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Abstract: As an extension to previous research efforts, the PPM is applied
to the identification of multiple change points in the parameter that indexes
the regular exponential family. We define the PPM for Yao’s prior cohesions
and contiguous blocks. Because the exponential family provides a rich set
of models, we also present the PPM for some particular members of this
family in both continuous and discrete cases and the PPM is applied to
identify multiple change points in real data. Firstly, multiple changes are
identified in the rates of crimes in one of the biggest cities in Brazil. In
order to illustrate the continuous case, multiple changes are identified in
the volatility (variance) and in the expected return (mean) of some Latin
America emerging markets return series.
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1. Introduction

Most of the methodologies considered in change points analysis assume that
the number of change points is known and fixed (see Chen and Lee, 1995; Geweke
and Terui, 1993; Hawkins, 2001, and many others). Other authors have studied
the one-change-point problem using a Bayesian approach (see Menzefricke, 1981;
Hsu, 1984; Smith, 1975, for example). The product partition model (PPM)
developed by Hartigan(1990) introduces more flexibility into the analysis of these
problems since it considers the number of change points as a random variable. As
shown by Barry and Hartigan (1992), by applying the PPM one can easily obtain
product estimates for the parameters of interest at each point of the time, the
posterior distribution of the random partition generated by the change points,
and also the posterior distribution of the number of change points. Applications
and extensions of the PPM can be found in Barry and Hartigan (1993), Crowley
(1997), Quintana and Iglesias (2003), Loschi and Cruz (2005) and others (see more
on Bayesian approach of multiple change points in Elliott and Shope, 2003).
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Despite of all flexibility introduced by the PPM in the analysis of change point
problems, in many situations, we have noticed that the posterior distribution for
the random partition, as originally defined by Barry and Hartigan (1993), puts
similar or equal mass for a large number of partitions. For such cases, it is a hard
task to identify the change points. One way to measure the evidence of a change
is to compute the posterior probability of each instant being a change point
as established by Loschi and Cruz (2005). Another way to solve this problem
is to consider the theoretical decision approach for choosing the best partition
introduced by Quintana and Iglesias (2003).

In this paper we apply the PPM and its extensions proposed by Loschi and
Cruz (2005) to identify multiple change points in the parameter that indexes the
regular exponential family. We suppose that only contiguous blocks are possible
and consider the prior cohesions proposed by Yao (1984). The change point
model considered by Yao (1984) is a discrete time version of the model discussed
by Barnard (1959). We also present the PPM for some particular members of
the exponential family in both discrete and continuous cases. Consequently, we
extend to a more general family the methodology earlier developed by Loschi
et al. (2003) to identify change points in normal means and variances.

Two real data sets are analyzed. Firstly, to illustrate the discrete cases, we
identify multiple change points in the rates of crimes in Belo Horizonte, one of
the biggest cities in Brazil. Then, multiple change points are identified in the
volatility (variance) and in the expected return (mean) of some Latin America
emerging market return series, illustrating the use of the PPM in the continuous
case.

This paper is organized as follows. In Section 2, the parametric PPM is
defined. Some computational procedures proposed in the literature to manage
the PPM are also described. In Section 3, we apply the PPM to the exponential
family and to some particular distributions. In Section 4, the results are applied
to the analysis of two real data sets. Finally, in Section 5 some conclusions close
the paper.

2. The Product Partition Model

In this section we briefly describe the PPM as well as its extensions to compute
the posterior probability of each instant being a change point. The computational
method involved is also presented.

2.1 PPM using Yao’s cohesions

Let X1, . . . ,Xn be a data sequence and consider the index set I = {1, . . . , n}.
Consider a random partition ρ = {i0, i1, · · · , ib} of set I, 0 = i0 < i1 < · · · <
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ib = n. Consider that each partition divides the data sequence X1, . . . ,Xn into
B = b contiguous subsequences (blocks), which are denoted here by X[ir−1ir ] =
(Xir−1+1, . . . ,Xir )t, for r = 1, . . . , b. Let c[ij] be the prior cohesion associated with
the block [ij] = {i + 1, . . . , j}, for i, j ∈ I ∪ {0}, and j > i, that represents the
degree of similarity among the observations in X[ij] and that may be interpreted
here as transition probabilities in the Markov chain defined by the change points.

Let 0 ≤ p ≤ 1 be the probability that a change occurs at any instant in the
sequence. The prior cohesion for block [ij] proposed by Yao (1984) is given by:

c[ij] =
{

p(1 − p)j−i−1, if j < n,
(1 − p)j−i−1, if j = n,

for all i, j ∈ I, i < j. These prior cohesions imply that the sequence of change
points establishes a discrete renewal process, with occurrence times identically
distributed with geometric distribution.

Let θ1, . . . , θn be a sequence of unknown parameters conditional on which
the sequence of random variables X1, . . . ,Xn has conditional marginal densities
f1(X1|θ1), . . . , fn(Xn|θn), respectively. The prior distribution of θ1, . . . , θn is
constructed as follows. Given a partition ρ = {i0, . . . , ib}, for b ∈ I, one has that
θi = θ[ir−1ir], for every ir−1 < i ≤ ir and r = 1, . . . , b, and that θ[i0i1], . . . , θ[ib−1ib]

are independent and also independent from p, with θ[ij] having prior (block)
density π[ij](θ), θ ∈ Θ[ij], where Θ[ij] is the parameter space corresponding to
the common parameter, say, θ[ij] = θi+1 = . . . = θj , that indexes the conditional
density of X[ij]. Hence, the PPM for Yao’s prior cohesions is defined as follows.

