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Abstract

We examine the problem of maximizing the throughput of an acyclic network of
general-service time queueing network while reducing the total number of buffers
and the overall service rate. These are conflicting objectives and we utilize an
original multi-objective genetic algorithm to tackle this problem. Promising pre-
liminaries results show the efficacy of the approach.
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1 Introduction

The problem of maximizing Θ, the throughput (that is, the number of jobs,
parts, clients, and so on, served per unit of time), in an acyclic network (for
an example, see Fig. 1) of general-service time queueing network is examined
here. The problem may be stated simply as to find the minimum number of
buffers, K = {K1, K2, . . . , Kn}, and service rates, � = {�1, �2, . . . , �n}, that
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must be allocated to a queueing network in a given topology and for a given
external arrival rate, Λ = {Λ1,Λ2, . . . ,Λn}, in order to provide maximum Θ.
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Fig. 1. A complex network [8].

From a modeling point of view, the throughput maximization problem
can be defined by a mixed-integer mathematical programing formulation in
which the total buffer and server costs are minimized and the throughput is
maximized subject to an integer buffer allocation and a non-negative service
rate. Defining a queueing network as a digraph G(N,A), where N is a finite
set of nodes and A is a finite set of arcs, the mixed-integer mathematical
programming formulation follows

minimizeF (K,�) =
(

f1(K), f2(�),−f3(K,�)
)T

,(1)

subject to

Ki ∈ {1, 2, . . .}, ∀i ∈ N,(2)

�i ≥ 0, ∀i ∈ N,(3)

in which the decision variables Ki and �i are, respectively, the total capacity
including those in service and the service rate, for the ith M/G/1/K queue.
The objective functions are the total buffer allocation, f1(K) =

∑

∀i∈N Ki, the
overall service allocation, f2(�) =

∑

∀i∈N �i, and, finally, the overall through-
put, f3(K,�) = Θ(K,�). These three objectives are in conflict because buffer
and service allocation are expensive but low buffer sizes and low service rates
usually lead to low throughput and consequently less profit [6].

Fig. 2 shows a typical surface for the throughput in a single finite queue,
as a function of the buffer size and the service rate, and the respective contour
plot. In a network of queues, one will observe a similar behavior, as we will
show shortly. It is worthwhile mentioning that although the surface seen in



Fig. 2 is smooth and convexity seems to hold in this case, as it holds for simpler
queueing networks studied in the past (see, for instance, [6]), for optimization
purposes, the flatness in the top of the surface, around which is the maximum
throughput, creates difficulties for traditional methods. For instance, multiple
starts had to be used for the Powell method to avoid premature convergence
and to derive a successful optimization algorithm for buffer allocation in single
server general-service time queueing networks [8].

(a) Θ versus service rate and buffer size
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(b) contour plot

Fig. 2. Results for a single M/G/1/K queue for Λ = 5.0

In this paper, we propose a different approach and determine an approxi-
mation for the whole Pareto set, which is the set of optimal solutions for more
than one objective in the objective functions. We use a multi-objective genetic
algorithm (MOGA) approach in combination with the generalized expansion
method (GEM), a well-known method to obtain accurately approximations
for performance measures of a queueing network [2].

2 Proposed Algorithm

In order to solve the throughput maximization problem, one needs to have a
good estimate for Θ(K,�). In a single M/G/1/K queue, such a problem is
well solved by means of a computationally efficient and accurate closed-form
approximate expression for the blocking probability pK , proposed by Smith
[7]. For a network of queues, an algorithm that is available is the GEM [2].
Firstly, a pre-evaluation is performed. An arbitrary node j is chosen from
set V (initially, V = N) but not from set Q (in which Q is the set of nodes
already evaluated, initially, Q = ∅), such that for all arc (i, j) ∈ A, vertex i has
been evaluated already. Then, vertex j has computed its blocking probability
p
(j)
K and its arrival rate, from �j = �j × (1 − p

(j)
K ). These service rates are

then forwarded as arrival rates to the downstream nodes (if they exist), and



vertex j is included in set Q. Note that the pre-evaluation step is a variant of
Dijkstra’s minimum path algorithm [5]. The GEM includes also an evaluation
step, which seeks flow conservation, that is �j ≤ �j +

∑

∀ i∣(i,j)∈A �ipij, ∀j ∈ V.
The evaluation algorithm is a Dijkstra’s labeling algorithm working in reverse.
Notice that the performance evaluation algorithm must have available the
routing probabilities pij before it can compute all the performance measures.

For the multi-objective throughput maximization problem under consid-
eration, a multi-objective genetic algorithm (MOGA) appear to be suitable a
choice. The efficiency of MOGAs is well established for dealing with multi-
objective problems [1]. MOGAs are optimization algorithms to perform an
approximate global search relying on the information obtained from the eval-
uation of several points in the search space and obtaining a population of these
points that converges to the optimum through the application of the genetic
operators mutation, crossover, selection, and elitism. The selection and elitism
operators used were the standard for the NSGA-II version [4]. For crossover,
we choose a mechanism known as uniform, popular for multivariable coding [9].
With regards to the mutation scheme, it happens with probability rateMut,
for each one of the genes of the individuals (the decision variables Ki and �i).
As suggested by Deb & Agrawal [3], Gaussian perturbations are added to the
decision variables. Notice that after crossover and mutation, constraints (2)
and (3) may no longer hold. In order to guarantee feasibility, the values are
accordingly rounded, for the integer variables, and readjusted, by means of
the reflection operators, Ki,r = 1+ ∣Ki − 1∣ and �i,r = �lowlimi

+ ∣�i −�lowlimi
∣,

in which 1 is the lower limit for buffer allocation, �lowlimi
is the lower limit for

service allocation (in order to make sure that � < 1 will hold), Ki and �i are
the resulting values after crossover and mutation, and Ki,r �i,r are the result
after reflection, being ∣x∣ the absolute value of x. The above scheme warrants
only feasible solutions without avoiding or privileging any particular solution.

3 Computational Results and Discussion

In order to make use of a GEM implementation previously developed in FOR-
TRAN [8], the optimization algorithm was implemented in the same language.
The code is available from the authors upon request. The complex network
from Fig. 1, previously presented in the literature, was analyzed. For an arrival
rate Λ1 = 5.0, three different squared coefficient of variations were analyzed
s2 = {0.5, 1.0, 1.5}. The maximum number of generations was fixed in 4,000.
Firstly, we can infer from Fig. 3 that a combined use of crossover and mu-
tation is effective in speeding-up the convergence and that the convergence,



measured in terms of maximal crowding distance [4], is independent on the
squared coefficient of variation.
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Fig. 3. Convergence for the 16-node network

The profile can be seen in Fig. 4, which present the final surfaces and
respective contour plots. For comparison purposes, an exact contour plot
for a single-node queue is presented in Fig. 2-(b). The resemblance is very
encouraging.

(a) final surface for s2 = 0.5
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(b) contour plot for s2 = 0.5

(c) final surface for s2 = 1.5
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(d) contour plot for s2 = 1.5

Fig. 4. Final results for the 16-node complex network



4 Conclusions and Final Remarks

In this paper, we briefly described results for a multi-objective approach for
the throughput maximization problem for finite single server general queueing
networks. Combining the generalized expansion method, as the performance
evaluation tool, with a multi-objective genetic algorithm may disclose insight-
ful Pareto curves. These curves explicitly show the trade-off between through-
put, total buffer allocation, and overall service allocation. Open questions
include how well this methodology would apply to slightly different trade-off
problems in finite queueing networks.
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