A Tabu Search Approach to a Network Design Problem with
Capacitated Facility Location

SIRLENE R. RoLLa!, GERALDO R. MatEUs! AND FrREDERICO R. B. Cruz®

!Departamento de Ciéncia da Computagio, Universidade Federal de Minas Gerais
31270-901 - Belo Horizonte - MG, Brazil.
E-mails: {sirlene,mateus}@dcc.ufmg.br

2Departamento de Estatistica, Universidade Federal de Minas Gerais
31270-901 - Belo Horizonte - MG, Brazil.
E-mail: fcruz@est.ufmg.br

1 Introduction

The capacitated facility location (CFL) problem we deals with here could be viewed as a general-
ized network design (ND) problem. In the practical point of view, the ND problem is a generic
denomination encompassing important problems that have arisen in many different contexts such as
telecommunication systems, energy distribution systems, and transportation networks, among others.
The ND problems are also seen as very important in the theoretical terms because the appeal they
have in the research fields of algorithms, data structures, complexity analysis and performance. In
fact, they can be viewed as a generalization of several important theoretical problems that appear in
the areas of network optimization, operational research, combinatorics and graph theory [1].

Classic models dealing both with ND and CFL aspects include the set covering location problem
[19], the maximum covering location problem [3], and the warehouse location problem [13]. All of
these models are concerned about locating facilities in a network whose topology is known beforehand.
Probably motivated by the advances done in the area, it seems that researchers start to consider that
disregarding topological aspects in CFL problems is too restrictive. Indeed, it was shown that the
network topology plays a key hole in the final location [2]. The results reported in the literature
usually do not consider fixed costs on the network arcs. In other words, usually, the models studied
do not consider the ND aspect of the CFL problem. A simple formulation for a ND problem is the
well known uncapacitated fixed-charge network flow (UFCNF) problem [15]. In such a problem, there
is a source node producing flows to be sent to a set of demand nodes through a set of transshipment
(or Steiner) nodes at minimum cost. The cost is composed by a fixed cost associated with the arcs
that have been chosen and a variable cost dependent on the amount of flow the arcs carry. Besides
the apparent simplicity of the UFCNF problem, it is a N'P-hard problem [5], and it generalizes well
known NP-hard problems. Disregarding the fixed costs, the problem is reduced to the simple source
transshipment problem which is polinomially solvable by the Dijkstra’s shortest path algorithm [8].
On the other hand, without variable costs, the UFCNF problem is a Steiner problem in graphs, well
know to be N'’P-hard [11].

It has been recognized that, usually, aspects of facility location and topological network design have
been carelessly treated as separated issues by the papers [2]. By making certain changes in the network
topology, it has been shown that the facility location could be improved [2]. In another paper, another
group studied the relationship between the network configuration and the optimal solution of the p-
median problem [16]. A model that could find the optimal facility location and the optimal topology
has appeared recently [7], being solved by complete enumeration. The model we shall deals with here
in this paper is an extension of the UFCNF problem. We think one should rather consider a set of
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candidate source nodes each one with its own capacity and fixed charge associated. The problem
shall be called as the network design with capacitated location (NDCL) problem. Concerning the
NDCL model, many algorithms could be applied to it since these same algorithms were successful
in solving some special case. Enumerative branch-and-bound based algorithms solved considerable
large instances of the UFCNF problem [5], as well as cross decomposition algorithms [18], heuristic
algorithms, such as greedy algorithms [12], tabu search algorithms [14], Lagrangean relaxation based
algorithms [5, 10], and parallel algorithms [6].

In this paper, we shall present the results of a study concerning the use of the tabu search [17]
in the NDCL problem, providing a comprehensive set of computational experiments. The paper is
outlined as follows. In Section 2, we introduce the notation and present a mathematical programming
formulation for the NDCL problem. In section 3, we describe the tabu search algorithm and some
improvements were are proposing. Computational results are presented in Section 4. In Section 5, we
close the paper with some open questions and future research directions.