The random quantity (X1, . . . ,Xn; ρ) follows a PPM, denoted by (X1, . . . ,Xn;
ρ) ∼ PPM , if:

i) given p, the prior distribution of ρ is the following product distribution:

P (ρ = {i0, . . . , ib}|p) = pb−1(1 − p)n−b, b ∈ I,

for every partition {i0, . . . , ib}.

ii) Given ρ = {i0, . . . , ib} and p, the sequence X1, . . . ,Xn is independent from
p and has the joint density given by:

f(X1, . . . ,Xn|ρ = {i0, . . . , ib}, p) = Πb
j=1f[ij−1ij ](X[ij−1ij ]),

in which f[ij](X[ij]) =
∫
Θ[ij]

f[ij](X[ij]|θ)π[ij](θ)dθ is the joint density of the
random vector, called data factor.
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It is also shown that the posterior distribution of θs is given by:

π(θs|X1, . . . ,Xn) =
s−1∑
i=0

n∑
j=s

r∗[ij]π[ij](θs|X[ij]), s = 1, . . . , n, (2.1)

and that the posterior expectation (or product estimate) of θs is given by:

E(θs|X1, . . . ,Xn) =
s−1∑
i=0

n∑
j=s

r∗[ij]E(θs|X[ij]), s = 1, . . . , n, (2.2)

in which r∗[ij] = P ([ij] ∈ ρ|X1, . . . ,Xn) denotes the posterior relevance for the
block [ij]. More details can be found in Barry and Hartigan (1992).

Let us assume that p has prior distribution π(p). As a consequence of these
assumptions, it follows that the posterior distributions of ρ and B are given,
respectively, by:

P (ρ = {i0, . . . , ib}|X1, . . . ,Xn)

∝ Πb
j=1f[ij−1ij ](X[ij−1ij ])

∫ 1

0
pb−1(1 − p)n−bπ(p)dp,

and

P (B = b|X1, . . . ,Xn)

∝
∑
Cb

Πb
j=1f[ij−1ij ](X[ij−1ij ])

∫ 1

0
pb−1(1 − p)n−bπ(p)dp,

where Cb denotes the set of all partitions of I into b contiguous blocks.
Because the product estimates are strongly influenced by the prior distribu-

tion of p, it is important to obtain its posterior distribution. Assuming that
p ∼ π(p), such posterior distribution is given by:

π(p|X1, . . . ,Xn) ∝
∑

Πb
j=1f[ij−1ij ](X[ij−1ij ])p

b−1(1 − p)n−bπ(p),

in which the summation is over all partitions of I.
An evidence of a change point is the posterior probability of each instant

being a change point. Let Cl be the set that contains all partitions that include
the instant l as a change point, that is, each partition in Cl assume the form
{i0, . . . , ik−1, ik = l, ik+1, . . . , ib} for any k ∈ I. The event Al denotes that the
instant l is a change point, for l = 1, . . . , n − 1. Thus, the posterior probability
of Al is given by:

P (Al|X1, . . . ,Xn) =

∑
Cl

Πb
j=1f[ij−1ij ](X[ij−1ij ])

∫ 1
0 pb−1(1 − p)n−bπ(p)dp∑

Πb
j=1f[ij−1ij ](X[ij−1ij ])

∫ 1
0 pb−1(1 − p)n−bπ(p)dp
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where the summation in the denominator is over all partition of I.

2.2 Computational methods

To compute the posterior distributions of ρ, B and p, the product estimates
of θk, and the posterior probability of Al, the following algorithm was proposed
in the literature. Assume that, given ρ, θl = θi+1 = . . . = θj, for l = 1, . . . , n and
i, j ∈ I, i < j. Let X[0n] = (X1, . . . ,Xn) and θ = (θ1, . . . , θn) and denote by θ−l

the vector (θ1, . . . , θl−1, θl+1, . . . , θn). The full conditional distributions of p, ρ,
and θl, for l = 1, . . . , n are given, respectively, by:

π(p|ρ, θ,X[0n]) ∝ pb−1(1 − p)n−bπ(p);

π(ρ|p, θ,X[0n]) ∝
(
Πb

j=1f[ij−1ij ](X[ij−1ij ])
)

pb−1(1 − p)n−b;

π(θl|ρ, p, θ−l,X[0n]) ∝ f[ij](θl|X[ij]).

Notice that, because all partitions must be considered, it may be very diffi-
cult to sample directly from the full conditional distribution of ρ in case of long
sequences are assumed. Let us define the auxiliary random quantity Ul, such
that Ul = 1, if θl = θl+1, and Ul = 0, otherwise, for l = 1, . . . , n − 1. No-
tice that the random partition ρ is immediately identified by considering vectors
U = (U1, . . . , Un−1) of these random quantities. Each partition (U s

1 , . . . , U s
n−1),

s ≥ 1, is generated by using Gibbs sampling by considering the following ratio:

Rr =
f[xy](X[xy])

∫ 1
0 pb−2(1 − p)n−b+1dπ(p)

f[xr](X[xr])f[ry](X[ry])
∫ 1
0 pb−1(1 − p)n−bdπ(p)

, (2.3)

for r = 1, . . . , n − 1, and where x is the last change point before r and y is the
next change point following r ( see, Loschi and Cruz (2005) for all the details).

3. The Product Partition Model for the Regular Exponential Family

In this section we extend the PPM to identify multiple change points in the
parameter that indexes the exponential family. In order to permit a tractable
implementation of the PPM, some results related to the conjugacy for the regular
exponential family established in the literature are considered (see Bernardo and
Smith, 1994, for example).

