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Abstract — We apply finite state-dependent queueing net-

works to model mobility in mobile communication systems.

Although they have been successfully used in the past to

model vehicular traffic, state-dependent models have not

been applied to mobile communication systems, to the best

of our knowledge. The novelty of state-dependent stochas-

tic mobility models is that the congestion phenomenon is

explicitly considered, that is, the user speeds fall when the

number of users in the system increases. We present a de-

tailed description of the simulation model used to estimate

the performance measures of the queueing networks and

show computational results for a comprehensive set of in-

stances. As we show, finite state-dependent stochastic mod-

els bring interesting new insights, for instance, that in some

cases mixed bimodal distributions will better describe the

cell residence time of a call than the classical probability dis-

tributions used in the past.

Keywords — Simulation; performance; state dependent;
queueing networks.

1 INTRODUCTION

INTEREST in studying the performance of cellular sys-
tems by means of stochastic models has increased

significantly recently, with growing demand for quality
services. Although the results are still modest and con-
strained to simple problem instances, our understand-
ing of the area continues to increase (see for instance,
Alfa and Liu [2]). It is a well-recognized fact that users’
mobility has generated new challenges for the engineers
in charge of designing, planning, dimensioning, and
maintaining cellular networks. In mobile systems, users
want to move around and still keep connected to the cel-
lular system (see Fig. 1, adapted from Zonoozi and Das-
sanayake [28]). In order to meet this requirement, the
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cellular system must hold and periodically update in-
formation regarding all users. By means of mathemat-
ical models, one tries to predict the behavior of these
users in order to reduce the amount of information col-
lected and stored. In fact, it was recognized a decade
ago that mobility models play one of the most impor-
tant roles in the description and design of cellular sys-
tems [28]. Included among the parameters of interest
in a cellular system, directly influenced by mobility, are
the handover, offered traffic, dimensioning of signaling
networks, user location updating, registration, paging,
and multilayer network management [28].
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Figure 1: Mobility temporal diagram [28]

A review of the available literature in the area shows
that many authors have dealt with mobility models
for mobile communication networks, as presented in
Fig. 2. Modern approaches usually consider stochastic
models for the speed of the users. Both uniform and
non-uniform probability distributions have been used.
Exponentially and generally distributed speed models
have also been developed. However, no research can be
located that considers general state-dependent stochas-
tic models with average speeds being a function of the
number of users currently in the system. This is the
model that we propose in this article.

The effects of user mobility on the handover perfor-
mance were thoroughly investigated by Han Han [10].
However, the speed of the cars was considered to be
exponentially distributed, and the speed of the pedes-
trians to be uniformly distributed. Although this may
be acceptable as an approximation to make the model
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Figure 2: Some mobility models for cell residence time distribution

computationally tractable, it may lead to the conclusion
that either the cell residence times or the channel hold-
ing times are Markovian, which is not true, according
to results reported by Hegde and Sohraby [11]. In fact,
simulation data analyzed by Zonoozi and Dassanayake
[28] showed that the generalized gamma distribution is
a better approximation for the cell residence time distri-
bution and that the holding time of a cellular network is
a negative exponential distribution.

However, as we show in the following sections, it
does not seem that a single probability distribution
would be appropriate to model a mobile communica-
tion network. The cell residence time is strongly af-
fected by congestion effects within the cell. In other
words, under very reasonable assumptions, the average
speed of the cars should be considered state-dependent
(see Fig. 3). We show that it is possible to end up with
a hypoexponential distribution for the random variable
residence time (that is, the random variable follows a
probability distribution that has a lower variability than
an exponential distribution), or even a bimodal proba-
bility distribution, as we simply vary the level of con-
gestion of the system under analysis. Of course, the ef-
fect of these findings on the overall performance will not
be small, given the strong link between users’ mobility
and quality of service in mobile networks [16].

This article is organized as follows. The state-
dependent mobility simulation model is described in
detail in Section 2. Section 3 presents experimental re-
sults obtained for small-scale systems of mobile com-
munication. Section 4 gives the conclusion, which in-
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Figure 3: Empirical distributions for vehicular traffic
flows [6, 7, 9, 24, 25] and M/G/c/c state-dependent
models [13]

cludes a highlight of the main results and a discussion
of some open questions raised by the simulation study
we conducted.

2 A STATE-DEPENDENT MOBILITY MODEL

2.1 Mobility parameters

In order to perform an analysis of a mobile communi-
cation system, some parameters must be defined. In
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Fig. 1, one sees a user traveling through a cellular net-
work. Their path initiates on cell #0, in which the resi-
dence time is Tm,0, with the beginning of a new call. The
channel holding time on this cell is given by �m,0. As
time goes by and the user moves throughout the route,
the system will automatically switch his/her connection
from cell #0 to cell #1, which is commonly called hand-
off (or handover). As users keep moving from cell to
cell through the cellular network, they will eventually
reach cell i, when the call is finalized. One of the most
important parameters for describing user mobility is the
random variable Tm,i, which represents the time that a
user m spends in cell i. A major focus of this article is
the development of a better and more accurate model
for random variable Tm,i.