2 Problem Formulation

The NDCL problem is defined on a graph G = (N, A), where N is the set of nodes and A, the set of
arcs. We now shall define the remaining of the notation used:

S - set of candidate supply nodes;
T - set of transhipment or Steiner nodes;
D - set of demand nodes;
sy - capacity of supply node k € S;
dy - demand of the demand node k € D;
¢cij - per unit cost on arc (i,j) € A;
fij - fixed cost for installing arc (i, j) € A;
fr - allocation fixed cost for candidate supply node k € S;
x;; - flow through arc (i,j) € 4;
y;j - binary variable which assumes the value 1 and 0 whether or not the arc (4,j) € A is
chosen or not to support flow;
zk - binary variable which assumes the value 1 and 0 whether or not the node £ € S is chosen
or not to provide flow;
U - a “large” number, say U =}, |, dg, or the capacity of all arcs (7, j) € A.

The mathematical programming formulation describing the NDCL problem is:
(M):

min Z (cijzsj + fijyiz) + Z Trzr| s (1)

(i.4)€A kes

s.t.:

2 Thj — Z i < Spzr, V k€S, (2)

(k,j)eEA (i,k)eA
S oa— Y wza=0, V keT, (3)
(k,j)eA (i,k)eA
Z Thj — Z Ty = —dy, V k€D, (4)
(k,j)eA (i,k)eA
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Yij € {01 1}7 v (Za.]) € A: ( )
zr € {0,1}, V keS.
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The objective function (1) minimizes the variable and fixed costs associated with the arcs as well
as the location costs of the facilities located. Counstraints (2) ensure that the flows originate only
from installed facilities (zy = 1) and constraints (4) that they will go to all demand nodes. The flow
conservation in the Steiner nodes is expressed in constraints (3). Constraints (5) express the fact that
the flow through an arc must be zero if this arc is not included in the design. Finally, (6)—(8) are the
usual non-negativity and integrality constraints.

3 Algorithms

Concerning the NDCL problem, one could easily figure out that these are two decision variables. The
z’s are related to the facilities to be located and y;;’s are related to the arcs that form the routes.
A reasonable initial approach should be to consider the tabu search technique to solve the problem
in S. Once the variables from S were chosen, the resulting problem in y;; and z;; could be solved
e.g. by Lagrangean relaxation as it was done before [5], or else by a linear programming relaxation.
A feasible solution could be derived from any of the relaxations mentioned above by merely rounding
the non-integer y;;’s. The algorithm we propose may be stated as follows:

Initialization Phase: An initial solution is identified for nodes in the set S which is set up by
choosing those nodes with lower location costs up to that point the installed capacity is enough
to supply the total demand.

Improvement Phase: Initially, one pair of variables in S, in which one of them is set to 0 and the
other is set to 1, are interchanged if this change improves the current solution in respect to S,
disregarding the problem feasibility. If there is no such a candidate pair, the algorithm tries to
find two pairs, and so on, up to the limit of three pairs. Once a pair is found, the algorithm
resolve the overall problem and get another feasible solution. Otherwise, the algorithm goes to
the next step.

Tabu Phase: In this phase, using a similar idea, some movements that may even worsen the solution
are done in order to move the search out of local optimal points toward another directions.
Movements recently or frequently done, called tabu movements, are prohibited. The algorithm
stops after a pre-specified number of iterations between the improvement and the tabu phase or
else there is no possible movement at all. Otherwise, the algorithm goes back to the improvement
phase.

We shall also consider a modification on the tabu phase inspired in our practical experience with
the algorithm above. We have noticed that the algorithm generates to much cycling solutions. In
order to avoid such cycles, we should create more tabu movements, corresponding to these cycles.

