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We consider two approaches for bias evaluation and reduction in the proportional

hazards model proposed by Cox. The first one is an analytical approach in which

we derive the n−1 bias term of the maximum partial likelihood estimator. The

second approach consists of resampling methods, namely the jackknife and the

bootstrap. We compare all methods through a comprehensive set of Monte Carlo

simulations. The results suggest that bias-corrected estimators have better finite-

sample performance than the standard maximum partial likelihood estimator.

There is some evidence of the bootstrap-correction superiority over the jackknife-

correction but its performance is similar to the analytical estimator. Finally an

application illustrates the proposed approaches.
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1 Introduction

In the past years, special attention has been given to the proportional haz-

ards model (PHM) proposed by Cox (1972). This model provides a flexible

method for exploring the association of covariates with failure rates and for

studying the effect of a covariate of interest, such as treatment, while ad-

justing for other covariates. It also allows for time-dependent covariates.

The applications, in many instances, in which this model is used, have small

sample sizes. For example, in a Phase II clinical trial with 20 patients and

approximately 20% censoring, the effective sample size is about 16 patients.

Estimation of the coefficients of the model is based on the partial like-

lihood (Cox, 1975). Such estimates have biases that are typically of order

n−1 in large samples, where n is the sample size. In small or moderate-sized

samples such as the situation above, these biases can be large. It is then

helpful to have rough estimates of their size and simple formulae for bias

correction.

There has been considerable interest in recent years in bias evaluation

and correction for the maximum likelihood estimates. In fact, the basic

methodology for calculating the n−1 biases of the maximum likelihood esti-

mates has been applied to nonlinear regression models with normal errors

(Box, 1971; Cook et al., 1986), binary response models (Sowden, 1971), lo-

gistic discrimination problems (McLachlan, 1980), generalized linear models

(Cordeiro and McCullagh, 1991), generalized log-gamma regression models

(Young and Bakir, 1987), nonlinear exponential family regression models

(Paula, 1992), multiplicative heteroscedastic regression models (Cordeiro,
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1993). However, we could not find bias correction results for the maximum

likelihood estimates related to the PHM.

The purpose of this paper is to present two approaches, analytical and

resampling, for bias evaluation and reduction in the PHM. The paper is

outlined as follows. In Section 2, we present the PHM and the maximum

partial likelihood estimator. The bias of order n−1 of this estimator is derived

in Section 3 taking in details the one-parameter special case. In Section 4,

we describe briefly the resampling techniques used, bootstrap and jackknife,

moving to the simulation study of Section 5. An application illustrates the

proposed approaches in Section 6.

2 The PHM

The most popular form of the proportional hazards model, for covariates not

dependent on time, uses the exponential form for the relative hazard, so that

the hazard function is given by

λ(t) = λ0(t) exp(Z ′β), (1)

where λ0(t), the baseline hazard function, is an unknown non-negative func-

tion of time, Z ′ is a row vector of covariates and β is a p-vector of parameters

to be estimated.

Estimation of β is based on the partial log-likelihood which in the absence

of ties is written for the model (1) as

l(β) =
n∑

i=1

δi



(Z ′

iβ) − log




∑

j∈Ri

exp(Z ′

jβ)







 , (2)
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where Ri = {k| tk ≥ ti} is the risk set at time ti, Z
′

i = (zi1, . . . , zip) is

an observed value of Z ′, and δi is the failure indicator. Estimates of β

are obtained by maximizing (2), that is called maximum partial likelihood

estimate (MPLE), which is equivalent to solving the equations defined by the

score vector
n∑

i=1

δi [zik − Aik(β)] = 0, k = 1, . . . p, (3)

where Aik(β) =

∑
j∈Ri

[zjk exp(Z′

j
β)]∑

j∈Ri
exp(Z′

j
β)

.

The kl element of the observed information matrix is given by

−
∂2l(β)

∂βk∂βl

=
n∑

i=1

δi [Bikl(β) − Aik(β)Ail(β)] , (4)

where Bikl(β) =

∑
j∈Ri

[zjkzjl exp(Z′

j
β)]∑

j∈Ri
exp(Z′

j
β)

.