2.2 Congestion models

We shall use queueing networks to model traffic. For a
recently published discussion upon the suitability and
advantages of such models, the reader is referred to the
article by van Woensel and Cruz [26]. A particular set
of finite queues, known as M/G/c/c state-dependent,
has been used specifically to model congestion in ve-
hicular traffic networks [13]. In Kendall notation, M is
a Markovian arrival process, G is a general service time
distribution, which here is state-dependent, c represents
the number of parallel servers and, finally, c is also the
total capacity of the systems, including those in service.

The most important feature of this model is that its
mean speed decreases as the number of users in the sys-
tem increases, as shown in Fig. 3 (adapted from Jain
and Smith [13]), with empirical curves related to vari-
ous North American roads. By using M/G/c/c state-
dependent queues, each road link may be seen as paral-
lel servers for its occupants. The maximum number of
parallel occupants equals the capacity of the road link,
which is also the total amount of users allowed simulta-
neously in the system, and it is given by

c = ⌊k × l × w⌋,

in which l is the length of the road, w is the number of
lanes, c is the total capacity, and ⌊x⌋ is the highest inte-
ger not larger than x. The constant k represents the jam
density, which is the vehicular density at which flow
comes to a halt. Different estimates of k have found val-
ues in the range of 115–165 vehicles/km-lane (≈ 185-
265 vehicles/mile-lane, as reported by Jain and Smith
[13]; in this work we assume 200 veh/mile-lane). Note
that the above discussion about capacity is only in terms
of the physical number of cars that can fit on a given
stretch of the road, which does not necessarily corre-
spond to the ‘call’ capacity, the number of calls that a
given base station can sustain at a given time.

In the congestion model, the traffic flows through the
road link at an average speed Vn, which is a function
of the number of vehicles n currently on the road and
its capacity c. Based on empirical data, analytical linear

and exponential models were developed [27] by means
of the following notation:

Vn → average speed for an occupation of n ve-
hicles;

V1 → free flow average speed;

Va → average speed for a density of a veh/km-
lane;

Vb → average speed for a density of b veh/km-
lane.

The values a and b are arbitrary points used to ad-
just the exponential curve. Both linear and exponential
models usually will fit satisfactorily to empirical traffic
data and produce fairly good results Jain and Smith [13].
For the sake of conciseness, we shall present here only
the exponential model, the one actually used in this ar-
ticle:

Vn = V1 exp

[

−

(

n− 1

�

)]

, (1)

in which

 = ln

[

ln(Va/V1)

ln(Vb/V1)

]

/ ln

(

a− 1

b− 1

)

,

and

� =
a− 1

[ln(V1/Va)]1/
=

b− 1

[ln(V1/Vb)]1/
.

In vehicular-related applications, commonly used
values are k = 200 veh/mile-lane, as stated earlier, and
a = 20 and b = 140, corresponding to vehicular den-
sities of 20 veh/km-lane and 40 veh/km-lane, respec-
tively. Looking at the curves presented in Fig. 3, reason-
able values for such points are Va = 48 mph and Vb = 20
mph.

The probability distribution of the number of users,
as a function of �, the arrival rate, is:

p(n) ≡ P [N = n] =

⎡

⎣

(

�× E[T1]
)n

n!f(n) . . . f(1)

⎤

⎦× p(0), (2)

for n = 1, 2, . . . , c, in which

p(0) ≡ P [N = 0] = 1/

⎧



⎨



⎩

1 +

C
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⎡
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⎣
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�× E[T1]
)i

i!f(i) . . . f(1)

⎤

⎥

⎦

⎫



⎬



⎭

is the empty system probability, � is the arrival rate,
E[T1] is the expected service time for a lone occupant
in the system, and f(n) = Vn/V1 is the service rate for n
users simultaneously in the system.

By means of Eq. (2), it is possible to compute per-
formance measures such as the blocking probability,
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throughput, expected number of users in the system
(also known as work-in-process), and expected service
time, among others. The blocking probability is the
probability that an additional user will arrive when the
number of users in the system is c, that is:

pblocking ≡ p(c) ≡ P [N = c] .

The throughput, also known as the effective arrival
rate in the system, is given by:

� ≡ �eff ≡ �[1− p(c)].

The expected number of users in the system follows
from the definition of expectation of a random variable:

L ≡ E[N ] =
C
∑

n=1

np(n).

