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Abstract. Multi-level network optimization problems arise in many contexts such as telecom-
munication, transportation, and electric power systems. A model for multi-level network design
is formulated as a mixed-integer program. The approach is innovative because it integrates in the
same model aspects of discrete facility location, topological network design, and dimensioning.
We propose a branch-and-bound algorithm based on Lagrangian relaxation to solve the model.
Computational results for randomly generated problems are presented showing the quality of our
approach. We also present and discuss a real world problem of designing a two-level local access
urban telecommunication network and solving it with the proposed methodology.
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1. Introduction

In order to guarantee quality of service (QoS) and performance at minimum cost,
network design and planning in engineering systems require policy decisions,
analysis of investment strategies, and technical and development plans. Network
planning must satisfy the expected demand for new services, upgrading, and im-
provements on the existing network. The aim is to explore the hierarchical orga-
nization of each network and to propose integrated network models as decision
support systems. Within this context, we have focused solutions for basic urban
mapping data capture and data analysis using a Geographic Information System
(GIS) and network optimization systems [35]. The multi-level network optimiza-
tion (MLNO) problem treated here is a network design model that raises optimiza-
tion aspects of dimensioning, topological design, and facility location. In this sense,
the model can be applied in network planning to explore design aspects at different
levels in a modeling approach that integrates several hierarchical levels.
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Figure 1. The MLNO problem.

1.1. MOTIVATION AND PROBLEM STATEMENT

We define the MLNO problem on a multi-weighted digraph D = (N,A), where
N is the set of nodes and A is the set of arcs. Figure 1 shows a m-level network
example containing, at each level, candidate supply nodes, demand nodes, and
transshipment nodes. The objective is to determine an optimum combination of
supply nodes and arcs to provide the required flow type to all demand nodes while
respecting rules of flow conservation.

In economic terms, multi-level network design models are critically important.
Consider, for instance, the problem of planning local access urban telecommu-
nication networks [30]. The digraphs represent urban topologies, i.e., streets and
junctions, and primary and secondary commodities represent fiber optic transmis-
sion systems and copper cables, respectively. The switching centers and certain
important customers are first-level demand nodes, and households, second-level
demand nodes. The network must connect the first-level demand nodes using high
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bandwidth, but expensive, fiber optic systems, and the second-level demand nodes
might access the network via copper cables. Road network and electric power
system planning are similar applications [15]. In the transportation context, the
model could be used to plan the design of all-weather highways, rough roads, and
secondary roads. For electric power system design, the commodities correspond to
each voltage level.

The study of multi-level networks is also important in theoretical terms because
they can be viewed as generalizations of well-known topological network design
(TND) problems, like TND problems oriented to telecommunications, fixed charge
flow problems, Steiner problems in graphs, and uncapacitated location problems.
These problems have been frequently treated by researchers in recent decades.
A selective bibliography about TND problems can be found in the paper of Mi-
noux [36]. In many works, network optimization [22, 23, 30] and dimensioning
[5, 7, 32], problems oriented to telecommunication applications have been pre-
sented. In those papers, there is also a large number of references. The fixed charge
flow problem was studied in [27]. The Steiner problem in graphs is also a classical
model for which results have been discovered [11, 24, 25]. The uncapacitated
location problem is another example of a relevant subproblem of the multi-level
model. The solution of this problem has many implications in the real world and
advances continue to be made for its solution [20].

1.2. PREVIOUS RESEARCH

The MLNO problem is N P -hard given that it generalizes other N P -hard op-
timization problems, such as the Steiner problem in graphs [21], the telephonic
switching center problem [30], or the uncapacitated location problem [17]. Little
research has been done on the MLNO problem. In some works, models for multi-
level network design have appeared, but not as done here. Some works do not
consider location aspects [15, 16], others do not consider dimensioning aspects
[4, 5]. This paper integrates discrete location aspects, topological network design,
and network dimensioning in the same model. Somebody might argue that the
MLNO problem may not be able to capture all complexities existing in the actual
network design problem. However, its solution may provide insights and a starting
point for further and more accurate analyses.

1.3. OUTLINE OF PAPER

The paper is outlined as follows. In Section 2, we introduce the notation and present
a mathematical programming formulation for the MLNO problem. In Section 3, a
branch-and-bound algorithm is proposed for the problem, which is an appropriate
approach to deal with N P -hard optimization problems. We also derive a lower
bound for the problem and a heuristic procedure, based on the Lagrangian relax-
ation, for computing feasible solutions. A preliminary version of the algorithm has
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been coded in C and tested, and computational results are presented in Section 4.
We solve a group of randomly generated problems and a sample real problem,
establishing the effectiveness of our solution method. We conclude the work in
Section 5, presenting and discussing some open questions.