The derivatives of third order of the partial log-likelihood are necessary

to obtain the term of order n−1 of the bias. The klm element of this term is

given by

∂3l(β)

∂βk∂βl∂βm

= −
∑n

i=1 δi [Ciklm(β) − Aik(β)Bilm(β) − Ail(β)Bikm(β)−

Aim(β)Bikl(β) + 2Aik(β)Ail(β)Aim(β)] , (5)

where Ciklm(β) =

∑
j∈Ri

[zjkzjlzjm exp(Z′

j
β)]∑

j∈Ri
exp(Z′

j
β)

.

3 Bias of order n−1

We denote the partial log-likelihood function (2) by l. We shall use the

following tensor notation for mixed cumulants of the log-likelihood deriva-

tives: κrs = E
(

∂2l
∂βr∂βs

)
, κrst = E

(
∂3l

∂βr∂βs∂βt

)
, κr,s = E

(
∂l

∂βr

∂l
∂βs

)
, κ(t)

rs = ∂κrs

∂βt
,
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and so on. The tensor notation has the advantage of being a unified no-

tation that includes both moments and cumulants as special cases (Lawley,

1956). All κ’s refer to a total over the sample and are, in general, of order

n. Note that the Fisher information matrix has elements κr,s = −κrs and

let κr,s = −κrs denote the corresponding elements of its inverse. The mixed

cumulants satisfy certain equations, which facilitate their calculations, such

as κrst = κ(t)
rs − κrs,t.

Let B(β̂) be the n−1 bias of β̂. From the general expression for the

multiparameter n−1 biases of the maximum likelihood estimator given by

Cox and Snell (1968), we can write

B(β̂) =
∑

κarκst

(
κ(t)

rs −
1

2
κrst

)
, (6)

where the summations with respect to r, s, and t are from 1 to p. A detailed

discussion of this expression can be found in McCullagh (1987) and Cordeiro

and McCullagh (1991).

In order to get the term of order n−1 of the bias in expression (6), we

have to obtain some mixed cumulants of the partial log-likelihood. It means,

take expectations of the derivative elements presented in Section 2. Calcula-

tion of unconditional expectations would require a fuller specification of the

censoring mechanism. This information is not generally available. However,

these expectations can be taken conditional on the entire history of failures

and censorings up to each time t of failure. This is the way used to build

the partial likelihood and allows a direct verification that the terms of l do

have some of the desirable properties of the increments of the log-likelihood

function.

5



In this way the observed and expected values of the derivatives of l taken

over a single risk set are identical (Cox and Oakes, 1984).

In the special case of one parameter PHM, expression (6) for the bias to

order n−1 simplifies to

B(β̂) = −
1

2κ2
ββ

(
κβββ − 2κ

(β)
ββ

)
=

κβββ

2κ2
ββ

, (7)

where κββ = −
∑n

i=1 δi [Bikk(β) − A2
ik(β)] and κβββ = −

∑n
i=1 δi [Cikkk(β)

−3Aik(β)Bikk(β) + 2A3
ik(β)].

We can evaluate (7) at β = β̂ and define a corrected estimator by

β̃C = β̂ − B̂(β̂). (8)

4 Resampling Methods

In the resampling context, two frequently used methods are: the jackknife

(Quenouille, 1949, 1956) and the bootstrap (Efron, 1979; Efron and Tibshi-

rani, 1993). The jackknife procedure may be described as follows: let β be

an unknown parameter and T1, T2, . . . , Tn a sample of n i.i.d. observations

with joint distribution function Fβ which depends on β. Suppose that a

reasonably good estimation method (but biased) is used. Indicate by β̂(i),

i = 1, . . . , n, the estimate of β obtained by removing the i-th observation,

that is, β̂(i) = β̂(T1, . . . , Ti−1, Ti+1, . . . , Tn). Let β̂ be an estimate of β based

on all n observations. Define the new estimate as

β̃i = nβ̂ − (n − 1)β̂(i) = β̂ − (n − 1)(β̂(i) − β̂), i = 1, . . . n.