The expected time in the system (that is, the expected
service time) may be calculated from the definition of
expectation, or simply from Little’s Law:

W ≡ E[T ] =
L

�
.

As a final remark, we remind the reader that the aim
here is to computationally estimate these basic perfor-
mance measures. It has not been assumed that all users
on the road will have ongoing calls, which would be
quite unrealistic. The relationship between the distri-
bution of the number of customers in the system and
the distribution of the number of users on the road with
ongoing calls is complex and requires careful consider-
ation. Further, in this formulation, handovers are not
explicitly considered. These are certainly important is-
sues, which will be dealt with in future work.

2.3 Discrete-event simulation model

We propose a simulation model, which extends the al-
gorithm proposed by Cruz et al. [5], for M/G/c/c state-
dependent queueing networks. Essentially, the model
implements the object MgccSimul, presented in Fig. 4.
We now describe in detail the object MgccSimul and
all the data structures involved, namely, nOfNodes,
the number of M/G/c/c state-dependent queues nodes,
totalTime, the total simulation time, arcs, an origin-
destination matrix, a vector of nOfNodes objects of
type MgccResource, and, finally, MgccEventQueue,
an event queue. Objects MgccResource keep track
of all statistics of interest for each one of the queues,
namely, sumBloc, the sum of blocking, sumArr, the
number of arrivals, sumDep, the number of departures,
sumTime, the accumulated amount of time in the sys-
tem, and users, the current number of users in the sys-
tem. Also part of each MgccResource object is GenCM,
the congestion model, with methods to access c, the
queue’s capacity, E[T1], the expected service time for a
lone occupant in the system, and Vn, the average speed

(service rate) for the current number of users in the sys-
tem.

The most critical part of object MgccSimul is object
MgccEventQueue, which implements the event queue.
The event queue has been implemented as a dynamic
linked list, built in running time, with the task of book-
keeping all the discrete events. Unexpectedly, after
much experimentation, we found that it is considerably
less time consuming to keep the event queue unsorted,
at least for state-dependent queueing networks. Even
considering the overhead of traversing the whole list
to recover the next event to be processed, a worst-case
O(nlist) operation, it is more efficient to keep the list
unsorted. This is because the list is shuffled every time
an entity arrives into or leaves the system, since Vn, the
service rates defined in Eq. (1), must be updated for each
entity that remains in the system.

In the event queue, each object MgccEvent has the
following variables: whichQueue, an indication of
which M/G/c/c queue it belongs to, occurTime, the
expected time for the event to occur, type, the event
type (among the possible events arrival, departure,
and end simulation), and MgccEntity, the entity to
which it relates. Object MgccEntity represents each
user (vehicle) in the M/G/c/c state-dependent queue-
ing network, which has the following variables: id, an
unique numerical identification, sisArrival, the time
when it arrived at the system, queueArrival, the time
it arrived at the current queue, lastChange, the time
when the last change occurred in the state (that is, when
some entity joins or leaves that particular queue, there
will be a change in its state), lastPosition, the physi-
cal position of the entity when the state in the queue last
changed, and, finally, celArrival, the arrival time at
the cell.

The cells are defined as a group of an arbitrary num-
ber of queues and this information is stored in matrix
Cells. If a queue i belongs to cell j, then one has

Cells[i, j] = TRUE.

The algorithm is presented in pseudo-code in Fig. 5.
Initially, the event queue MgccEventQueue is initial-
ized with the last event (event type end simulation)
and the first events, which are the first arrivals (event
type arrival). Then, iteratively, the earliest event
is sought and processed until the final event (end -
simulation) is found. The procedures to deal
with the arrivals, ProcessArrival, and departures,
ProcessDeparture, will not be detailed here, for the
sake of conciseness, as they are essentially no different
from those described by Cruz et al. [5].

3 COMPUTATIONAL EXPERIMENTS

We present here computational results from the experi-
ments run with the discrete simulation model proposed.
All algorithms were coded in C++ and are available
from the authors upon request. All experiments were
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Figure 4: Object MgccSimul

run on the same PC with a 1.8 GHz Intel Pentium 4 CPU
and 512 MB RAM, running Windows XP. The configu-
rations were run for a three-hour simulation time, with
the first hour being discharged for warm-up (see details
in Robinson [21]), replicated 30 times for computing the
descriptive statistics presented.

Four distinct basic configurations were tested. These
were chosen because of their simplicity, the insights we
can gain from them, and mainly because any complex
configuration can be seen as a combination of these
basic topologies. Of course, the combined effect of a
certain combination of basic topologies will not be ex-
pected to be a perfect superimposition of the individual
effects of these component topologies (remember that
we do not have a linear system), but any insight we gain
here may be helpful in analyzing the behavior of more
complex networks, as we will see shortly.