Let θl ∈ Θl ⊆ Rd, d ≥ 1, l = 1, . . . n. Assume that, given θ1, . . . , θn,
X1, . . . ,Xn, Xl ∈ X ⊆ R, l = 1, . . . n, are independent and Xl|θl has density
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function in the regular d-parameter exponential family, that is,

p(Xl|θl) = h(Xl)L(θl) exp

{
d∑

k=1

ckφk(θl)fk(Xl)

}

where h (positive), f = (f1, . . . , fd) and φ = (φ1, . . . , φd) are functions and cl,
l = 1, . . . , d are constants such that

[L(θl)]−1 =
∫
X

h(Xl) exp

{
d∑

k=1

ckφk(θl)fk(Xl)

}
d(Xl) < ∞.

It follows that the common parameter θ[ij] for the block X[ij] has the following
conjugate prior distribution:

p(θ[ij]|τ [ij]) = [K(τ [ij])]−1[L(θ[ij])]τ
[ij]
0 exp

{
d∑

k=1

ckφk(θ[ij])τ [ij]
k

}
, (3.1)

where τ [ij] = (τ [ij]
0 , . . . , τ

[ij]
d ) such that

K(τ [ij]) =
∫
Θ

[L(θ[ij])]τ
[ij]
0 exp

{
d∑

k=1

ckφk(θ[ij])τ [ij]
k

}
d(θ[ij]) < ∞.

As a consequence of such assumptions it follows that the prior predictive
distribution of X[ij] is

p(X[ij]|τ [ij]) = Πj
l=i+1h(Xl)

K(τ [ij] + tj−i(X[ij]))
K(τ [ij])

(3.2)

where t(j−i)(X[ij]) = (j− i,
∑j

l=i+1 f1(Xl), . . . ,
∑j

l=i+1 fd(Xl)) and the block pos-
terior distribution of θ[ij], given X[ij], is

p(θ[ij]|X[ij], τ
[ij]) = [K(τ [ij] + t(j−i)(X[ij]))]

−1[L(θ[ij])]τ
[ij]
0 +j−i

× exp

{
d∑

k=1

ckφk(θ[ij])

(
τ

[ij]
k +

j∑
l=i+1

fk(Xl)

)}
. (3.3)

Consequently, from expressions (3.3) and (2.1) the posterior distribution of θs,
s = 1, . . . , n assumes the following expression:

p(θs|X1, . . . Xn, τ [ij]) =
s−1∑
i=1

n∑
j=s

r∗[ij][K(τ [ij] + t(j−i)(X[ij]))]
−1[L(θs)]τ

[ij]
0 +j−i

exp

{
d∑

k=1

ckφk(θs)

(
τ

[ij]
k +

j∑
l=i+1

fk(Xl)

)}
.
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However, we should notice that the general formula for the product estimates
can be specified only for the natural parameter. In such a case, we should consider
some results presented in Diaconis and Ylvisaker (1979). The product estimates
for special members of the exponential family will be shown shortly in Sections
3.1 to 3.6.

From (2.3) and (3.2), the estimates of the posterior distributions of ρ, B,
Al and p as well as the estimates of the posterior relevancies can be generated
considering the following expression:

Rr =
K(τ [xr])K(τ [ry])K(τ [xy] + ty−x(X[xy]))

∫ 1
0 pb−2(1 − p)n−b+1dπ(p)

K(τ [xy])K(τ [xr] + tr−x(X[xr]))K(τ [ry] + ty−r(X[ry]))
∫ 1
0 pb−1(1 − p)n−bdπ(p)

.

Notice that, for the exponential family, the sampling scheme is simplified since
it is not necessary to know the complete expression of the predictive distribution.

Since the exponential family provides a rich set of models the PPM will be
applied to some particular members of this family, as follows.

3.1 Bernoulli data sequence

Let θl ∈ [0, 1] × R, l = 1, . . . n. Assume that, conditional on θ1, . . . , θn,
the sequence X1, . . . ,Xn, Xl ∈ {0, 1}, l = 1, . . . , n, are independent and Xl|θl

has Bernoulli distribution with parameter θl denoted by Xl|θl ∼ BE(θl). Conse-
quently, for the block X[ij] we have that

f(X[ij]|θ[ij]) =

(
θ[ij]

1 − θ[ij]

)∑j
l=i+1 Xl

(1 − θ[ij])j−i. (3.4)

Let τ [ij] = (τ [ij]
0 , τ

[ij]
1 ). From (3.1) it follows that the conjugate prior distri-

bution for the common parameter θ[ij] is the beta distribution with parameters
τ

[ij]
1 + 1 and τ

[ij]
0 − τ

[ij]
1 + 1, denoted by θ[ij] ∼ B(τ [ij]

1 + 1, τ [ij]
0 − τ

[ij]
1 + 1), whose

density function is:

f(θ[ij]|τ [ij]) = [K(τ [ij])]−1(θ[ij])τ
[ij]
1 (1 − θ[ij])τ

[ij]
0 −τ

[ij]
1 ,

where τ
[ij]
1 > −1, τ

[ij]
0 > τ

[ij]
1 − 1 and

K(τ [ij]) =
Γ(τ [ij]

1 + 1)Γ(τ [ij]
0 − τ

[ij]
1 + 1)

Γ(τ [ij]
0 + 2)

. (3.5)

Since from (3.4) we have that t(j−i) = (j − i,
∑j

l=i+1 Xl), from (3.3) it follows

that θ[ij]|X[ij] ∼ B(τ [ij]∗
1 , τ

[ij]∗
0 ) in which τ

[ij]∗
1 = τ

[ij]
1 +

∑j
l=i+1 Xl + 1 and τ

[ij]∗
0 =
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τ
[ij]
0 + j − i− τ

[ij]
1 −∑j

k=i+1 Xl + 1. Thus, from (2.2) the product estimates of θs,
s = 1, . . . , n, are given by:

E(θs|X1, . . . ,Xn) =
s−1∑
i=0

n∑
j=s

r∗[ij]
τ

[ij]
1 +

∑j
l=i+1 Xl + 1

τ
[ij]
0 + j − i + 2

.