The bias-corrected jackknife estimate of β is then the average of the β̃i,
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i = 1, . . . , n, that is,

β̃J = nβ̂ − (n − 1)β̂(.) = β̂ − (n − 1)(β̂(.) − β̂), (9)

where (n−1)(β̂(.)− β̂) is the jackknife estimate of bias and β̂(.) =
∑n

i=1 β̂(i)/n.

The jackknife estimate β̃J eliminates the term of order n−1 of the bias.

The (nonparametric) bootstrap procedure may be described as follows:

let the parameter of interest be written as the functional β = t(F ) of the

distribution function F and β̂ = t(F̂ ) be its “plug-in” estimate, where F̂ is

the empirical distribution function of the data t = (t1, . . . , tn). The bias of β̂

is defined as

biasF = EF(β̂) − β = EF(β̂) − t(F).

Draw a bootstrap sample t∗ = (t∗1, . . . , t
∗

n) from the empirical distribution

function F̂ . A bootstrap sample t∗1, . . . , t
∗

n is defined as a random sample

of size n drawn with replacement from the original data (t1, . . . , tn). The

bootstrap estimate of the bias of β̂ is then defined as

biasF̂ = EF̂(β̂∗) − t(F̂),

where EF̂ (β̂∗) is the expectation of β̂ based on the empirical distribution func-

tion of the bootstrap sample and t(F̂ ) is the “plug-in” estimate of β. The

bootstrap estimate of the bias may be approximated by a Monte Carlo sim-

ulation procedure. Choose B independent bootstrap samples t∗1, t∗2, . . . , t∗B

from the empirical distribution F̂ . Evaluate the bootstrap replications β̂∗

b ,

b = 1, . . . , B, and approximate the expectation EF̂ (β̂∗) by β̂∗

(.) =
∑B

b=1 β̂∗

b /B.

The bootstrap estimate of the bias of β̂, of order n−1, based on the B repli-
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cations is then given by

biasB =
B∑

b=1

(
β̂∗

b
/B

)
− β̂.

Thus the (nonparametric) bootstrap bias-corrected estimate of β is

β̃B = 2β̂ − β̂∗

(.). (10)

We remark that there is a wrong tendency to view β̂∗

(.) as the bootstrap

bias-corrected estimate (see Efron and Tibshirani, 1993, p. 138).

In our situation, right-censored data is of the form {(t1, δ1), . . . , (tn, δn)}

following the notation established in Section 2. The observed pairs (ti, δi)

are iid observations from a distribution F on R × {0, 1} and the plug-in

estimate is β̂ = t(F̂ ), where F̂ in this case, is the Kaplan-Meier estimate

(Kaplan-Meier, 1958). Bootstrap bias-correct estimate β̂B is the same as

that obtained in Equation (10), except that the individual data points are

now the pairs (ti, δi) (Efron, 1981).

5 Simulation Study

In this section we performed Monte Carlo simulations comparing the perfor-

mance of the usual MPLE and its corrected versions. For each experiment,

we computed the following estimates: (i) the MPLE, (ii) the corrected esti-

mate β̃C , given by (8), (iii) the jackknife estimate β̃J , given by (9), and (iv)

the (nonparametric) bootstrap estimates β̃B, given by (10). The simulation

study was based on a Weibull regression model. The log-likelihood function

(2) assumes no ties. Breslow’s (1974) approximation for the log-likelihood

function was used to handle ties in bootstrap samples.
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Two independent sets of independent random variables T
′

= (T1, . . . , Tn)

and U
′

= (U1, . . . , Un) were generated for each repetition and the lifetime

min(Ti, Ui) and δi were recorded. Ti is a vector of realizations of a one-

parameter Weibull[ρ, exp(ziβ)] and Ui, corresponding to the random censor-

ing mechanism, is U(0, θ). The covariate z was generated once as a standard

normal and it was maintained the same in all repetitions. The parameter β

was set equal to 1.0 and 10,000 replications were run for each simulation.

