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1 Introduction

A situation frequently faced by applied statisticians, especially by biostatisticians, is the

analysis of time-to-event data. Many examples can be found in the medical literature.

Censoring is very common in lifetime data because of time limits and other restrictions on

data collection. In a survival study, patient follow-up may be lost and also data analysis is

usually done before all patients have reached the event of interest. The partial information

contained in the censored observations is just a lower bound on the lifetime distribution.

The Cox regression model (Cox, 1972) is one of the most important methods for the

analysis of censored data and it is employed in several applications ranging from epidemi-

ological studies to the analysis of survival data on patients suffering from chronic diseases.

This model provides a flexible method for exploring the association of covariates with fail-

ure rates and for studying the effect of a covariate of interest, such as the treatment, while

adjusting for confounding factors.

The most popular form of Cox regression model, for covariates not dependent on time,

uses the exponential form for the relative hazard, so that the hazard function is given by

λ(t) = λ0(t) exp(βTx), (1)

where λ0(t), the baseline hazard function, is an unknown non-negative function of time, β is

a p× 1 vector of unknown parameters to be estimated and x = (x1, . . . , xp)
T is a row vector

of covariates.

Major decisions on censored data studies are often based on a few non-censored obser-

vations. Inference procedures for the Cox regression model rely on the maximum partial

likelihood method (Cox, 1975). A convenient way for obtaining maximum partial likelihood

estimates (MPLEs) β̂ of β is given as an iteratively re-weighted least squares algorithm.

The computation of second-order biases is perhaps one of the most important of all

approximations arising in the theory of estimation by maximum likelihood in nonlinear re-

gression models. Several authors have obtained second-order biases of maximum likelihood

estimates (MLEs) for some commonly used nonlinear regression models. The general for-
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mula for the n−1 biases of MLEs was developed by Cox and Snell (1968). Anderson and

Richardson (1979) and McLachlan (1980) found the biases of the MLEs in logistic discrimi-

nation problems. Cook et al. (1986) derived a general formula for correcting bias in normal

nonlinear regression models and showed that the bias may be due to the explanatory variable

position in the sample space. Young and Bakir (1987) used bias correction to improve several

pivotal quantities for generalized log-gamma model. Cordeiro and McCullagh (1991) and

Cordeiro and Klein (1994) derived matrix formulae for second-order biases of MLEs of the

parameters in generalized linear models (McCullagh and Nelder, 1989) and ARMA models,

respectively. Paula (1992) derived bias correction for exponential family nonlinear models.

Cordeiro and Vasconcellos (1997) and Cordeiro et al. (1997) presented general bias formulae

in matrix notation for a class of multivariate nonlinear regression models.

The main goal of this paper is to derive general formulae for the second-order biases of

the MPLE β̂ in model (1). A special case of our results include the formulae developed by

Colosimo et al. (2000). Our formulae can be of direct practical use to applied researchers

since they are easily obtained as vectors of coefficients in a suitably defined weighted linear

regression. Our method might be also used as a mean of achieving parsimony by reducing

the bias without incorporating more and more covariates. The plan of the paper is as follows.

Section 2 presents a simple matrix formula for computing the n−1 bias of the MPLE in model

(1). In Section 3, this formula is used to derive the n−1 bias β for a special case. Finally,

in Section 4, Monte Carlo simulations are presented to compare the MPLE and this bias-

corrected version. These simulation results show that the bias-corrected MPLE can deliver

much more reliable inference than their uncorrected counterparts.

2 Bias of β̂

The purpose of this section is to use Cox and Snell’s (1968) asymptotic formula for the n−1

bias of the MPLE in order to obtain the second-order bias term of β̂ in model (1). Let

l = l(β) be the partial log-likelihood function, given the sample of n individuals, where

occur k ≤ n failures in times t1 ≤ t2 ≤ · · · ≤ tk, which in the absence of ties is written for
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the model (1) as

l =
n∑

i=1

δi


βTxi − log




∑

j∈R(ti)

exp(βTxj)





 , (2)

where R(ti) = {k : tk ≥ ti} is the risk set at time ti and δi is the failure indicator, δi = 1 for

failures and δi = 0 for censored observations. The MPLE of β is obtained by maximizing

(2). The interest is to correct the bias of this estimate and also to show that the n−1 bias

of β̂ is easily obtained as a vector of regression coefficients in a weighted linear regression

conveniently defined. The formula for the n−1 bias of β̂ is also very simple to be used

algebraically for derivation of closed-form expressions in special cases, since it involves only

simple operations on matrices and vectors.