2. Mixed-integer Mathematical Programming Formulation

In formulating the MLNO problem, we made some assumptions concerning the
settings which are made explicit below:

(1) The arcs have cost parameters that include a non-negative fixed cost of using
the arc and a non-negative cost per-unit of flow. There is a discontinuity in the
zero flow values, so the total cost is a nonlinear function of the amount of flow.

(2) The total supply capacity of the first-level candidate supply nodes equals the
sum of all demands in all levels.

(3) Without loss of generality, in all other levels but the first, the candidate supply
nodes are ‘transformation’ nodes that receive flows from the respective level
and ‘convert’ them into the immediately superior level at an 1 : 1 ratio.

(4) There may be a cost in transforming flows from one level to another. We
model here possible hardware that must be present to interconnect the different
networks.

2.1. NOTATION

As an aid to the reader, we now define the notation used:

m – number of levels;
Rl – set of lth level candidate supply nodes;
Dl – set of lth level demand nodes.
di – lth level demand node i ∈ Dl;
T l – set of lth level transshipment nodes, defined as follows: T l = N \ (Rl ∪

Dl ∪ Rl+1) for l = 1, 2, . . . , (m− 1), and T m = N \ (Rm ∪Dm);
clij – nonnegative per-unit cost for lth level flow on arc (i, j) ∈ A;
xlij – lth level flow through arc (i, j) ∈ A;
f l
ij – nonnegative fixed cost for using arc (i, j) ∈ A to support lth level flow;
ylij – Boolean variable which assumes the value 1 or 0 depending on whether

or not the arc (i, j) is being used to support lth level flow;
fi – nonnegative allocation cost for the lth level candidate supply node i ∈ Rl;
zi – Boolean variable which is set to 1 or 0 depending on whether or not the

node i ∈ Rl is being selected to provide lth level flow;
Ml – capacity on all arcs in the lth level, but relaxed in this paper and considered

a big enough number, i.e., Ml =∑m
L=l

∑
i∈DL di ;

sl – capacity on all lth level candidate supply nodes, but also relaxed in this
paper, i.e., sl = Ml;
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δ+(i) – set {j | (i, j) ∈ A};
δ−(i) – set {j | (j, i) ∈ A}.

2.2. FORMULATION

The mathematical programming formulation describing the MLNO problem is
presented as a flow-based mixed-integer programming (MIP) model (M):

min
m∑
l=1

[ ∑
(i,j)∈A

(
clij x

l
ij + f l

ij y
l
ij

)+∑
i∈Rl

fizi

]
, (1)

subject to∑
j∈δ+(i)

xlij −
∑

j∈δ−(i)
xlji = −

( ∑
j∈δ+(i)

xl−1
ij −

∑
j∈δ−(i)

xl−1
ji

)
, ∀ i∈Rl,

l=2,3,...,m,
(2)

∑
j∈δ+(i)

xlij −
∑

j∈δ−(i)
xlji = 0, ∀ i∈T l ,

l=1,2,...,m,
(3)

∑
j∈δ+(i)

xlij −
∑

j∈δ−(i)
xlji = −di, ∀ i∈Dl,

l=1,2,...,m,
(4)

∑
j∈δ+(i)

xlij −
∑

j∈δ−(i)
xlji � slzi, ∀ i∈Rl,

l=1,2,...,m,
(5)

xlij � Mlylij , ∀ (i,j)∈A,
l=1,2,...,m,

(6)

xlij � 0, ∀ (i,j)∈A,
l=1,2,...,m,

(7)

ylij ∈ {0, 1}, ∀ (i,j)∈A,
l=1,2,...,m,

(8)

zi ∈ {0, 1}, ∀ i∈Rl,

l=1,2,...,m.
(9)

The objective function (1) minimizes three terms: (i) the first accounts for the
total variable cost for all flow types, (ii) the second accounts for the fixed cost
associated with the use of the arcs (the overhead cost), and (iii) the last considers
the total cost resulting from the use of the supply nodes.

