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Abstract—In this paper, we examine the System Optimum
(SO) problem. The SO formulation is equivalent to a situation
in which users cooperate with each other in order to minimize
the overall travel cost. Usually, the travel costs are expressed in
terms of times and are typically given from classical formulas. In
this paper we aim to investigate an M/G/c/c state-dependent
queueing network based formula, which is is not convex but
S-shaped. As a consequence multiple solutions may be present
for the SO, which justifies the use heuristic procedures such
as a Differential Evolution algorithm. Computational results are
present to show the efficacy and efficiency of the approach.

I. INTRODUCTION

In the classical Wardrop System Optimum (SO) assignment

model, the users are assumed to cooperate with each other in

order to minimize the overall travel costs [1]. Even though the

SO is based on a rather non-realistic behavioral assumption,

we argue that its solution may be seen as a result of a

well-succeeded control action on the transportation network.

In other words, signal timings may be re-optimized and

alternative routes may be re-defined in response to an increase

in demand causing extra green light timings, as it is known that

traffic lights and routing can improve the flow [2], depending

on the traffic densities (e.g., Dynamic Routing Information

Panel Systems - DRIPS).

One major problem is that the overall travel costs, usually

expressed in term of time [3], are based on deterministic travel

times on the single links, yet these times are known to be

rather variable between trips, within and between days etc.

Usually, only the mean travel times are represented in the SO

model and an important issue in urban transportation networks

is to model congestion, especially during rush hours, when

the demand exceeds capacity by far [4]. As seen in Figure 1,

which presents results from many empirical studies for North

American roads [5]–[9], congestion may be perceived as a de-

crease in the mean speed when the vehicular density increases,

resulting in the well-known speed-flow density curves (see the

seminal work by Greenshields [7]).

There have been successful attempts in the literature to

model how users select their routes in a congested network

(for instance see Helbing et al. [10], and references therein).

Under the assumption that drivers have perfect knowledge

about travel costs, they will choose the best route according

density (veh/mi/lane)
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Fig. 1. Empirical Distributions for Vehicular Traffic Flows [5]–[9] and
M/G/c/c State-dependent Models [12]

to Wardrop’s first principle, which is equivalent to the mixed-

strategy Nash equilibrium of n-players, non-cooperative game
[11]. This leads to the Deterministic User Equilibrium (UE),

another classical traffic assignment model [1]. In the equi-

librium, routes carrying a positive flow will have equal travel

costs. Unfortunately the conclusion is that, by doing so, scarce

resources (street and road capacity) are used in an inefficient

way [10]. For this reason, the focus here will be only in the

SO assignment model.

In this paper, we discuss an extension of the SO model

by applying the state-dependent M/G/c/c queueing network

model in order to estimate the travel times, usually the main

factor for route selection [3]. The M/G/c/c state-dependent
model has been used in the past [12]. In fact, Cruz et al. [13]

have shown recently that the M/G/c/c state-dependent model
is also quite effective for modeling the travel time on single

links, in comparison to well-established formulas, because of

its capability of representing traffic congestion, as it is seen

in Figure 1. Now, we provide detailed and explicit description

of the state-dependent M/G/c/c queueing network model.

A single road link may be seen as c parallel servers to its

occupants and c is also the total number of users allowed in

a system. Consequently, there is no buffer or waiting space.

Second, based on the empirical results presented in Figure 1,

the service time for the occupants depends on the number of
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users currently in the system. As a consequence, an M/G/c/c
state-dependent queueing model seems to be a reasonable tool

to describe a single link [12]. The limiting probabilities for the

random number of entitiesN in anM/G/c/c queueing model,
pn ≡ Pr[N = n], will be:

pn =







[

λE[T1]
]n

n!f(n)f(n− 1) · · · f(2)f(1)







p0, (1)

where n = 1, 2, . . . , c. The empty system probability, p0, is
given by:

p−1
0 = 1 +

c
∑

i=1











[

λE[T1]
]i

i!f(i)f(i− 1) · · · f(2)f(1)











, (2)

where λ is the arrival rate and E[T1] = l/V1 is the expected

service time of a lone vehicle in the traffic space of length l,
considering that V1 is the speed of a lone vehicle. The capacity,

c, is given by:

c = ⌊klw⌋,

where l is the length, w is the width (in number of lanes), k is

the capacity of the link per length-unit per lane, and ⌊x⌋ is the
largest integer not superior to x. Additionally, f(n) = Vn/V1

is the service rate, that is, the ratio of the average speed of n
users in the link to that of a lone occupant, V1. In Section III,

we will detail how to adjust the model to vehicular traffic and

to extend it to networks of road links.