The posterior relevancies and the posterior distributions of ρ, p, B and Al

can be generated by substituting (3.5) into (2.3).

3.2 Poisson data sequence

Let θl > 0, l = 1, . . . n. Assume that, conditional on θ1, . . . , θn, the sequence
X1, . . . ,Xn, Xl ∈ {0, 1, . . .}, l = 1, . . . , n, are independent and Xl|θl has Poisson
distribution with parameter θl denoted by Xl|θl ∼ P(θl). Consequently, for the
block X[ij] we have that

f(X[ij]|θ[ij]) =
j∏

l=i+1

[Xl!]−1 exp{−(j − i)θ[ij]}(θ[ij])
∑j

l=i+1 Xl . (3.6)

Let τ [ij] = (τ [ij]
0 , τ

[ij]
1 ). From (3.1) it follows that the conjugate prior dis-

tribution for the common parameter θ[ij], related to the block [ij] is the gamma
distribution with parameters τ

[ij]
1 +1 and τ

[ij]
0 , denoted by θ[ij] ∼ G(τ [ij]

1 +1, τ [ij]
0 ),

with density function given by:

f(θ[ij]|τ [ij]
0 , τ

[ij]
1 ) = [K(τ [ij])]−1

(
θ[ij]

)τ
[ij]
1

exp(−τ
[ij]
0 θ[ij]).

in which τ
[ij]
0 > 0, τ

[ij]
1 > −1 and

K(τ [ij]) = Γ(τ [ij]
1 + 1)

(
τ

[ij]
0

)−(τ
[ij]
1 +1)

. (3.7)

Since from (3.6) we have that t(j−i) = (j − i,
∑j

l=i+1 Xl), from (3.3) it follows

that θ[ij]|X[ij] ∼ G(τ [ij]∗
1 , τ

[ij]∗
0 ) in which τ

[ij]∗
1 = τ

[ij]
1 +

∑j
l=i+1 Xl + 1 and τ

[ij]∗
0 =

τ
[ij]
0 + j − i. Thus, from (2.2) the product estimates of θs, s = 1, . . . , n, are given

by:

E(θs|X1, . . . ,Xn) =
s−1∑
i=0

n∑
j=s

r∗[ij]
τ

[ij]
1 +

∑j
l=i+1 Xl + 1

τ
[ij]
0 + j − i

.

The posterior relevancies and the posterior distributions of ρ, p, B and Ak

can be generated by substituting (3.7) into (2.3).
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3.3 Exponential data sequence

Let θl > 0, l = 1, . . . n. Assume that, conditional on θ1, . . . , θn, the sequence
X1, . . . ,Xn, Xl ∈ R, l = 1, . . . , n, are independent and Xl|θl has exponential
distribution with parameter θl denoted by Xl|θl ∼ E(θl). Consequently, for the
block X[ij] we have that

f(X[ij]|θ[ij]) =
j∏

l=i+1

1{Xl > 0} exp

{
−θ[ij]

j∑
l=i+1

Xl

}
(θ[ij])j−i,

in which 1{A} denotes the indicator function of event A.
Let τ [ij] = (τ [ij]

0 , τ
[ij]
1 ). From (3.1) it follows that the conjugate prior dis-

tribution for the common parameter θ[ij], related to the block [ij] is the gamma
distribution with parameters τ

[ij]
0 +1 and τ

[ij]
1 , denoted by θ[ij] ∼ G(τ [ij]

0 +1, τ [ij]
1 ),

with density function given by:

f(θ[ij]|τ [ij]
0 , τ

[ij]
1 ) = [K(τ [ij])]−1

(
θ[ij]

)τ
[ij]
0

exp(−τ
[ij]
1 θ[ij]).

in which τ
[ij]
1 > 0, τ

[ij]
0 > −1 and

K(τ [ij]) = Γ(τ [ij]
0 + 1)

(
τ

[ij]
1

)−(τ
[ij]
0 +1)

. (3.8)

Because we have that t(j−i) = (j − i,
∑j

l=i+1 Xl), from (3.3) it follows that

θ[ij]|X[ij] ∼ G(τ [ij]∗
0 , τ

[ij]∗
1 ) in which τ

[ij]∗
1 = τ

[ij]
1 +

∑j
l=i+1 Xl and τ

[ij]∗
0 = τ

[ij]
0 +

j − i + 1. Thus, from (2.2) the product estimates of θs, s = 1, . . . , n, are given
by:

E(θs|X1, . . . ,Xn) =
s−1∑
i=0

n∑
j=s

r∗[ij]
τ

[ij]
0 + j − i + 1

τ
[ij]
1 +

∑j
l=i+1 Xl

.

The posterior relevancies and the posterior distributions of ρ, p, B and Ak

can be generated by substituting (3.8) into (2.3).
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3.4 Normal data sequence with unknown means

Let θl ∈ R, l = 1, . . . n. Assume that, conditional on θ1, . . . , θn, the sequence
X1, . . . ,Xn, Xl ∈ R, l = 1, . . . , n, are independent and Xl|θl has normal dis-
tribution with unknown mean θl and the same known variance σ2, denoted by
Xl|θl ∼ N (θl, σ

2). Consequently, for the block X[ij] we have that

f(X[ij]|θ[ij]) =
(

1
2πσ2

)(j−i)/2

exp

{
−
∑j

l=i+1 X2
l

2σ2

}

exp

{
−(j − i)

(θ[ij])2

2σ2

}
exp

{
θ[ij]

∑j
l=i+1 Xl

σ2

}
. (3.9)