Constraints (2) ensure flow conservation between adjacent levels at each candi-
date supply node. Constraints (3) and (4) are the usual network flow conservation
equalities at each transshipment node and demand node. From the point of view of
level 1, for instance, all nodes i ∈ N \ (R1∪D1∪R2) are transshipment nodes (see
Figure 1). Constraints (5) ensure that there is no flow transformation in a candidate
supply node if that node is not selected, and constraints (6) express the fact that the
flow through an arc must be zero if this arc is not included in the design.
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algorithm Branch-and-Bound
UBEST ←+∞
�← {(M)0}
while � �= ∅ do

/* search rule */
select and delete a problem (M)i from �

/* bound rule */
Compute_Lower_and_Upper_Bounds(Li ,Ui)
update UBEST

/* branch rule */
if Li < UBEST and (M)i is not a leaf then

�← � ∪ {(M)2i+1} ∪ {(M)2i+2}
end if

end while
end algorithm

Figure 2. Branch-and-bound algorithm.

3. Methodology and Algorithm

An exact approach to solve any N P -hard optimization problem normally is to
implicitly enumerate all solutions. Branch-and-bound is a well-known technique
largely applied to many similar problems. It can be tailored in order to get ef-
ficient solutions quickly. We propose implementations based on the branch-and-
bound algorithm depicted in Figure 2. In that description, UBEST is the global upper
bound and � is a list of unexplored problems (M)i , each of which is of the form
Zi
M = min{cx s.t.: x ∈ Si}, where Si ⊆ S and S is the set of feasible solutions.

Associated with each problem in � there are a lower bound Li � Zi
M and an

upper bound Ui � Zi
M . For memory economy purposes, the search rule applied is

last-in-first-out which yields a depth-first search strategy.
We shall now describe how the bounds Li and Ui are computed and how the

branching variable selections are made.

3.1. COMPUTING LOWER BOUNDS

An obvious way to compute lower bounds for MIP problems is through a linear
programming relaxation (LPR) and it could be applied to the MLNO problem as
well. However, we will make use of the Lagrangian relaxation (LR), which is a
well-known technique to derive lower bounds, used commonly coupled with sub-
gradient optimization procedures [18]. LR has been applied successfully to many
similar combinatorial optimization problems, such as location problems [9, 20],
distribution systems design [33, 34], traveling salesman problems [26], design of
computer networks [22, 23], and topological network design problems [28, 29].



A BRANCH-AND-BOUND ALGORITHM 43

The idea of the method is to ‘price out’ complicating constraints by means of
a Lagrangian multiplier vector, deriving a relaxed problem easier to solve than the
original one. The relaxation is a lower bound for the original problem for any given
feasible Lagrangian multipliers.

There are many ways to derive a LR for (M). The relaxation presented in this
paper divides the problem into the following subproblems:

(i) shortest path problem;
(ii) two subset selection integer problems.

Let us ‘price out’ constraints (5) using dual variables vi � 0 and constraints (6)
using dual variables wl

ij � 0. Then it is possible to write the following Lagrangian
function:

L(x, y, z; v,w1,w2, . . . ,wm)

=
m∑
l=1

[ ∑
(i,j)∈A

(clij x
l
ij + f l

ij y
l
ij )+

∑
i∈Rl

fizi +

+
∑
i∈Rl

vi

( ∑
j∈δ+(i)

xlij −
∑

j∈δ−(i)
xlji − slzi,

)
+

+
∑

(i,j)∈A
wl
ij

(
xlij −Mlylij

)]
. (10)

Thus, the LR is (LRv,w1,w2,...,wm):

L(v,w1,w2, . . . ,wm)

= min
v,w1,w2,...,wm�0

L(x, y, z; v,w1,w2, . . . ,wm), (11)

subject to

(2)–(4), (7)–(9).

Given that

L(v,w1,w2, . . . ,wm) = L(x∗, y∗, z∗; v,w1,w2, . . . ,wm),

the subgradient vector of L at (v,w1,w2, . . . ,wm) is:[( ∑
j∈δ+(i)

xlij
∗ −

∑
j∈δ−(i)

xlji
∗ − slzi

∗,
)

i∈Rl,

l=1,2,...,m,

,
(
xlij
∗ −Mlylij

∗)
(i,j)∈A,
l=1,2,...,m

]
. (12)

Once feasible values for the Lagrangian multipliers v, w1, w2, . . . , and wm are
given, the computation of function L(v,w1,w2, . . . ,wm) is reduced to solve ‘easy’
subproblems. It is possible to write that
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L(v,w1,w2, . . . ,wm) = L1(v,w1,w2, . . . ,wm)+
+L2(v,w1,w2, . . . ,wm)+
+L3(v,w1,w2, . . . ,wm), (13)

in which L1(v,w1,w2, . . . ,wm), L2(v,w1,w2, . . . ,wm), and L3(v,w1,w2, . . . ,

wm) are optimal solutions of subproblems (L1), (L2), and (L3), shown below:

L1(v,w1,w2, . . . ,wm) = min
m∑
l=1

∑
(i,j)∈A

Cl
ijx

l
ij , (14)

subject to

(2)–(4), (7)

in which

Cl
ij =




clij + wl
ij , i �∈ Rl, j �∈ Rl,

clij + wl
ij + vi, i ∈ Rl, j �∈ Rl,

clij + wl
ij − vj , i �∈ Rl, j ∈ Rl,

clij + wl
ij + vi − vj , i ∈ Rl, j ∈ Rl,

(15)

L2(v,w1,w2, . . . ,wm) = min
m∑
l=1

∑
(i,j)∈A

(
f l
ij −

m∑
l=1

wl
ijM

l

)
ylij , (16)

subject to

(8),

L3(v,w1,w2, . . . ,wm) = min
m∑
l=1

∑
i∈Rl

(
fi − vis

l
)
zi, (17)

subject to

(9).

The optimum of problem (L1) is obtained using a shortest path algorithm. The
problem can be solved level by level in the following way. The optimum for the
first-level is to connect nodes in D1 to nodes in R1 using the shortest paths. For
the second-level, the optimum is to connect nodes in D2 also to nodes in R1 via
shortest paths but using one node of R2, and so on, for the other levels, as shown
in the algorithm presented in Figure 3.

The shortest simple paths algorithm for arbitrary costs is a polynomial proce-
dure, O(|N | |A|), if there are no negative cost circuits [10]. Thus, the algorithm
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algorithm L1

/* σ l
i is the minimum per-unit cost to bring */

/* lth level flow from set R1 to node i ∈ N ; */

/* function SH(i, j, l) returns the shortest */

/* path length from i to j using costs Cl
ij ; */

L1← 0
for ∀j ∈ R1 do

σ 0
j ← 0

end for
for l ← 1 to m do

for ∀j ∈ Dl do
σ l
j ← min

i∈Rl

[σ l−1
i + SH(i, j, l)]

L1← L1 + σ l
j ∗ dj

end for
if l �= m do

for ∀j ∈ Rl+1 do
σ l
j ← min

i∈Rl

[σ l−1
i + SH(i, j, l)]

end for
end if

end for
end algorithm

Figure 3. Algorithm for problem (L1).

presented in Figure 3, efficiently implemented, runs with complexity O(m|N | |A|)
which translates into O(m|N |3) for dense networks.

The subproblem (L2) is simply a subset selection problem. Its optimum can
be found with polynomial complexity O(m|A|) which is O(m|N |2) for dense net-
works.

Similarly, the subproblem (L3) is also a subset selection problem which is
solvable with polynomial complexity O(m|N |).

3.2. HEURISTICS FOR (M)

When the objective is to get quickly good quality feasible solutions, usually we
are looking for heuristic procedures. This is an approach to solve approximately
an N P -hard optimization problem. Flexibility and computational simplicity are
important characteristics for a heuristic method but first and foremost, it must give
good quality solutions.

There are many possible ways of computing an upper bound (a feasible solu-
tion) for model (M). The method proposed here uses the solution of (L1) and is
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Table I. Linear programming relaxation versus Lagrangian relaxation

LPR LR

Problema |N | |A| |D| Lower Bound CPU (s)b Lower Bound Upper Bound CPU (s)