Also discussed in this paper is a successful way to solve

the SO model with a state-dependent travel time. Because

the resulting SO is intrinsically non-convex (due to the shape

of M/G/c/c travel time functions), we decided not to use

the FrankWolfe based optimization approaches, but selected a

flexible heuristic. In this paper, we use a Differential Evolution

(DE) based heuristic. The optimization quality of DE is

independent of the shape of the objective functions and proves

to be an efficient and acceptable solution for similar non-linear

and non-convex problems [14].

In Section II the mathematical programming formulation

for the classical SO assignment model is presented in detail.

Section III describes the algorithm for solving the SO, as

well as the performance evaluation algorithm. Section IV

focuses on the computational experiments. Finally, Section V

summarizes the paper and discusses open questions for future

research in the area.

II. MATHEMATICAL PROGRAMMING FORMULATIONS

Well-known from the literature, the SO formulation is

briefly reviewed as follows. The network notation used is

summarized in Table I.

The SO formulation is equivalent to a situation in which

users cooperate with each other in order to minimize the total

travel costs. According to Wardrop’s second principle, the SO

model is formulated as follows.

TABLE I
BASIC NETWORK NOTATION

Variable Description

N node (index) set

A arc (index) set

R set of origin nodes; R ⊆ N

S set of destination nodes; S ⊆ N

Krs set of paths connecting origin-destination (O-D) pair r-s; r ∈
R, s ∈ S;

xa flow on arc a; x = (. . . , xa, . . .)
ca(xa) travel time on arc a; c(x) = (. . . , ca(xa), . . .)
frs
k

flow on path k connecting O-D pair r-s; frs = (. . . , frs
k

, . . .);
f = (. . . , frs, . . .)

crs
k

travel time on path k connecting O-D pair r-s; crs =
(. . . , crs

k
, . . .); c = (. . . , crs, . . .)

qrs trip rate between origin r and destination s; (q)rs = qrs

δrs
a,k

indicator variable:

δrs
a,k

=

{

1, if link a is on path k between O-D pair r-s,
0, otherwise;

(∆rs)a,k = δrs
a,k

; ∆ = (. . . ,∆rs, . . .)

SO:

min z(x) =
∑

a

xaca(xa),

s.t.:

∑

k

frs
k = qrs, ∀ r, s,

xa =
∑

r

∑

s

∑

k

frs
k δrsk , ∀ a,

frs
k ≥ 0, ∀ k, r, s,

where xa is the flow on link a, ca(xa) is the travel cost on link
a, frs

k is the flow on route k between origin r and destination
s, and qrs is the demand between r and s. The complete

notation is seen in Table I.

Notice that the travel costs, ca(xa), are usually expressed

in terms of times [3] and are usually given from classical

formulas (BPR-like [15]) that have been constructed over the

past 40 years for this purpose of describing the travel time,

among some of which are the contributions by many authors

(e.g., [16]–[18]). However, as one shall see shortly, none of

these formulas is able to represent congestion as theM/G/c/c
state-dependent queueing model does.

The optimum solution is reached when the marginal travel

costs on each path carrying a positive flow are equal, that is:

frs
k (grsk − grs∗) = 0, ∀ r, s,

grsk − grs∗ ≥ 0, ∀ r, s,
∑

k

frs
k = qrs, ∀ r, s,

frs
k ≥ 0, ∀ k, r, s,

in which grsk is the marginal cost on route k and grs∗ is the
optimal marginal cost, both between r and s.
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Fig. 2. Three-road Network and Corresponding M/G/c/c Model

III. ALGORITHMS

Researchers have solved the SO and similar models by

means of many algorithms. Results have been reported with

exact algorithms (dual [19], parallel [20], and Lagrangian

based algorithms [21]) and heuristics [4], [13]. As mentioned

earlier, we will use the DE because the state-dependent travel

time formula is non-convex. Basically, what we have to do is

to find routing probabilities for alternative routes to go from

A to B (e.g., pa2
and pa3

, as seen in Figure 2), in such a way

that the objective function
∑

a xaca(xa) is minimized. The

steps are detailed as follows.

A. Computation of the Travel Times

Single Queues

As described earlier in Section I, an M/G/c/c state-

dependent queueing model for a single link is straightforward.