Let τ [ij] = (τ [ij]
0 , τ

[ij]
1 ). From (3.1) it follows that the conjugate prior distri-

bution for the common parameter θ[ij] is the normal distribution with mean τ
[ij]
1

τ
[ij]
0

and variance σ2

τ
[ij]
0

, denoted by θ[ij] ∼ N
(

τ
[ij]
1

τ
[ij]
0

, σ2

τ
[ij]
0

)
, whose density function is:

f(θ[ij]|τ [ij]) = [K(τ [ij])]−1 exp

{
−τ

[ij]
0 (θ[ij])2

2σ2

}
exp

{
θ[ij]

σ2
τ

[ij]
1

}
, (3.10)

where τ
[ij]
0 > 0, τ

[ij]
1 ∈ R and

k(τ [ij]) =

(
2πσ2

τ
[ij]
0

)1/2

exp

{
(τ [ij]

1 )2

2σ2τ
[ij]
0

}
. (3.11)

Since from (3.9) we have that t(j−i) = (j − i,
∑j

l=i+1 Xl), from (3.3) it

follows that θ[ij]|X[ij] ∼ N (τ [ij]∗
1 , τ

[ij]∗
0 ) in which τ

[ij]∗
1 =

τ
[ij]
1 +

∑j
l=i+1 Xl

τ
[ij]
0 +j−i

and

τ
[ij]∗
0 = σ2

τ
[ij]
0 +j−i

. Thus, from (2.2) the product estimates of θs, s = 1, . . . , n,

are given by:

E(θs|X1, . . . ,Xn) =
s−1∑
i=0

n∑
j=s

r∗[ij]
τ

[ij]
1 +

∑j
k=i+1 Xk

τ
[ij]
0 + j − i

.

The posterior relevancies and the posterior distributions of ρ, p, B and Ak

can be generated by substituting (3.11) into (2.3). For different approaches for
this PPM model see Barry and Hartigan (1993) and Crowley (1997).
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3.5 Normal data sequence with unknown variances

Let θl > 0, l = 1, . . . n. Assume that, conditional on θ1, . . . , θn, the se-
quence X1, . . . ,Xn, Xl ∈ R, l = 1, . . . , n, are independent and Xl|θl has nor-
mal distribution with unknown variance θl and mean equal to zero, denoted by
Xl|θl ∼ N (0, θi). Consequently, for the block X[ij] we have that

f(X[ij]|θ[ij]) =
(

1
2π

)(j−i)/2( 1
θ[ij]

)(j−i)/2

exp

{
−
∑j

l=i+1 X2
l

2θ[ij]

}
. (3.12)

Let τ [ij] = (τ [ij]
0 , τ

[ij]
1 ). From (3.1) it follows that the conjugate prior distri-

bution for the common parameter θ[ij] is the inverted-gamma distribution with

parameters τ
[ij]
1
2 and τ

[ij]
0 −2

2 , denoted by θ[ij] ∼ IG
(

τ
[ij]
1
2 ,

τ
[ij]
0 −2

2

)
, whose density

function is:

f(θ[ij]|τ [ij]) = [K(τ [ij])]−1

(
1

θ[ij]

) τ
[ij]
0
2

exp

{
− τ

[ij]
1

2θ[ij]

}
,

where τ
[ij]
1 > 0, τ

[ij]
0 > 2 and

K(τ [ij]) = Γ

(
τ

[ij]
0 − 2

2

)(
τ

[ij]
1

2

)− τ
[ij]
0

−2

2

. (3.13)

Since from (3.12) we have that t(j−i) = (j − i,
∑j

l=i+1 X2
l ), from (3.3) it

follows that θ[ij]|X[ij] ∼ IG( τ
[ij]∗
1
2 ,

τ
[ij]∗
0
2 ) in which τ

[ij]∗
1 = τ

[ij]
1 +

∑j
l=i+1 X2

l and

τ
[ij]∗
0 = τ

[ij]
0 +j− i−2. Thus, from (2.2) the product estimates of θs, s = 1, . . . , n,

are given by:

E(θs|X1, . . . ,Xn) =
s−1∑
i=0

n∑
j=s

r∗[ij]
τ

[ij]
1 +

∑j
l=i+1 X2

l

τ
[ij]
0 + j − i − 4

.

The posterior relevancies and the posterior distributions of ρ, p, B and Ak

can be generated by substituting (3.13) into (2.3).
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3.6 Normal data sequence with unknown means and variances

Let θl = (µl, σ
2
l ) ∈ R×R+. Assume that, conditional on θ1 = (µ1, σ

2
1), . . . , θn

= (µn, σ2
n) the sequence X1, . . . ,Xn are independent and Xl|µl, σ

2
l has normal

distribution with parameters µl and σ2
l , denoted by Xl|µl, σ

2
l ∼ N (µl, σ

2
l ). Con-

sequently, for the block X[ij] we have that

f(X[ij]|µ[ij], (σ[ij])2) =
(

1
2π

)(j−i)/2
[

1
σ[ij]

exp

{
− (µ[ij])2

2(σ[ij])2

}]j−i

exp

{
µ[ij] +

∑j
l=i+1 Xl

(σ[ij])2
−
∑j

l=i+1 X2
l

2(σ[ij])2

}
. (3.14)