The following notation is introduced for the moments of the partial log-likelihood deriva-

tives: κrs = E (∂2l/∂βr∂βs), κrst = E (∂3l/∂βr∂βs∂βt) and κrs,t = E (∂2l/∂βr∂βs∂l/∂βt).

Note that κr,s = −κrs is a typical element of the Fisher information matrix for β and that

κrs,t is the covariance between ∂2l/∂βr∂βs and ∂2l/∂βt. Furthermore, the derivatives of the

moments are defined by κ(t)
rs = ∂κrs/∂βt. All κ′s and their derivatives are assumed to be of

order O(n). The mixed cumulants satisfy certain equations which facilitate their calculation,

such as κrst = κ(t)
rs − κrs,t.

Calculation of unconditional expectations would require a full specification of the cen-

soring mechanism. This information is not generally available. However, these expectations

can be taken conditional on the entire history of failures and censoring up to each time t

of failure. This is the way used to build up the partial likelihood and allows a direct ver-

ification that the terms of l do have some of the desirable properties of the increments of

the log-likelihood function (Cox, 1975). In this way the observed and expected values of the

derivatives of l taken over a single risk set are identical (Cox and Oakes, 1984).

The following notations are useful in order to define the cumulant expressions

αr
i =

n∑

j=1

γjixjr exp(βTxj)/si,
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αrs
i =

n∑

j=1

γjixjrxjs exp(βTxj)/si,

αrst
i =

n∑

j=1

γjixjrxjsxjt exp(βTxj)/si.

where γji = 1, if tj ≥ ti, or 0, if tj < ti, and si =
∑n

j=1 γji exp(βTxj).

Following these notations, the expressions for the cumulants can be written as

κr,s =
n∑

i=1

δi (α
rs
i − αr

i α
s
i ) ,

κrst =
n∑

i=1

δi

(
αr

i α
st
i + αs

iα
rt
i + αt

iα
rs
i − αrst

i − 2αr
i α

s
iα

t
i

)
.

The Fisher information matrix for β is given by K = XTWX, where W = ∆−∆(2) with

∆ =
∑n

i=1 ∆i, ∆i = diag
{
δiγji exp(βTxj)/si

}
, ∆(2) =

∑n
i=1 ∆iE∆i with E = 11T, where 1

is a n× 1 vector of ones and X is an n× p matrix of fixed regressors with full column rank.

Let B(β̂a) be the n−1 bias of β̂a. Cox and Snell’s (1968) formula can be used to ob-

tain B(β̂a). This expression is simplified because κ(t)
rs = κrst, since expected and observed

cumulants are identical. This is

B(β̂a) =
1

2

∑
′κarκstκrst,

where −κrs is the corresponding element of the inverse of the information matrix K and
∑ ′

denotes a summation over all the combinations of the parameters β1, . . . , βp. Hence,

B(β̂a) =
1

2

∑
′κarκst

n∑

i=1

δi

(
αr

i α
st
i + αs

i α
rt
i + αt

iα
rs
i − αrst

i − 2αr
i α

s
i α

t
i

)
. (3)

Equation (3) involves five summations and each one is a contribution for the bias of β̂a.

The corresponding quantities of the bias of β̂ are denoted by T1 up to T5. These terms can

be written in matrix notation in such a way Tν =
(
XTWX

)−1
XTWξν , where ν = 1, . . . , 5.