B-1 50 126 8 1,154.25 0.20 1,154.13 1,222∗ 2.00

2 12 2,450.25 0.27 2,450.24 2,520∗ 2.20

3 24 4,860.17 0.27 4,859.98 5,012∗ 2.20

4 200 8 1,174.50 0.32 1,174.49 1,237 4.80

5 12 1,038.58 0.37 1,038.52 1,095∗ 4.60

6 24 3,072.75 0.38 3,072.51 3,208 5.40

7 75 188 12 2,843.50 0.34 2,843.50 2,943∗ 4.90

8 18 2,554.11 0.37 2,553.74 2,657∗ 5.00

9 37 5,655.24 0.36 5,654.49 5,874∗ 5.10

10 300 12 1,946.08 0.60 1,946.02 2,053 11.00

11 18 3,881.44 0.55 3,881.27 3,987∗ 11.00

12 37 6,738.16 0.62 6,737.60 6,948 12.00

13 100 250 16 4,266.50 0.43 4,265.95 4,432∗ 8.90

14 24 8,876.83 0.53 8,876.22 9,117 9.30

15 49 11,052.51 0.54 11,051.60 11,383∗ 9.20

16 400 16 3,803.63 0.82 3,803.32 3,942 23.00

17 24 5,071.04 0.81 5,070.66 5,193 22.00

18 49 6,092.41 0.94 6,091.92 6,360 21.00

a Networks from Beasley [12], with fij /"ij = 1 and cij /"ij = 10.
b CPU time using CPLEXTM.
∗ Optimal solution.

quite simple. By using an optimal solution of (L1) added by the respective utiliza-
tion costs of the arcs and supply nodes in this solution, we are actually ensuring
feasibility of constraints (5) and (6), ‘priced out’ in the relaxation process, and
getting an upper bound for (M).

Indeed, the main advantage of using a LR to solve the MLNO problem is the
possibility of deriving such a Lagragian heuristics to solve it. The quality of the
upper bounds is usually very good, as seen in Table I, for one-level networks
derived from the library of Beasley [12]. On the other hand, the CPU times are
larger for LR and the lower bounds are not better than those computed via LPR,
given that the LR obeys the integrality property [19]. The integrality property of
our relaxation is an important theoretical result easily confirmed in practice, as
shown in Table I.

As observed by Rardin and Wolsey [37] and Barahona [8], stronger lower
bounds can be obtained by means of multicommodity formulations since these
models represent more accurately the fixed costs in the arcs. Of course, such an



A BRANCH-AND-BOUND ALGORITHM 47

Table II. Linear programming relaxations for fij /cij = 10

SC Formulation MC Formulation

Problema |N | |A| |D| Lower Bound (%) CPU (s)b Lower Bound (%) CPU (s)b

B-1 50 126 8 27.46 0.17 100.00 7.60

2 12 41.06 0.18 100.00 59.00

3 24 33.79 0.20 96.11 370.00

4 200 8 35.37 0.25 100.00 180.00

5 12 26.01 0.32 100.00 370.00

6 24 25.17 0.31 93.61 3,700.00

7 75 188 12 36.85 0.26 100.00 210.00

8 18 29.35 0.27 99.48 320.00

9 37 25.34 0.29 ∗ ?

10 300 12 30.96 0.49 95.63 850.00

11 18 40.49 0.41 93.73 3,800.00

12 37 30.87 0.51 ∗ ?

13 100 250 16 32.47 0.37 100.00 730.00

14 24 37.26 0.39 98.19 1,700.00

15 49 28.90 0.43 ∗ ?

16 400 16 35.28 0.73 95.92 6,600.00

17 24 37.52 0.64 ∗ ?

18 49 22.09 0.72 ∗ ?

a Networks from Beasley [12], with fij /"ij = 10 and cij /"ij = 1.
b CPU time using CPLEXTM.
∗ Number of constraints > 16.000.

improvement is obtained at the cost of a substantial increase in the number of
constraints. Table II shows comparisons between single commondity (SC) ver-
sus multicommotity (MC) formulations, in terms of the quality of the LPR lower
bounds. The improvement on the lower bounds is noticeable as much as the CPU
time explosion to compute it.

However, for multicommodity formulations coupled with LR, the performance
is expected to be superior than LPR, given that the quality of the LR lower bounds
is comparable to the LPR, as seen in Table I, and that the high number of constraints
could be implicity and more efficiently handled by LR algorithms.

3.3. CHOOSING BRANCHING VARIABLES

It is common that a branching strategy works very well in some cases and poorly for
others. The objective which we aim at is to reduce the number of nodes visited in
the branch-and-bound search tree. In this paper, for reason of simplicity we propose
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greedy-type heuristics. The branching variable will be that one for which one gets
the maximum expected increment in the lower bound. So, from Equation (10), the
branching variable should be:{

zk, if max%zk > max%ylij
,

ylij , otherwise,

where

%zk =




∣∣∣∣vk
( ∑
j∈δ+(k)

xlkj
∗ −

∑
j∈δ−(k)

xljk
∗ − slzk

∗
)∣∣∣∣,

if decision vari-
able zk is cur-
rently free,

0, otherwise,

and

%ylij
=



∣∣wl

ij

(
xlij
∗ −Mlylij

∗)∣∣, if decision vari-
able ylij is cur-
rently free,

0, otherwise,

for the last x∗, y∗, z∗, v, w1, w2, . . . , and wm, obtained in the current node in the
branch-and-bound search tree. This choice seems to be more effective than merely
to choose the first free variable encountered. The complexity of this method is
polynomial, O(m|A|), which is O(m|N |2) for dense networks.