Let τ [ij] = (τ [ij]
0 , τ

[ij]
1 , τ

[ij]
2 ). From (3.1) it follows that the conjugate prior dis-

tribution for the common parameter (µ[ij], (σ[ij])2) is the normal-inverted-gamma

distribution with parameters τ
[ij]
1

τ
[ij]
0

, 1

τ
[ij]
0

, 1
2

[
τ

[ij]
2 − (τ

[ij]
1 )2

τ
[ij]
0

]
and τ

[ij]
0 −3

2 denoted by

θ[ij] ∼ N IG

(
τ
[ij]
1

τ
[ij]
0

, 1

τ
[ij]
0

; 1
2

[
τ

[ij]
2 − (τ

[ij]
1 )2

τ
[ij]
0

]
,

τ
[ij]
0 −3

2

)
, whose density function is:

f(θ[ij]|τ [ij]) = [K(τ [ij])]−1

[
1

σ[ij]
exp

{
− (µ[ij])2

2(σ[ij])2

}]τ
[ij]
0

× exp

{
µ[ij]τ

[ij]
1

(σ[ij])2
− τ

[ij]
2

2(σ[ij])2

}
.

where τ
[ij]
0 > 0, τ

[ij]
1 ∈ R, τ

[ij]
2 >

(τ
[ij]
1 )2

τ
[ij]
0

and

K(τ [ij]) =

(
2π

τ
[ij]
0

)1/2

Γ

(
τ

[ij]
0 − 3

2

)(
τ

[ij]
2 − (τ [ij]

1 )2

τ
[ij]
0

)− τ
[ij]
0 −3

2

. (3.15)

Since from (3.14) we have that

(µ[ij], (σ[ij])2) |X[ij] ∼ N IG

(
a

b
,
1
b
;

1
2

[
τ

[ij]
2 +

j∑
l=i+1

X2
l

]
− a2

2b
,
b − 3

a

)
,

where

a = τ
[ij]
1 +

j∑
l=i+1

Xl, b = τ
[ij]
0 + j − i.
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Thus, from (2.2) the product estimates of (µs, (σs)2), s = 1, . . . , n, are given
by:

E(µs |X1, . . . ,Xn) =
s−1∑
i=0

n∑
j=s

r∗[ij]
a

b

E(σ2
s |X1, . . . ,Xn) =

s−1∑
i=0

n∑
j=s

r∗[ij]
(τ [ij]

2 +
∑j

l=i+1 X2
l )b − a2

b(b − 5)
,

where, again,

a = τ
[ij]
1 +

j∑
l=i+1

Xl, b = τ
[ij]
0 + j − i.

The posterior relevancies and the posterior distributions of ρ, p, B and Ak can
be generated by substituting (3.15) into (2.3). See also Loschi and Cruz (2005)
for a sensitivity analysis to this model.

4. Applications

We shall now illustrate some of the results given in the previous sections by
applying them to two real data sets. As an example for the discrete case, we
consider the series of counts of violent crimes in a central neighborhood of Belo
Horizonte, the capital city of the State of Minas Gerais, Brazil. Given the rate,
we assume that the number of crimes are distributed according to a Poisson
distribution. For illustrating the continuous case, we consider the return series
of four Latin American emerging market indices and assume that, conditional on
the expected return and in the volatility (measured here as variance), the returns
are normally distributed with unknown mean and variance.

In order to estimate the posterior distributions 10,000 samples of 0–1 values
were generated with the dimension of the time series, starting from a sequence of
zeros. Since the convergence was reached before the 1,000th step (not shown), the
initial 1,000 iterations were discharged as burn-in. In order to avoid correlation
among vectors a lag of 10 was selected. Further discussions about the number of
iterations to be discharged, as well as the lag to be taken, can easily be found in
the literature (Gamerman, 1997).

4.1 Change point analysis for criminality data

In this section we consider the series of counts of violent crimes in a central
neighborhood (5th CIA) of Belo Horizonte, recorded monthly from January, 1998,
to September, 2001. The time series is plotted in Figure 1 jointly with the product



318 R. H. Loschi et al.

*
*

*

*

*

*

*
*

*
*

*

*

*
*

*
*

*

*

* *

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*
*

*

*

*

* *

*

Time

R
at

e-
5t

h 
C

IA

1997
Dec

1998
Apr

1998
Aug

1998
Dec

1999
Apr

1999
Aug

1999
Dec

2000
Apr

2000
Aug

2000
Dec

2001
Apr

2001
Aug

20
30

40
50

60
70

* N. crimes
Product estimates

Figure 1: Product estimates for the rate of crimes.
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estimates for the rate of crimes. Our interest is to verify if the “Policing with
Results” a program introduced by the State of Minas Gerais Military Police
Command in the late 1990s, made the crime rate to decrease.

We assume that, given the rate, the number of violent crimes within the
same block are independent and distributed according to the Poisson distribution
P(θ[ij]). We also adopt the natural conjugate prior distribution for the rate of
crimes θ[ij] which, in this case, is a gamma distribution. As we do not have
a precise information about the rate of violent crimes, we assume that θ[ij] ∼
G(2.01, 0.001) which is a low informative prior distribution and has mean and
standard deviation equal to 2.01 × 103 and 1.43 × 103 violent crimes per month,
respectively.

Since a small number of changes is expected in the series, we also assume that
the probability p of having a change in any instant has a beta prior distribution
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Table 1: Descriptive statistics for the posterior distributions of B and p.

parameter Mean Median Standard Deviation Q1 Q3

B 14.03 14 0.161 14 14
p 0.1971 0.1937 0.0448 0.1645 0.2278
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Figure 3: The posterior most probable partition

with parameters α = 1.5 and β = 28.5 (see detail in Section 4.2). Consequently,
we are considering in the prior evaluation that the expected number of blocks in
the series is 2.2 and the standard deviation is 2.2 blocks.

From Figure 1 we can notice the increase of the rate of crimes from January,
1998, to December, 2000. The rate reaches its maximum in December, 2000
(approximately 68 crimes per month), and decreases in January and June, 2001.
These reduction could be a positive effect of the “Policing with Results” program.

Figure 2 presents the posterior distribution for the probability of occurring
a crime in any instant p. This distribution is slightly asymmetric and has only
one mode. The posterior distribution of p concentrate most of its mass in values
close to 0.20.