Considering vehicular related applications and realizing that k
represents the jam density parameter (veh/mi-lane), normally

k ranges from 185-265 veh/mi-lane. The aim is to derive

a congestion model that represents the effect depicted in

Figure 1, i.e., in which the service rate depends on the number

of users in the system. The following exponential model seems

quite reasonable:

f(n) = exp

[

−

(

n− 1

β

)γ]

,

with

γ = log

[

log(Va/V1)

log(Vb/V1)

]

/ log

(

a− 1

b− 1

)

,

and

β =
a− 1

[log(V1/Va)]1/γ
=

b− 1

[log(V1/Vb)]1/γ
.

The values a and b are arbitrary points used to adjust the

exponential curve. In vehicular related applications, commonly

used values are a = 20lw and b = 140lw corresponding to

densities of 20 and 140 veh/mi-lane respectively. Looking at

the curves presented in Figure 1, reasonable values for such

points are Va = 48 mph and Vb = 20 mph.

From (1), important performance measures can be derived:


























pc = Pr[N = c],
θ = λ(1− pc),

L = E[N ] =

c
∑

n=1

npn,

W = E[T ] = L/θ,

λ θii j

M/G/ci/ci M/G/cj/cj

λ

λ

λ
hj j

(1−p’cj)

(p’cj)

(1−pcj)

M/G/cj/cjM/G/ ∞

λ
~
j

j

i
λ

λ
i

M/G/ci/ci

j

j

hj

hj

λhj

Fig. 3. The Generalized Expansion Method (GEM)

where pc is the blocking probability, θ ≡ xa is the throughput

in veh/h, L is the expected number of customers in the link

(also known as work-in-process, WIP), and W ≡ ca(xa) is
the expected service time in hours (here derived from Little’s

formula).

Networks of Queues - Series Queues

The modeling issue is only half solved because deriving per-

formance measures for networks of M/G/c/c state-dependent
queues is a task considerably more complex. Indeed, the

routing probabilities define the input in each queue. Besides,

inter-blocking effects now may be present. The Generalized

Expansion Method (GEM) was a method proposed by Ker-

bache and Smith [22] back in the 1980 decade and has a long

tradition in the area. The GEM is a combination of repeated

trials and node-by-node decomposition approximation meth-

ods, with a key characteristic that an artificial holding node

is added preceding each finite queue in the network in order

to register blocked customer that attempt to enter the finite

node when it is at capacity, see Figure 3, which shows an

example of two road links configured in series and presents the

corresponding queueing network. By the addition of holding

nodes, the queueing network is ‘expanded’ into an equivalent

Jackson network, in which each node can then be decomposed

and analyzed separately. Now, we shall describe briefly the

GEM for series queues, which consists of the three following

stages, performed for each finite node in the original queueing

network.

1) Stage 1 - Network Reconfiguration: For each node with

finite capacity, an artificial node is added directly preceding

it, as shown in Figure 3. Customers that are impeded to move

to the forwarding node (because such a node is at capacity)

are re-routed to the artificial node. The probability that an

arriving customer is blocked by node j equals pcj . Thus, with
probability (1−pcj ), it will enter node j, and with probability
pcj it will enter the holding node (hj). The holding node is

modeled as anM/G/∞ queue, so that there will be no waiting

to enter this node.

After service at the holding node, the customer will be

blocked again with a new probability, p′cj . With probability

(1− p′cj ), it will proceed to the following node. Otherwise, it
must retrace its path through the feedback loop into artificial

node hj again.

2) Stage 2 - Parameter Estimation: The value of pcj can

be determined from known analytical results. For M/G/c/c
state dependent queues, such a value is given directly by (1),
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Fig. 4. External Arrival Rate λext

i.e., pcj = Pr{N = cj}. The value of p
′

cj is determined from

approximation results. After a customer completes its service

at holding node hj , it is forced to return with probability p′cj ,
for another immediate service delay. An approximation that

uses diffusion techniques states that [23]:

p′cj =

{

µj + µhj

µhj

−
λ
[

(r
cj
2
− r

cj
1
)− (r

cj−1

2
− r

cj−1

1
)
]

µhj

[

(r
cj+1

2
− r

cj+1

1
)− (r

cj
2
− r

cj
1
)
]

}

−1

, (3)

where r1 and r2 are the roots to:

λext − (λext + µhj
+ µj)x+ µhj

x2 = 0. (4)

Defined with help of Figure 4, the external arrival rate λext,

used in (4), is:











λext = λ̃j − λhj (1− p′cj ),

λ̃j = λj(1− pcj ),
λhj = λj(pcj ),

λj = λi(1− pci) = λ̃i.