4. Experimental Results

A version of the algorithms described here was coded in C and is available from
the authors upon request. All tests presented were performed using a workstation
Sun Ultra 1 Model 140, RAM 128 MB, running the SunOS (Sun operating system),
Release 5.5.1.

4.1. DATA STRUCTURES

Data structures must be carefully designed. As it is well-known, they play a key
role in algorithm performance and storage requirements. The main abstract data
type we have on hand is the multi-weighted digraph D = (N,A). Alternative
data structures could be used to represent the digraph and the appropriate choice
depends on the operations required and the amount of information stored [1]. Look-
ing closely upon problems (L1), (L2), and (L3), we propose adjacency lists. This is
a very convenient way of representing digraphs because adjacency lists can support
with efficiency commonly used operations. Additionally, storage space is saved for
sparse digraphs.
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4.2. SOLVING RANDOMLY GENERATED PROBLEMS

All testing problems were generated by a random procedure similar to the method
proposed by Aneja [2]. Thus, node positions, arc extremities, basic arc weights,
"ij , and candidate supply and demand nodes were chosen by means of an uniform
probability distribution (see [2], for futher details). The problems solved were the
directed version of the graph generated, each edge being substituted by two op-
posite arcs with same weight. All demands were considered unitary. The costs f l

ij

and clij were derived from the weights "ij by using the constant factors shown in
Table III.

For the first node in the search tree, the results presented are the best upper
bound, the GAP = 100% × (UBEST − L0)/UBEST, and the CPU time in seconds.
For the whole search tree, the results presented are the optimal solution, the number
of explored nodes, and the CPU time in seconds. Some optimal solutions are not
available since the maximum time allowed was 8,000 seconds. All CPU times
reported are the elapsed time in order to solve the hardest instance out of 5 different
ones which were tested, excluding all I/O operations and considering that only a
single process was running on the machine.

Table III presents results for one-level networks with 16 and 32 nodes. All net-
works have only one supply node. For all groups, three different f 1

ij /c
1
ij ratios were

used. The ratio 1 : 10 creates problems ‘closer’ to the pure shortest path problem
(polynomially solvable) which are expected to be easier than those created with the
ratio 10 : 1, that are ‘almost’ pure Steiner problems (N P -hard). The ratio 1 : 1 is
merely an equally weighted mix of both problems. We remind the reader that all
these combinations are still N P -hard problems.

It is possible to see that problems with large f 1
ij present weak bounds spending

considerably more CPU time than those with large c1
ij . The density also plays a

key role in the problem hardness. In a reasonable amount of time, it was possible to
solve sparse problems up to 32 nodes. In all cases solved to optimality, the solutions
found in the first node proved to be the optimum, indicating that the proposed
heuristic achieved good primal solutions for the problems tested. Observing the
number of visited branch-and-bound nodes, it is remarkable how difficult it really
is to prove optimality.

4.3. SOLVING A REAL CASE

We shall now solve a real case. The problem presented arose at TELEMIG, the
former telephone company of Minas Gerais State, Brazil. This is the problem of
planning a local access urban telecommunication network [30], that uses both fiber
optics and copper cable links. In this application, first and second levels are meant
to represent both different transmission media, fiber optical and copper cables. The
fixed costs associated with the transformation nodes (second-level candidate supply
nodes) mean the cost of the hardware necessary to convert the optical signal into
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Table III. Results for one-level random network problems

First node Branch-and-bound

Set |N | |A| |R1| |D1| f 1
ij

"ij

c1
ij

"ij
fi Ubest GAP (%) CPU (s) Uopt Nodes CPU (s)