We can show after some algebra that the p × 1 bias vector B(β̂) reduces to
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B(β̂) =
(
XTWX

)−1
XTWξ, (4)

where ξ is an n × 1 vector defined by ξ = ξ1 + 2ξ2 + ξ3 + ξ4 and given in matrix form as

ξ = 1
2
W−1

(
∆ + 2M − ∆Zd − 2

•

∆

)
1. Here, ∆ =

∑n
i=1 ti∆i, where ti = 1TZd∆i1, M =

∑n
i=1 ∆iZ∆i, Z = X

(
XTX

)−1
XT, is a n × n covariance matrix, Zd = diag (z11, . . . , znn)

and
•

∆=
∑n

i=1 vi∆i with vi = 1T∆iZ∆i1.

The expression (4) is easily obtained from a weighted linear regression of ξ on the model

matrix X with weights in W . In the right-hand side of Equation (4), which is of order n−1,

an estimate of the parameter β can be inserted in order to define the corrected MPLE

β̃c = β̂ − B̂(β̂), (5)

where B̂(•) means the value of B(•) at the point β̂. The bias-corrected estimate β̃c is

expected to have better sampling properties than the uncorrected ones, β̂. In fact, some

simulations are presented in Section 4 that indicate that β̃c have smaller bias than its corre-

sponding MPLE without variance inflation.

3 Special Case

In this section, a especial case is presented, for which the formulae (4) can be easily simplified

and only require simple operations on matrices and vectors. We consider the one parameter

Cox regression model (p = 1), X is defined as a n × 1 vector, W = ∆ − ∆(2) is a n × n

matrix, where ∆ and ∆(2) are defined in Section 2.

The expression (4) for the second-order bias can be simplified as

B(β̂) =
k2

2k2
1

, (6)

where k1 = XTWX is the Fisher information matrix for β and k2 =

XT

[
∆ + 2M − ∆Zd − 2

•

∆

]
1, for ∆ = k−1

1

∑n
i=1(1

Tdiag(XXT)∆i1)∆i, M =
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k−1
1

∑n
i=1 ∆i(XXT)∆i, Z = k−1

1 (XXT), Zd = k−1
1 diag(z11, . . . , znn) and

•

∆=

k−1
1

∑n
i=1(1

T∆i(XXT)∆i1)∆i.

The expression (6) is in agreement with the results obtained by Colosimo et al. (2000) for

the n−1 bias of the MPLE. However, Colosimo et al. (2000) did not use a matrix notation and

their expressions are algebraically huge and difficult to implement in computational terms.

Another case of practical interest is Λ̂(t) = exp(β̂
T
x)Λ̂0(t), the Breslow estimator of

the cumulative hazard function, Λ(t) = exp(βTx)Λ0(t), where Λ0(t) =
∫ t
0 λ0(s)ds. Thus,

Λ̂(t)c = exp ( − B̂(β̂)Tx)Λ̂(t) is the bias corrected estimator of this function. Therefore, the

Breslow estimator has a multiplicative bias correction factor given by exp ( − B̂(β̂)Tx).

4 Simulation Results

In this section, Monte Carlo simulations comparing the performance of the usual MPLE and

its corrected version are presented. The simulation study is based on a Weibull regression

model with two explanatory variables. For each experiment, the following estimates are

computed: (i) the MPLE β̂1, β̂2 and (ii) the corrected estimate β̃1c, β̃2c given by (5). Two

independent sets of independent random variables TT = (T1, . . . , Tn) and UT = (U1, . . . , Un)

are generated for each repetition and the lifetime min(Ti, Ui) and δi are recorded. Ti is a

vector of realizations of a two-parameter Weibull[ρ, exp(βTxi)] and Ui, corresponding to the

random censoring mechanism, is U(0, θ). The covariate xT = (x1, x2) is generated twice: (i)

as independent standard normal and normal with mean zero and variance equal to four; (ii)

as independent Bernoulli with p = 0.5 and gamma with scale and shape parameters equal to

one. These sets of covariate values are maintained the same in all repetitions. The parameter

βT = (β1, β2) is set equal to (1, 1) and 10,000 replications are run for each simulation. The

simulations are performed for several combinations varying the sample sizes, n = 10, 20,

30, the proportion of censoring in the sample, F = 0%, 20%, 40%, and the parameter