The bootstrap estimates were based in samples drawn with

replacement from a censored sample based in a Weibull model

{(x1, d1), (x2, d2), ..., (xn, dn}, where

di =

{
1 , if xi is uncensored
0 , if xi is censored.

The bootstrap estimates were computed using N = 200 bootstrap repli-

cations. Larger values than 200 have been tried in others simulations (not

shown) but the results are essentially the same.

The simulations were performed for several combinations varying the sam-

ple sizes, n = 10, 20, 30, the proportion of censoring in the sample, F = 0%,

30%, 60%, and the Weibull shape parameter ρ = 0.2, 0.5, 1.0, 2.0. The pro-

portion of censoring, P (Ui < Ti), was obtained by controlling the value of

the parameter θ. Table I displays the simulations sample means and the root

of the mean square error (RMSE) for all four estimators.

As expected, the bias of the MPLE increases when the sample size n

decreases or when the proportion of censoring F increases. In general, the

bias increases as the shape parameter of the Weibull distribution increases.

It can be observed that the bias is really large for F = 60%, 30% and n = 10.
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From Table I, it seems that there is a substantial bias reduction using the

corrected estimator β̃C when compared with the standard MPLE. A similar

reduction happens with the mean square error and that is an indication of

no variance inflation when using the corrected estimator β̃C .

Regarding the resampling methods, in most of the cases tested, they had a

better performance over the standard MPLE. Excepting those cases with very

high censoring proportion (F = 60%) and very low sample sizes (n = 10), the

bias reduction and the RMSE reduction were noticeable. These conclusions

are consistent with the recent results reported by Ferrari and Silva (1997), in

which simulation studies demonstrated that jackknife and bootstrap methods

for bias correction may not work properly with very low sample sizes. The

bootstrap bias corrected estimator β̃B is better than the jackknife β̃J in terms

of bias reduction and it has the smallest RMSE. In general, it seems that β̃B

and β̃C have a similar bias reduction performance.

A referee questioned whether the nature of the random censoring in this

simululation study may lead to some blurring because of variation in the

actual degree of censoring in the simulated samples. Another set of Monte

Carlo simulations were performed for a fixed number of censoring observa-

tions (type II censoring) under the same conditions as in Table I. The results

obtained (not shown) are very similar to those presented in Table I.

6 Illustrative Example

Feigl and Zelen (1965) presented a data set of 17 patients who died of acute

myelogenous leukemia. These patients formed a group identified by the pres-

10



Table I: Sample Means and Mean Square Error Root

ρ F n β̂ RMSE β̃C RMSE β̃J RMSE β̃B RMSE
0.2 0 10 1.135 2.567 0.968 2.315 0.836 2.521 0.845 2.122

20 1.025 1.363 0.925 1.327 0.987 1.303 0.975 1.280
30 1.040 1.069 1.009 1.054 0.994 1.035 1.000 1.031

30 10 1.240 3.132 0.958 2.505 0.689 3.399 0.857 2.741
20 1.097 1.572 0.945 1.495 0.972 1.394 0.960 1.403
30 1.054 1.229 1.007 1.201 0.991 1.161 0.995 1.169

60 10 1.683 5.445 0.553 4.411 0.568 7.885 1.314 5.754
20 1.281 2.383 0.961 2.104 0.785 2.150 0.828 2.006
30 1.114 1.679 1.013 1.588 0.969 1.508 0.964 1.508

0.5 0 10 1.173 1.137 1.034 0.978 0.829 1.245 0.864 0.952
20 1.068 0.600 1.007 0.574 0.985 0.567 0.989 0.553
30 1.048 0.464 1.026 0.454 0.997 0.450 1.005 0.448

30 10 1.264 1.571 1.012 1.111 0.654 2.140 0.916 1.538
20 1.104 0.735 1.009 0.681 0.959 0.649 0.960 0.638
30 1.059 0.539 1.025 0.521 0.992 0.510 0.998 0.508

