
other words, under extreme high utilization rates, that is, heavy traffic and quite few servers,
the error may be as high as 16-19%, but in the majority of the cases, the error is 6% or better
(low). Table 1 also shows the half-width of the 95% confidence interval given by the

7

simulations (column δ) and the total cpu time, in minutes, for performing each one of the
simulations.

Topology c µ λ θ θs δ CPU(mim) Δ%θ
Series (2,4,10) (12,11,10) 2 1.998 1.977 0.001 3.0 1.06

 4 3.974 3.973 0.002 6.3 0.02
 8 7.698 7.698 0.002 12 0.00
 16 13.50 13.50 0.002 43 0.00
 (2,4,10,2,4) (12,11,10,12,11) 2 1.998 1.997 0.001 5.0 0.04
 4 3.974 3.839 0.002 9.9 3.52
 8 7.697 7.700 0.003 20 -0.04
 16 13.47 13.50 0.002 37 -0.21
 (2,4,10,2,4,10,2,4,10) (12,11,10,12,11,10,12,11,10) 2 1.998 1.999 0.001 11 -0.03
 4 3.974 3.973 0.002 18 0.03
 8 7.969 7.759 0.002 35 2.71
 16 13.45 13.355 0.003 68 0.71

Merge (4,4,2) (11,11,12) 2 2.000 2.000 0.002 1.9 -0.01
 4 4.000 4.000 0.002 4.2 0.00
 8 8.000 7.987 0.003 8.2 0.16
 16 15.92 15.472 0.003 17 2.90
 (10,10,4,4,2) (10,10,11,11,12) 2 2.000 2.000 0.002 3.0 -0.01
 4 4.000 3.999 0.002 5.8 0.03
 8 8.000 7.998 0.002 12 0.03
 16 15.93 16.00 0.005 29 -0.44
 (2,2,4,4,10,10,4,4,2) (12,12,11,11,10,10,11,11,12) 2 2.000 1.994 0.001 5.1 0.33
 4 3.996 3.952 0.002 10.1 1.12
 8 7.947 7.652 0.003 20 3.86
 16 15.35 14.12 0.002 41 8.73

Split (2,4,4) (12,11,11) 2 1.998 1.973 0.001 2.1 1.27
 4 3.974 3.839 0.002 2.5 3.51
 8 7.698 7.057 0.003 4.7 9.08
 16 13.51 11.585 0.003 8.1 16.6
 (2,4,4,10,10) (12,11,11,10,10) 2 1.998 1.977 0.002 1.8 1.09
 4 3.974 3.980 0.002 6.1 -0.15
 8 7.698 7.058 0.002 6.7 9.07
 16 13.51 11.585 0.003 11 16.6
 (2,4,4,10,10,4,4,2,2) (12,11,11,10,10,11,11,12,12) 2 1.998 1.976 0.001 3.0 1.12
 4 3.974 3.839 0.002 5.8 3.51
 8 7.698 7.654 0.002 22 0.57
 16 13.51 12.88 0.030 38 4.89

Table 2: Results for the asymmetrical cases

We also considered asymmetrical cases, with unbalanced settings for the routing probabilities
in the split topologies (routing probabilities 0.4-0.6, in the splitting nodes, Figure 2-b) and for
the arrival rates in the merge topologies (external arrivals 0.4λ and 0.6λ, in the front nodes,
Figure 2-c). Also, different service rates and different number of servers were assumed along
the networks, as seen Table 2, columns c and µ. From the results seen in Table 2, we observe
that the main conclusions drawn earlier hold. That is, the errors may be considerably high
under high utilization. We can see that the blocking effects become more important with the
increase of the arrival rates.

As a final word concerning the simulations, we note that the GEM tends to overestimate the

8

throughput but also to underestimate it sometimes, when compared to the results from the
simulations (as reflected by the values seen in the column of the ∆%θ), exactly as one should
expect when comparing simulation with unbiased analytical results.

4. Conclusions and Final Remarks
The Generalized Expansion Method (GEM) was used here as an approximate performance
evaluation tool for finite zero-buffer queueing networks. We have shown that the method
typically delivers results within 5% of error, for basic series, merges, and split topologies, and
for both symmetrical and asymmetrical setting. The maximum error observed, although, may
be considerably higher, around 20%, mainly for those configurations under very heavy traffic.
These are new results as the GEM has not been used before to specifically evaluate the
networks of open zero-buffer multi-server queus presented here. The GEM is fast (typically
runs in a split second) and may provide a relatively simple tool to evaluate the throughput
rate, both in low and moderate blocking probability settings, which may be useful for
optimization purposes. In fact, the application of the GEM in an optimization framework
should be the subject of future papers.

References
BUZACOTT, J. & SHANTHIKUMAR, J. G. Stochastic Models of Manufacturing Systems, Prentice-Hall;
1993.

FRANSOO J. C. & RUTTEN W. G. M. M. A typology of production control situations in process industries.
International Journal of Operations and Production Management. Vol. 14, n. 12, p. 47-57, 1994.

HALL NG, SRISKANDARAJAH C. A survey of machine scheduling problems with blocking and no-wait in
process. Operations Research. Vol. 44, p. 510-525, 1996.

JAIN S. & SMITH, J. M. Open finite queueing networks with M/M/C/K parallel servers. Computers &
Operations Research. Vol. 21, n. 3, p. 297-317, 1994.

KELTON, D.; SADOWSKI, R. P. & SADOWSKI, D.A. Simulation with Arena, McGraw Hill College Div.,
New York; 2001.

KERBACHE, L. & SMITH, J. M. Assymptotic behavior of the expansion method for open finite queueing
networks. Computers & Operations Research. Vol. 15 , n. 2, p. 157-169, 1988.

KERBACHE, L. & SMITH, J. M. Multi-objective routing within large scale facilities using open finite
queueing networks. European Journal of Operational Research. Vol.121, p. 105-123, 2000.

KERBACHE, L. & SMITH, J. M. The generalized expansion method for open finite queueing networks.
European Journal of Operational Research. Vol 32, p. 448-461, 1987.

KLEINROCK, L. Queueing Systems, Vol. I: Theory, John Wiley & Sons, New York; 1975.

LABETOULLE, J. & PUJOLLE, G. Isolation method in a network of queues. IEEE Transactions on Software
Engineering. Vol. SE-6, n. 4, p. 373-381, 1980.

PERROS, H. G. Queueing Networks with Blocking, Oxford University Press; 1994.

RAMUDHIN A. & RATLIFF, H. D. Generating daily production schedules in process industries. IIE
Transactions. Vol. 27, p. 646-656, 1995.

ROBINSON, S. A statistical process control approach to selecting a warm-up period for a discrete-
event simulation. European Journal of Operational Research. Vol. 176, n. 1, p. 332-346, 2007.

SMITH, J. M. & CRUZ, F. R. B. The buffer allocation problem for general finite buffer queueing networks.
IIE Transactions. Vol. 37, n. 4, p. 343-365, 2005.

SPINELLIS, D.; PAPODOPOULOS, C. & SMITH, J. M. Large production line optimisation using simulated

9

annealing. International Journal of Production Research. Vol 38, n. 3, p. 509-541, 2000.

TSYBAKOV, B. Optimum discarding in a bufferless system. Queueing Systems. Vol. 41, p. 165-197,
2002.

	1. Introduction and Motivation
	2. Performance Evaluation Algorithm
	2.1 Network reconfiguration
	2.2 Parameter estimation
	2.3 Feedback elimination
	2.4 Summary

	3. Computational Experiments
	4. Conclusions and Final Remarks
	References