4 Computational Aspects and Results

In this paper, the AMPL [9] was used to implement all mathematical formulations which were solved
by means of the CPLEX [4]. All tests were performed in a workstation Sun Ultra 1 Model 140 with
128 MB RAM and the operating system SunOS 5.5.1. We have tested problems randomly generated
with 20, 50 and 100 nodes each of them with I" incident arcs in average and respectively 5, 10 and
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20 supply candidate nodes. Additionally, we consider different fixed and variable costs ratio in the
arcs, randomly generated location costs between 1,000 and 10,000, and 10,000 as the total demand.
The results are reported in Table 4.1. All CPU times reported are in seconds and exclude all I/O
operations and consider that there was only one process running at that time.

From these results, it is remarkable that the gaps are considerably small, mainly in the version
2, attesting the good quality of our heuristic solution. In the 100 node series with fixed and variable
cost ratio equal to 10, it is noticeable the success of the heuristic approach over the exact approach.
In spite of their fastness, the heuristic solutions proved to be very good approximations for the cases
tested.

Table 4.1: Computational Results

Exact Tabu Algorithm 1 Tabu Algorithm 2
fij/ci; P T |S] CPU(s) |S] CPU(s) GAPT TP* IP® nB'" nT** |S| CPU(s) GAPT TP* IPY nB'" nTH
1 20 3 3 0.03 3 007 000 2 3 5 6 3 005 000 2 0 3 3
20 4 4 0.04 3 019 044 3 5 7 9 3 0.08 044 2 1 4 4
50 3 7 018 7 360 3200 10 50 26 61 7 046 1230 3 4 8 8
50 4 7 014 7 260 170 10 50 4 61 7 031 140 2 4 6 7
100 4 14 740 15 10.00 21.00 7 93 44 104 15 4.00 209 7 25 36 36
100 2 13 3.00 15 12.00 11.00 7 93 49 104 15 410 146 8 23 9 35
01 20 3 3 0.03 3 011 000 2 3 5 6 3 010 000 2 0 3 3
20 4 4 0.04 3 020 046 3 5 7 9 3 011 046 2 1 4 4
50 3 7 015 7 360 3100 10 50 26 61 7 049 1230 3 4 8 8
50 4 7 012 7 250 170 10 50 4 61 7 029 141 2 4 6 7
100 4 14 120 15 10.00 21.00 7 93 44 104 15 350 206 7 25 36 36
100 2 13 0.67 15 12,00 11.00 7 93 50 104 15 4.00 145 8 23 9 35
100 20 3 3 0.03 3 009 000 2 3 5 6 3 005 000 2 0 3 3
20 4 4 0.04 3 022 031 3 5 7 9 3 008 031 2 1 4 4
50 3 7 0.36 7 360 3100 10 50 26 61 7 051 1230 3 4 8 8
50 4 8 0.15 7 250 19 10 50 4 61 7 031 154 2 4 6 7
100 4 14 900* 15 10.00 21.00 7 93 44 104 15 4.00 242 7 25 25 36
100 2 13 900* 15 12.00 11.00 7 93 49 104 15 410 160 8 23 9 35

*time overflow; fnumber of tabu phase iterations; Snumber of improvement phase iterations;
Ttiteration in which the best solution was found; foverall number of iterations;
TGAP = 100% x (Optimal Solution — Heuristic Solution) + Optimal Solution

5 Final Remarks

We have introduced a new model that integrates topological network design aspects and capacitated
facility location and stressed the importance such a model might have in practice. We have proposed
a tabu search based algorithm to tackle the problem as well some improvements that were based on
the problem structure. Preliminary results seem to indicate that the approach is quite satisfactory.
In special, we mention that definitely heuristic algorithms must be applied to solve large instances.
The time to solve them exactly was too large. A topic for future research includes more computa-
tional experiments in other types of testing problems, as well as a “fine tuning” of the tabu search
based algorithm that would probably reduce even more the tabu movements. We have seen that
a simple procedure to avoid cycling solutions leaded to improvements, as well as reduced the total
computational time and did not jeopardize the solution quality.
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