60 10 1.482 2.584 0.688 2.039 0.604 4.045 1.240 2.872
20 1.233 1.215 1.020 1.028 0.824 1.314 0.888 1.067
30 1.099 0.762 1.025 0.707 0.966 0.669 0.964 0.665

1.0 0 10 1.182 0.760 1.028 0.577 0.769 0.919 0.865 0.675
20 1.072 0.383 1.018 0.358 0.978 0.360 0.980 0.344
30 1.044 0.283 1.021 0.273 0.995 0.275 1.000 0.271

30 10 1.301 1.185 0.984 0.755 0.632 1.947 1.011 1.312
20 1.110 0.494 1.027 0.443 0.956 0.440 0.952 0.417
30 1.059 0.335 1.026 0.317 0.989 0.315 0.994 0.308

60 10 1.473 1.762 0.557 1.723 0.802 3.060 1.359 2.095
20 1.241 0.891 1.036 1.063 0.818 1.081 0.917 0.828
30 1.103 0.491 1.031 0.439 0.952 0.423 0.953 0.411

2.0 0 10 1.231 0.806 0.989 0.432 0.639 1.406 0.946 0.919
20 1.072 0.319 1.012 0.288 0.960 0.296 0.951 0.276
30 1.040 0.223 1.013 0.211 0.989 0.215 0.991 0.208

30 10 1.348 1.076 0.842 0.730 0.715 2.001 1.177 1.328
20 1.109 0.416 1.021 0.356 0.923 0.389 0.920 0.352
30 1.056 0.268 1.015 0.246 0.975 0.248 0.974 0.236

60 10 1.429 1.247 0.352 1.507 1.101 2.280 1.433 1.580
20 1.226 0.742 0.996 1.486 0.784 1.141 0.935 0.750
30 1.113 0.418 1.027 0.346 0.909 0.427 0.923 0.357
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Table II: Point and 95% Confidence Estimates for the Example Data

β̂ β̃C β̃J β̃B

Estimate -1.406 -1.404 -0.569 -0.963
S.E. 0.488 0.488 - -
CI (-2.36,-0.45) (-2,36,-0.45) (-4.88,19.5) (-2.59,1.23)

ence of a morphologic characteristic of white cells. The survival time response

t is time to death measured in weeks from diagnosis and a covariate z is log10

of initial white blood cell count. There was not censoring observations. The

association between t and z is the main aspect of interest.

Table II displays the estimates for the parameter β associated with co-

variate z and their respective 95% confidence intervals (CI). Jackknife and

bootstrap confidence intervals are built in terms of their empirical percentiles.

MPLE β̂ is close to the corrected estimate β̃C but it is not close to resam-

pling bias corrected estimates. According to the simulation results obtained

in Section 5, β̃B and β̃C are in general the less biased estimates. It seems to

be in agreement to the analysis performed by Cox and Snell (1981) using an

exponential regression model. They obtained an estimate of −1.109 for β.

On the other hand, the confidence interval based on the bootstrap has

length wider than those based on β̂ and β̃C . The main reason might be

the asymmetric distributions of the survival times. It can also be observed

the disagreement between these estimates in judging the importance of the

covariate to explain the response in a significance level of 0.05. Jackknife

confidence interval is not appropriate since it is based on just 17 resamples.
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7 Final Remarks

The main purpose of this paper is to present analytical and resampling meth-

ods for bias evaluation and reduction in the PHM proposed by Cox (1972),

a model that has been useful in a considerable number of practical appli-

cations. Conducted for the special one parameter PHM, our simulation re-

sults suggest that bias-corrected estimates have better performance than the

standard maximum partial likelihood estimates. Although computationally

intensive, resampling methods may be an attractive alternative for bias re-

duction, avoiding the sophisticated mathematics commonly present in ana-

lytical methods. In particular, we show some evidence that the bootstrap is

superior than the jackknife-corrected estimate but its performance is similar

to the analytical estimator.
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