(5)

Using renewal theory, it can be shown that the service rate

of the holding node is (in the exponential case) as follows

[24]:

µhj
=

2µj

1 + σ2
jµ

2
j

, (6)

where σ2
j is the service time variance. However, since the

service rate is state dependent, a reasonable assumption is to

consider the worst case:

µhj
= µj ≈

cj
E[T1]/f(cj)

, (7)

where cj is the maximum number of servers in parallel and

E[T1]/f(cj) is the service time for cj occupants.
3) Stage 3 - Feedback Elimination and Update: A reconfig-

uration of the holding node is performed to remove the strong

dependencies in arrival processes caused by the repeated visits

(feedback) to the artificial node. The feedback arc is removed

from the holding node by recomputing the service rate at this

node as follows:

µ′h = (1− p′cj )µhj
. (8)

Finally, the average service time that a customer spends at

node i preceding node j is given by:

µ̃−1
i = µ−1

i + pcj (µ
′

h)
−1. (9)

Equation (9) represents the final step of the GEM, which

ultimate goal is to provide an approximation scheme to update

the service rates of upstream nodes that takes into account all

blocking after service caused by downstream nodes.
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Fig. 5. One-mile Vehicular Traffic Flows [13]

Networks of Queues - Merge and Split Queues

Similarly, the process can be extended to merge and split

networks. Details will not be given here but can be found

easily in the literature [12]. Important to stress is that we do

not physically modify the networks. The holding nodes are

only artificial nodes included in the performance evaluation

software.

Final Remarks

In conclusion, for a given routing probability vector, p, it

should not be hard to estimate the corresponding performance

measure,
∑

a xaca(xa), which is the objective function to be

minimized. The problem is that the use of state-dependent

travel times complicates the optimization problem. In fact, as

seen in Figure 5, typical travel time functions (BPR-like) differ

quite much from M/G/c/c state-dependent queueing model

functions, specially under heavy traffic. Under low traffic, the

queueing approach is close to the classical formula but the

M/G/c/c model predicts S-shaped travel-time curves, which
represent serious trouble for any optimization algorithm.

B. Differential Evolution Algorithm

A DE algorithm will be used to compute the optimal routing

probability vector, p = (. . . , pa, . . .), ∀a ∈ A. DE algorithms

are part of a broader family of Genetic Algorithms (GA).

Some of the features of DE algorithms that justify their use

for solving SO problems include fastness, robustness, ease

of use, and ability to operate on flat surfaces. Additionally,

it was found that DE algorithms were the best evolutionary

computation method after the study of seven difficult design

and control MINLP problems in chemical engineering [14].

A DE algorithm is defined as a parallel direct search method

which operates on a population PG of constant size that is

associated with each generation G and consists of NP vectors,

or candidate solutions, Xp,G, p = 1, 2, . . . ,NP . Each vector

Xp,G consists of D decision variables Xo,p,G, o = 1, 2, . . . , D.

This is briefly summarized as:
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TABLE II
SETTINGS FOR THE THREE-ROAD NETWORK

Route Length∗ Width† V ‡

1
V ‡
a V ‡

b
c (veh) E[T1]

♯

a1 0.80 (0.50) 5 25 (40) 23 (37) 10 (16) 800 0.0320 (115)

a2 2.50 (1.55) 2 20 (32) 18 (29) 6 (10) 1,000 0.1250 (450)

a3 1.85 (1.15) 2 20 (32) 18 (29) 6 (10) 740 0.0925 (333)

Remarks: ∗in miles (km); †in # lanes; ‡in mph (km/h); ♯in h (s);

PG = {X1,G,X2,G, . . . ,Xp,G, . . . ,XNP,G} ,

Xp,G = {X1,p,G, X2,p,G, . . . , Xo,p,G, . . . , XD,p,G} ,

G = 1, . . . , Gmax,

NP ≥ 4.

Each routing probability is then considered as the decision

variable, Xo,p,G ≡ pa. The DE algorithm is composed by the

following steps:

1) Choose a strategy (Price and Storn [25] present 10

different strategies);

2) Initialize the crossover constant CR, the population size

NP , the mutation scaling factor F , the coefficient of

combination K, and the maximum number of genera-

tions Gmax;

3) Set the initial population PG=0;

4) Evaluate the profit of each vector and find the one with

the highest profit;

5) Perform mutation and recombination; DE mutates an

object vector by adding the weighted difference of ran-

domly sampled pairs of vectors in the current population

PG; the crossover operation creates a trial vector Up,G+1

by selecting elements from the target vector Xp,G and

the mutated donor vector Vp,G+1; the crossover constant

CR controls the probability that a trial vector parameter

will come from the mutated vector Vp,G+1, instead of

from the current vector Xp,G, and therefore ranges from

0 to 1;

6) Check lower and upper bounds of the variables;

7) Perform selection;

8) Repeat the evolutionary cycle until Gmax is reached.