1 16 30 1 2 1 10 0 2,658 1.20 0.06 2,658 9 0.18

2 1 1 0 408 8.10 0.06 408 7 0.12

3 10 1 0 1,830 18.00 0.07 1,830 63 1.60

4 4 1 10 0 5,972 1.48 0.06 5,972 409 8.80

5 1 1 0 806 11.00 0.06 806 2,315 48.00

6 10 1 0 2,894 31.00 0.07 2,894 493 11.00

7 8 1 10 0 12,250 2.10 0.07 12,250 1,879 43.00

8 1 1 0 1,585 16.00 0.06 1,585 5,183 120.00

9 10 1 0 5,185 49.00 0.07 5,183 16,365 410.00

10 60 1 2 1 10 0 2,332 2.30 0.15 2,332 209 11.00

11 1 1 0 379 14.00 0.15 379 1,783 87.00

12 10 1 0 1,757 26.00 0.18 1,757 137 9.00

13 4 1 10 0 4,066 4.20 0.15 4,066 7,265 350.00

14 1 1 0 646 26.00 0.15 646 14,871 760.00

15 10 1 0 2,400 45.00 0.17 2,400 5,537 310.00

16 120 1 2 1 10 0 1,749 3.30 0.42 1,749 243 44.00

17 1 1 0 290 17.00 0.43 290 255 44.00

18 10 1 0 1,364 29.00 0.49 1,364 311 62.00

19 4 1 10 0 3,120 4.70 0.42 3,120 7,321 0

20 1 1 0 500 28.00 0.43 ∗∗ > 54,500 > 8,000.00

21 10 1 0 1,915 47.00 0.47 1,915 40,153 6,600.00

22 32 62 1 2 1 10 0 2,634 3.90 0.20 2,634 567 37.00

23 1 1 0 465 22.00 0.20 465 21 1.60

24 10 1 0 2,481 42.00 0.21 2,481 11 0.80

25 4 1 10 0 7,645 4.00 0.20 7,645 4,799 310.00

26 1 1 0 1,201 25.00 0.20 1,201 33,799 2,200.00

27 10 1 0 5,566 55.00 0.20 5,566 2,383 160.00

28 8 1 10 0 12,349 3.60 0.20 12,349 1,073 73.00

29 1 1 0 1,765 25.00 0.20 1,765 3,317 220.00

30 10 1 0 7,066 63.00 0.22 7,066 5,489 380.00

31 124 1 2 1 10 0 2,981 4.50 0.54 2,981 10,711 1,700.00

32 1 1 0 536 24.00 0.56 536 747 150.00

33 10 1 0 2,516 36.00 0.64 2,516 1,697 310.00
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Table III. (Continued.)

First node Branch-and-bound

Set |N | |A| |R1| |D1| f 1
ij

"ij

c1
ij

"ij
fi Ubest GAP (%) CPU (s) Uopt Nodes CPU (s)

34 4 1 10 0 6,891 3.20 0.54 ∗∗ > 50,700 > 8,000.00

35 1 1 0 1,026 21.00 0.56 ∗∗ > 48,400 > 8,000.00

36 10 1 0 3,878 41.00 0.59 ∗∗ > 48,400 > 8,000.00

∗∗ Not available, time overflow (> 8,000.00 sec.).

Table IV. Real case settings

m = 2

N = {1− 43} (43 nodes)

D1 = ∅ (no demand nodes at first level)

R1 = {1} (only one supply node at first level)

D2 = {22, 25, 34− 36, 38− 39, 43}
R2 = N \ (D1 ∪D2 ∪ R1) = {2− 21, 23− 24, 26− 33, 37, 40− 42}
di = 1, ∀i ∈ D2

T 1 = N \ (R1 ∪D1 ∪ R2) = D2

T 2 = N \ (R2 ∪D2) = ∅

the electrical signal and vice-versa. The fixed costs in arcs usually represent the
infrastructure costs, which in some sense are independent of the amount of flows
the arc carries. In this context, the flow costs are obvious. We assume that the
supply node in the first-level is able to provide as much flow as it is required. In
other words, we assume that its capacity equals the sum of all demands.

The graph in Figure 4 represents the urban topology of Monlevade, a medium
sized town in Minas Gerais State. As said previously, the arcs represent main
streets and nodes represent concentrators of telephonic pairs or crosses. There is a
total of 43 nodes, 68 edges (136 arcs) and 8 second-level demand nodes, considered
unitary in this application example, although in the real world, the demand nodes
usually concentrate 300 household subscribers or more. The first-level supplier is
node 1 and the second-level candidate supply nodes are all remaining nodes. The
MLNO problem settings are presented in Table IV.