Notice from Table 1 that, if a square loss function is considered, the posterior
estimate for the probability of a crime being committed in any instant is 19.71%
which is higher than the prior estimate, 5.0%. The posterior estimate for the
number of change points (B−1) is also higher than in the prior evaluation (mean
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= 13.03 crimes per month). The posterior variance of B is small which means
that there is less uncertainty about B.

From Figures 3 and 4 we can see the posterior most probable partition and
the posterior probability of each instant being a change point, respectively. The
posterior most probable partition occurs with probability 40.78% and indicates
that the following months are change points: June and October, 1998; March,
July, and November, 1999; February, May, August, October, and November,
2000; and January, April, and July, 2001. Beside this, we can also observe that
the following months has probability higher than 80% of being a change point:
July and December, 1998; April, August, and December, 1999; March, June,
September, and November, 2000; and March and June, 2001.
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Figure 4: Posterior probability of a change.

4.2 Change point analysis for Latin American emerging indices

In this section we compare the behavior of four important Latin American
stock market indices by means of their return series: the MERVAL of Argentina
(Índice de Mercado de Valores de Buenos Aires), the IBOVESPA of Brazil (Índice
da Bolsa de Valores do Estado de São Paulo), the IPSA of Chile (Índice de
Precios Selectivos de Acciones), and the IPyC of Mexico (Índice de Precios y
Cotizaciones), from October 31, 1995, to October 31, 2000, recorded fortnightly.
A return series is defined by using the transformation Rt = (Pt − Pt−1)/Pt−1,
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where Pt is the last price observed in the tth fortnight. In this period, three
important financial crises involving emerging markets occurred: Mexico’s crisis,
in January, 1995, Asia’s crisis, in August, 1997, and Russia’s crisis, in July,
1998. As it is well-known, these events could eventually produce changes in
Latin American stock market behavior.
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Figure 5: Return series.

It is noticeable from Figure 5 that the behavior of the returns of all these
indices suggests the existence of some changes in the variance and in the expected
return. In fact, Lochi et al. (2005) proposed a PPM to analyze the behavior of
the volatility of these indices concluding that they possess volatility clusters. Our
purpose here is to extend Loschi et al.’s (2005) analysis to show that within the
period from 31 October, 1995, to 31 October, 2000, MERVAL, IBOVESPA, IPSA,
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and IPyC series possess both expected return and volatility clusters and also to
provide the probability of each instant being a change point for each return series.

We suppose that returns within the same block are conditionally independent
and distributed according to the normal distribution N (µ[ij], σ

2
[ij]). We also adopt

the natural conjugate prior distribution for the parameter (µ[ij], σ
2
[ij]) which, in

this case, is the normal-inverted-gamma distribution such that

µ[ij]|σ2
[ij] ∼ N (0, σ2

[ij]);

σ2
[ij] ∼ IG(a[ij]/2, b[ij]/2),

where a[ij] and b[ij] assume the different values pointed out in Table 2. Conse-
quently, we are assuming that the returns are distributed according to a Student-t
PPM, which has heavier tails than the normal distribution and discloses a struc-
ture of correlation amongst the returns within the same block. Table 2 presents
the descriptive statistics for prior distributions of σ2

[ij] for each index.

Table 2: Parameters and descriptive statistics for the prior distribution of the
volatility.

Index a[ij] d[ij] Mean Variance Mode

MERVAL, IBOVESPA, 0.001 6 2.50×10−4 6.25×10−5 1.25×10−4

and IPyC
IPSA 0.001 8 1.67×10−4 1.39×10−5 1.00×10−4

Notice from Table 2 that we are assuming that in the prior evaluation the
IPSA has the smallest volatility (the prior mean and mode are 1.67 × 10−4 and
1.00×10−4, respectively). The volatility for MERVAL, IBOVESPA and IPyC are
considered the same (the prior mean and mode are 2.50 × 10−4 and 1.25 × 10−4,
respectively). Observe also that there is less uncertainty about the volatility of
IPSA since the variance for the volatility is the smallest.

Since a small number of changes is expected to MERVAL, IBOVESPA, IPSA,
and IPyC, we also assume that the probability of having a change in any instant
p has a beta prior distribution with parameters α = 5 and β = 50. This prior
distribution has modal value equal to 0.076, mean equal to 0.091, standard devi-
ation equal to 3.84× 10−2, and concentrate most of its mass in small values of p.
We can observe that this prior specification implies that the expected number of
blocks in the prior evaluation for all indices is 11.82 and the standard deviation
is 5.53 blocks. The modal value of the number of blocks is 10.0 which means that
the most probable number of change points in the four indices is 9.0. That is, for
us the four indices are equally susceptible to shocks and to the global political
atmosphere.
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Figure 6: Product estimates for the expected returns.
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Figure 7: Product estimates for the volatility.

Figures 6 and 7 present the product estimates of the fortnightly expected
returns and volatilities for MERVAL, IBOVESPA, IPSA, and IPyC return series,
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respectively. We can notice that all indices present changes in both expected
return and volatility. It is also noticeable that the product estimates for the
volatility tends to increase through time and the product estimates for expected
return tends to decrease for all indices. Important changes can easily be identified.
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Figure 8: Product estimates for the expected return and volatility plotted
altogether.

Table 3: Descriptive statistics for the posterior dis-
tribution of the number of blocks.

Index Mean Variance Mode

MERVAL 1.39 0.3953 1
IBOVESPA 3.44 1.2089 3

IPSA 2.14 1.2309 2
IPyC 1.01 0.0044 1

In general, comparing the four indices we notice from Figure 8 that IPSA
presents the smallest volatility and expected return. From the 1st fortnight,
July, 1997, IBOVESPA presents the highest volatility and the expected return
for IBOVESPA is smaller than that we obtain for MERVAL and IPyC. Before the
1st fortnight, July, 1997, the product estimates for the volatility of IBOVESPA
and IPSA are very close. We also can notice that important changes in all indices
occur almost simultaneously.