More details on DE algorithms may be found in litera-

ture [25], including mutation schemes, values for the control

parameters, other constraint handling methods, and stopping

criteria.

IV. COMPUTATIONAL EXPERIMENTS

All algorithms described earlier were coded in C++ and

are available from the authors for research and educational

purposes. The experiments were conducted on a common PC,

under Windows Vista operating system.

The example illustrated in Figure 2 is a three-link network.

A and B are connected by link a1 and two alternative links,

a2 and a3, where one of the alternative routes is longer (and
consequently slower) than the other. The adjustments of the

respective M/G/c/c model is presented in Table II. The

TABLE III
OPTIMAL ASSIGNMENTS FOR THE THREE-ROAD NETWORK

λ route assignment E[T ]∗

0 a1-a2 n/a 0.1570 (565)

a1-a3 n/a 0.1245 (448)

500 a1-a2 152 0.1591 (573)

a1-a3 348 0.1287 (463)

1,000 a1-a2 370 0.1635 (588)

a1-a3 630 0.1341 (483)

2,000 a1-a2 890 0.1791 (645)

a1-a3 1,110 0.1484 (534)

4,000 a1-a2 1,496 0.4742 (1,707)

a1-a3 1,225 0.8964 (3,227)

8,000 a1-a2 1,507 0.4750 (1,710)

a1-a3 1,224 0.8970 (3,229)

Remark: ∗in hours (in seconds);

algorithm was run for different arrival rates (λ). The results

obtained may be seen in Table III.

When the arrival rate is zero, we have that the expected

travel time is the travel time of a lone occupant, which is

the sum of the lone occupant expected travel times of the

respective links (i.e., 0.1570 = ca1
(0) + ca2

(0) = 0.0320 +
0.1250 and 0.1245 = ca1

(0) + ca3
(0) = 0.0320 + 0.0925).

From λ = 500, we observe an increase on the expected travel
time caused by the system congestion level. Notice that the

expected service times for both routes are never equal meaning

that users with knowledge about the travel costs could reduce

their own travel time by changing from a slow to a fast route.

Such improvement would be impossible from the UE problem

optimum solution (see Sheffi [1]) but the problem solved here

is the SO model, which seeks the overall minimum travel time

and not individual minimum travel times.

Concerning the optimum assignment, we remark that the

traffic is mostly directed to the fastest route (i.e., with the

lowest expected travel time) and then to the slowest route.

This is what it should be expected, which is encouraging.

For this network, we also observe that up to the arrival rate

of 2,000 users per time unit, all the traffic goes through the

network without any blocking (i.e., roughly the sum of the

assignments equals the arrival rate). However, from this point

on the network seems to have reached its capacity because

only a fraction of the additional traffic can successfully go

through.

Finally we would like to notice a somewhat unexpected

behavior at link a1-a3, that is, an increase on its travel time

(from 0.8964 to 0.8970) in spite of a reduction of the traffic on

it (from 1,225 to 1,224). This is a type of behavior that would

be impossible under BPR-like travel time estimation formulas

but it is perfectly reasonable under the use of M/G/c/c state-
dependent models. In fact, as reported by many researchers,

the M/G/c/c state-dependent models induce a throughput-

vs.-arrival-rate curve that reaches a maximum after which it

decreases before it finally stabilizes, as seen in Figure 6.
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Fig. 6. Exponential Congestion [12]

V. CONCLUDING REMARKS

The SO problem was solved under a different stochastic

travel time formula based on an M/G/c/c state-dependent

queues. This new formula clearly has advantages over the

previously used formulas as it is in close agreement with the

reality by modeling congestion effects (i.e., the travel time

reduces when the link congestion level increases). On the

other hand, the resulting travel time function is S-shaped,
which brings difficulties to the optimization algorithms as

now multiple optima may be present. Computational results

attest that DE heuristics may be quite effective in solving the

SO problem, as sound solutions were found. Additionally, the

solutions seemed to be robust as it was demonstrated by the

sensitivity analysis presented here.

Some possible future directions for this research include the

analysis of more general networks and the application of the

algorithms to modeling pedestrian networks, since that many

of the similar features of the travel delay function as shown

in this paper apply to pedestrian flows.
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