ρ = 0.2, 0.5, 1.0, 2.0. The proportion of censoring, P (Ui < Ti), is obtained by controlling the

value of the parameter θ. Tables 1 and 2 display the simulated sample means and the root

of the mean square error (RMSE).
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Table 1: Sample Means and the Root of the Mean Square Errors for X1 as Bernoulli(0.5)
and X2 as Gamma(1, 1)

ρ F n β̂1 RMSE β̃1C RMSE β̂2 RMSE β̃2C RMSE

0.2 0 10 1.343 5.561 1.303 4.807 1.276 3.270 1.045 2.817

20 1.153 2.902 1.120 2.789 1.051 1.790 0.924 1.727

30 1.073 2.258 1.038 2.213 1.037 1.269 0.961 1.245

20 10 1.361 5.849 1.311 4.921 1.369 3.577 1.075 2.991

20 1.120 3.000 1.096 1.931 1.086 1.931 0.926 1.840

30 1.057 2.344 1.012 2.282 1.059 1.361 0.961 1.324

40 10 1.364 6.734 1.332 5.510 1.585 5.380 1.157 4.677

20 1.120 3.385 1.046 3.115 1.168 2.269 0.936 2.105

30 1.085 2.686 1.005 2.548 1.105 1.573 0.962 1.503

0.5 0 10 1.320 2.322 1.201 1.959 1.318 1.449 1.118 1.179

20 1.138 1.191 1.100 1.136 1.105 0.764 1.028 0.725

30 1.068 0.916 1.042 0.894 1.072 0.543 1.028 0.527

20 10 1.378 2.556 1.201 2.452 1.427 1.970 1.140 1.861

20 1.125 1.267 1.076 1.194 1.134 0.857 1.035 0.798

30 1.079 0.985 1.035 0.953 1.081 0.598 1.024 0.574

40 10 1.436 3.458 1.251 2.993 1.621 2.917 1.248 2.595

20 1.124 1.403 1.049 1.281 1.175 1.019 1.039 0.931

30 1.072 1.116 1.017 1.054 1.103 0.700 1.022 0.658

1.0 0 10 1.319 1.378 1.136 1.022 1.327 0.995 1.105 0.697

20 1.115 0.644 1.071 0.605 1.113 0.456 1.047 0.420

30 1.066 0.491 1.039 0.475 1.071 0.324 1.035 0.308

20 10 1.398 1.726 1.185 1.423 1.461 1.681 1.185 1.482

20 1.126 0.709 1.073 0.659 1.139 0.533 1.062 0.485

30 1.070 0.540 1.038 0.518 1.084 0.367 1.041 0.346

40 10 1.510 2.456 1.274 2.504 1.699 2.639 1.361 2.685

20 1.144 0.815 1.074 0.742 1.188 0.668 1.094 0.604

30 1.080 0.622 1.037 0.586 1.111 0.450 1.056 0.419

2.0 0 10 1.352 1.064 1.019 0.556 1.354 0.998 0.998 0.406

20 1.106 0.414 1.046 0.371 1.109 0.342 1.037 0.298

30 1.069 0.309 1.066 0.242 1.029 0.291 1.027 0.224

20 10 1.474 1.589 1.178 1.540 1.493 1.422 1.153 1.573

20 1.129 0.484 1.072 0.442 1.141 0.419 1.073 0.375

30 1.076 0.351 1.046 0.333 1.083 0.280 1.048 0.262

40 10 1.631 2.169 1.410 2.218 1.713 2.087 1.437 2.333

20 1.166 0.591 1.111 0.552 1.192 0.542 1.129 0.505

30 1.094 0.411 1.066 0.392 1.108 0.340 1.076 0.323
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Table 2: Sample Means and the Root of the Mean Square Errors for X1 as Normal(0, 1) and
X2 as Normal(0, 4)