It is noticeable from Figure 9 and Table 3 that for all indices the posterior
distribution for the number of blocks are asymmetric, there are unique modes
and they typically concentrate most of their mass in small values. The poste-
rior estimates for the number of blocks in each index are much smaller than we
considered in the prior evaluation (mean, 11.82, and mode, 10). That is, these
posterior distributions disclose that all four indices are more stable than we con-
sidered in the prior evaluation. Moreover, we can perceive that MERVAL and
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IPyC are more stable than IPSA and IBOVESPA, and that, with higher posterior
probability, MERVAL and IPyC do not present change points.
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Figure 9: Posterior distribution for the number of blocks.

Table 4 presents the prior and posterior probabilities for the posterior mode
of the number of blocks for the four indices. Notice, for example, that in spite
of having a low prior probability for MERVAL and IPyC series to not experience
a change point (2.6 × 10−1%), the posterior probability for these events increase
strongly reaching 65.90% and 99.59%, respectively. Assuming the 0-1 loss func-
tion, we conclude that IBOVESPA experiences two changes in its behavior with
a probability of 56.45% and that only one change point occurs in IPSA series
with posterior probability of 46.34%.

Table 4: Prior and posterior probabilities for the posterior mode of B.

Index Posterior mode Prior prob. Posterior prob.

MERVAL 1 2.60 × 10−3 0.6590
IBOVESPA 3 1.95 × 10−2 0.5645

IPSA 2 9.19 × 10−3 0.4634
IPyC 1 2.60 × 10−3 0.9956
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Table 5: The posterior most probable partition and their prior
and posterior probabilities.

Index Partition Prior prob. Posterior prob.

MERVAL {0,120} 2.60 × 10−3 0.6589
IBOVESPA {0,40,115,120} 2.78 × 10−6 0.1311

IPSA {0,120} 2.60 × 10−3 0.2678
IPyC {0,120} 2.60 × 10−3 0.9956

Year

P
ro

b.
- 

C
ha

ng
e 

po
in

t

1996 1997 1998 1999 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

MERVAL
IBOVESPA
IPSA
ˇPyC

Figure 10: Posterior probability of a change point.

Table 5 presents the posterior most probable partition for MERVAL, IBOVE-
SPA, IPSA, and IPyC series. We see that the posterior most probable partitions
for MERVAL, IPSA, and IPyC indicate that there are no changes in these in-
dices with probability 65.89%, 26.78% and 99.56%, respectively. The posterior
most probable partition for IBOVESPA {0, 40, 115, 120} indicates that this index
experiences changes in its behavior in the observations 40 (2nd fortnight, June,
1997) and 115 (1st fortnight,June,2000). Notice that this partition occurs with
probability 13.11% only.

Figure 10 presents the probability of each instant being a change point. We
notice that for MERVAL, IPSA, and IPyC the probability of each fortnight being
a change point is less than 20.89%. For IBOVESPA we observe that the 1st
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fortnight, July, 1997, is a change point with probability 35.56%, the 2nd fortnight,
August, 2000, has probability 59.67% of being a change point and the other
instants have probability not superior to 21.34% of being a change point.

Figure 11 and Table 6 present the posterior distributions for p for each index
and their descriptive statistics, respectively. Notice that all these distributions
are asymmetric, have unique modes, and typically concentrate most of their mass
in small values. We can notice for all indices that the posterior estimates for the
probability of a change in any instant are smaller than that we have assumed
in the prior evaluation (prior mean = 0.0909, for all indices) and it is different
for each index. We also notice that the probability p of a change in any instant
is highest for IBOVESPA (posterior mean= 0.0439) and is smallest for IPyC
(posterior mean = 0.0287).

Notice that the change points identified by the PPM in MERVAL, IPSA,
and IPyC indices are close to an important international event, Asia’s crisis in
August, 1997.
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Figure 11: Posterior distribution of p.
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Table 5: Descriptive statistics for the posterior distribution of p.

Index Mean Median Standard Deviation

MERVAL 0.0309 0.0289 0.0133
IBOVESPA 0.0439 0.0416 0.0173

IPSA 0.0349 0.0330 0.0152
IPyC 0.0287 0.0266 0.0127

5. Summary and Conclusions

The product partition model (PPM) was defined for Yao’s cohesions and
applied to the identification of multiple change points in the parameter which
index the exponential family. Because the exponential family provides a rich set
of models the PPM was also defined the PPM for some particular members of
this family.

In order to illustrate the use of PPM, a series of counts of violent crimes in Belo
Horizonte, Brazil, and some Latin American emerging market indices (MERVAL-
Argentina, IBOVESPA-Brazil, IPSA-Chile, and IPyC-Mexico) were analyzed.
We concluded that the rate of violent crimes in a particular neighborhood of
Belo Horizonte is high and presents a high number of change points. We also
concluded that all indices possess clusters in volatility and expected return and
the changes are almost simultaneous. We noticed that the changes experienced
by MERVAL and IPyC have less magnitude and, as expected, IPSA felt later the
effect of the crisis.

The results indicate that the PPM effective as it may provide useful inferences.
Mainly, for the particular data sets analyzed here, it could be observed that the
posterior probability of each instant being a change point provides an efficient
tool for decision making.

Despite of the good performance of the PPM in the data analyzed here,
some other Bayes estimates could be considered in case of the interest is not a
retrospective analysis as considered here, see for instance, Quintana and Iglesias
(2003).
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