Table V shows the arc distances "ij in meters. We solved two cases. The arc
costs used (fictitious) are proportional to the arc distances, as they are in practice,
and are shown in Table VI. Table VI and Figure 4 represent the optimal solutions
found. Case I shows what would happen in a scenario in which the second-level
media costs were lower than first-level media costs. We see a small number of
concentrators and first-level arcs. As a matter of fact, the optimum solution would
be to contract the first-level network as much as possible, avoiding the use of first-
level flows. On the other hand, case II represents a more practical scenario. If we
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Figure 4. Results for the sample example.
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Table V. Basic arc costs "ij for the sample problem

(i, j) "ij (i, j) "ij (i, j) "ij (i, j) "ij

(1, 2) 130 (12, 5) 85 (18, 19) 40 (36, 35) 315

(3, 2) 50 (13, 6) 100 (18, 17) 105 (36, 37) 120

(3, 4) 65 (14, 7) 110 (17, 2) 50 (37, 38) 290

(4, 5) 55 (15, 8) 130 (2, 10) 50 (38, 39) 160

(5, 6) 65 (19, 10) 100 (18, 1) 130 (39, 40) 140

(6, 7) 55 (19, 20) 70 (26, 20) 90 (40, 41) 200

(7, 8) 60 (20, 21) 60 (26, 27) 60 (41, 42) 180

(8, 9) 75 (21, 22) 65 (27, 21) 70 (42, 37) 235

(9, 16) 125 (22, 23) 60 (27, 22) 100 (41, 38) 141

(16, 15) 70 (23, 24) 60 (1, 34) 60 (42, 36) 340

(15, 14) 60 (24, 25) 80 (1, 33) 150 (33, 34) 150

(14, 13) 60 (16, 25) 100 (32, 3) 55 (18, 26) 130

(13, 12) 60 (20, 11) 100 (28, 32) 95 (33, 43) 150

(12, 11) 55 (21, 12) 95 (32, 31) 50 (43, 30) 50

(11, 10) 70 (22, 13) 100 (29, 31) 125 (30, 29) 60

(10, 3) 55 (23, 14) 105 (34, 36) 215 (29, 28) 60

(11, 4) 70 (24, 15) 100 (35, 34) 230 (28, 2) 80

had first-level facility costs lower than second-level ones, we would tend to increase
the size of the first-level network. That is exactly what happens nowadays. Because
of a continuous reduction of their costs, we are watching an increasing spread of
high speed networks.

5. Summary and Conclusions

A multi-level network optimization (MLNO) problem that integrates location, topo-
logical network design, and dimensioning aspects was discussed. One possible
mathematical programming formulation for the MLNO problem was presented and
a branch-and-bound algorithm based on this formulation was used to solve it.

The computational results presented here were for one and two-level networks
but multi-level networks could easily be handled by the proposed methodology
because all procedures were developed for the general case. In these examples, the
difficulty of the problem was analyzed in terms of network size, density, number
of candidate supply nodes, and in terms of allocation costs.

In order to increase the size of the manageable instances and to make larger
practical networks tractable, future research might further explore reduction tests.
In fact, effective reduction tests were used to solve subproblems of the MLNO
problem such as large uncapacitated location problems [13], uncapacitated fixed-
charge network flow problems [14], and Steiner problems in graphs [31]. With
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Table VI. Results for the sample problems

Case
f 1
ij

"ij

c1
ij

"ij

f 2
ij

"ij

c2
ij

"ij
fi Uopt {i| zi = 1} Paths∗

I 2 20 1 10 1 59,763 {1, 18, 33} 1⇒ 18→ 19→ 20→ 21→ 22→ 23→ 24→ 25

1⇒ 18→ 19→ 20→ 21→ 22
1⇒ 33→ 34→ 36→ 37→ 38→ 39

1⇒ 33→ 34→ 36→ 37→ 38

1⇒ 33→ 34→ 36

1⇒ 33→ 34→ 35
1⇒ 33→ 34

1⇒ 33→ 43

II 1 10 2 20 1 61,356 {1, 24, 21, 30, 33, 37} 1⇒ 18⇒ 19⇒ 20⇒ 21⇒ 22⇒ 23⇒ 24→ 25

1⇒ 18⇒ 19⇒ 20⇒ 21→ 22
1⇒ 2⇒ 28⇒ 29⇒ 30→ 43

1⇒ 33→ 34→ 35

1⇒ 33→ 34

1⇒ 34⇒ 36⇒ 37→ 38→ 39
1⇒ 34⇒ 36⇒ 37→ 38

1⇒ 34⇒ 36⇒ 37→ 36

∗ ⇒ first-level flow,→ second-level flow.

the emerging emphasis on topological robustness and reliability, the study of en-
hanced models that incorporate connectivity constraints is a very promising area
for investigations [3, 6, 38].
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