ρ F n β̂1 RMSE β̃1C RMSE β̂2 RMSE β̃2C RMSE

0.2 0 10 1.541 3.615 1.509 2.918 1.332 1.763 1.078 1.369

20 1.132 1.492 1.066 1.430 1.140 0.830 1.077 0.763

30 1.071 1.258 1.037 1.233 1.089 0.599 1.062 0.585

20 10 1.596 4.133 1.547 3.161 1.466 2.173 1.141 1.682

20 1.154 1.589 1.077 1.510 1.181 0.904 1.107 0.852

30 1.079 1.338 1.041 1.307 1.108 0.662 1.078 0.646

40 10 1.481 5.197 1.481 4.218 1.659 2.749 1.187 2.135

20 1.185 1.810 1.089 1.688 1.225 1.091 1.143 1.023

30 1.081 1.530 1.030 1.481 1.113 0.767 1.082 0.750

0.5 0 10 1.461 1.888 1.256 1.390 1.372 1.188 1.081 0.856

20 1.126 0.669 1.068 0.624 1.139 0.457 1.079 0.414

30 1.067 0.535 1.039 0.518 1.037 0.314 1.051 0.300

20 10 1.548 2.137 1.301 1.591 1.482 1.476 1.129 1.159

20 1.145 0.721 1.080 0.666 1.167 0.528 1.100 0.474

30 1.077 0.574 1.046 0.553 1.091 0.349 1.063 0.331

40 10 1.578 2.566 1.248 2.081 1.607 1.720 1.138 1.436

20 1.177 0.841 1.098 0.767 1.221 0.657 1.146 0.584

30 1.085 0.652 1.045 0.621 1.115 0.411 1.084 0.386

1.0 0 10 1.492 1.422 1.150 0.975 1.441 1.141 1.058 0.863

20 1.131 0.454 1.059 0.401 1.145 0.403 1.067 0.342

30 1.070 0.326 1.035 0.308 1.077 0.251 1.041 0.229

20 10 1.566 1.594 1.207 1.285 1.524 1.297 1.119 1.114

20 1.147 0.489 1.071 0.435 1.167 0.450 1.083 0.389

30 1.080 0.353 1.040 0.330 1.090 0.280 1.048 0.251

40 10 1.607 1.758 1.180 1.543 1.592 1.396 1.114 1.297

20 1.183 0.580 1.097 0.522 1.225 0.585 1.133 0.524

30 1.096 0.405 1.048 0.373 1.119 0.339 1.069 0.299

2.0 0 10 1.425 1.060 1.074 0.909 1.428 1.021 1.053 0.922

20 1.139 0.460 1.038 0.330 1.149 0.400 1.039 0.315

30 1.079 0.268 1.029 0.241 1.085 0.250 1.030 0.219

20 10 1.448 1.112 1.110 1.020 1.439 1.041 1.092 1.009

20 1.162 0.450 1.082 0.432 1.176 0.451 1.089 0.433

30 1.093 0.295 1.045 0.272 1.102 0.282 1.049 0.263

40 10 1.435 1.119 1.069 1.135 1.411 0.999 1.060 1.063

20 1.231 0.627 1.173 0.626 1.262 0.647 1.200 0.648

30 1.128 0.376 1.088 0.372 1.147 0.379 1.104 0.377
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As expected, the bias of the MPLE increases when the sample size n decreases or when the

proportion of censoring F increases. In general, the bias increases as the shape parameter

of the Weibull distribution increases. It can be observed that the bias is really large for

F = 40% and n = 10.

From Tables 1 and 2, it seems that there is a bias reduction using the corrected estimator

when compared with the standard MPLE. The reduction is larger in the worst cases presented

in the simulations. A similar reduction happens with the root of the mean square error and

that is an indication of no variance inflation when using the corrected estimator.

As a final remark, notice the reader that the reduction may not be not the same in

both estimates in each model. In Table 1, for instance, the reduction is much better for

the estimator associated with the gamma covariate than the Bernoulli. Additionally, better

results in favor of the estimates associated to the Normal(0, 4) can be observed in Table 2.

However, a complete understanding of this behavior would be an interesting topic for future

research in the area.

Acknowledgments

The work of Enrico A. Colosimo has been partially funded by the CNPq (Conselho Nacional

de Desenvolvimento Cient́ıfico e Tecnológico) of the Ministry for Science and Technology

of Brazil, grant 300249/1994-2. The research of Frederico R. B. Cruz has been funded

by the CNPq, grants 301809/96-8 and 201046/94-6, the FAPEMIG (Fundação de Amparo
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