One of the topologies is a basic series topology, pre-
sented in Fig. 6. Another is a basic split topology, seen
in Fig. 7. A basic merge topology was also tested and
is shown in Fig. 8. Finally, in order to better demon-
strate the capabilities of the proposed model, a rather
complex mixed topology was considered, which can be
seen in Fig. 9. We shall now present and discuss the ex-
perimental results.

3.1 Series topology

In Fig. 6, we see a representation of a simplified cellular
system composed of three cells, each of which has only
one major transportation link, which we will model as

an M/G/c/c state-dependent queue. Without loss of
generality, each transportation link is one kilometer in
length and one lane in width. The descriptive statis-
tics of the time between departures are shown in Tab. 1.
It is remarkable to note the equivalence of the stochastic
models for all three cells, for all tested arrival rates �.
However, the effect of the state-dependency is already
noticeable, even for this simple case. In other words, up
to the arrival rate of 4,000 vehicles per hour (veh/h),
we observe an approximate equivalence between the
averages and standard deviations for the time between
departures. Above these values, the averages remain al-
most unchanged, around 1.85, because the system sat-
urates, but the variability grows up to 14.3. Thus the
arrival processes at cells #2 and #3, which are the de-
parture processes from cells #1 and #2, respectively, no
longer seem to be Markovian but rather resemble an-
other hyper-exponential distribution. A practical rel-
evant conclusion one could draw from these experi-
ments is that if the load is high enough, an exponential
model may not suffice at all for the arrivals, and state-
dependent M/G/c/c queueing networks may not be ap-
plicable.

In Fig. 10, we present histograms for the time be-
tween departures, for an arrival rate of 4,000 veh/h,
which, from Tab. 6, seems to be the applicability limit
of M/G/c/c queueing network models. The adoption
of an exponential model, for an arrival rate of 4,000, is
visually sound.

In Figs. 11 and 12, a time-series plot of the service times
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Table 1: Descriptive statistics of the average time be-
tween departures in series topology

� Cell Min. Q1 Median Mean StD Q3 Max.

1,000 1 0.00 1.11 2.54 3.50 3.40 4.80 31.4

2 0.00 1.10 2.47 3.46 3.35 4.68 28.6

3 0.00 1.11 2.44 3.46 3.32 4.82 25.8

2,000 1 0.00 0.56 1.30 1.88 1.88 2.59 14.1

2 0.00 0.56 1.29 1.87 1.86 2.59 15.3

3 0.00 0.54 1.29 1.86 1.84 2.55 15.0

4,000 1 0.00 0.56 1.34 1.87 1.80 2.57 10.9

2 0.00 0.56 1.33 1.87 1.80 2.60 11.1

3 0.00 0.57 1.33 1.86 1.79 2.57 11.3

8,000 1 0.00 0.30 0.74 1.83 8.68 1.54 106

2 0.00 0.30 0.74 1.83 8.73 1.51 106

3 0.00 0.29 0.72 1.83 8.77 1.49 106

16,000 1 0.00 0.14 0.37 1.86 14.22 0.78 157

2 0.00 0.14 0.37 1.86 14.24 0.78 159

3 0.00 0.14 0.37 1.86 14.25 0.78 159

on cells is presented along with the corresponding his-
tograms, for the arrival rates of 1,000 and 4,000 veh/h.
Notice that for cellular system applications the service
time on cells are equivalent to the residency time on cells,
which is an important performance measure, as stressed
earlier. We notice that exponential models are by no
means appropriate for modelling such a random vari-
able, as noticed by previous studies [11, 28].

3.2 Split topology

In Fig. 7, we show a cellular system in a simplified split
configuration. In this case, each queue models a traffic

link one kilometer long by one lane wide. The flow from
link #1 divides into two links, #2 and #3, in the propor-
tion of 70%-30%, respectively. Descriptive statistics of
the time between departures are shown in Tab. 2. Again,
under arrival rates up to 4,000 veh/h, exponential mod-
els seem to be applicable, as averages and standard de-
viations are similar. To visually attest for these conclu-
sions, Fig. 13 shows histograms for the time between ar-
rivals, with the adjustments for exponential models.

Table 2: Descriptive statistics of the average time be-
tween departures in split topology

� Cell Min. Q1 Median Mean StD Q3 Max.

1,000 1 0.00 1.11 2.54 3.50 3.40 4.80 31.4

2 0.00 1.39 3.35 4.70 4.46 6.75 32.3

3 0.11 4.20 9.63 13.1 12.3 18.2 68.4

2,000 1 0.00 0.53 1.28 1.87 1.89 2.59 13.6

2 0.00 0.72 1.83 2.70 2.73 3.84 26.0

3 0.00 1.88 4.37 6.03 6.26 7.85 53.0

4,000 1 0.00 0.56 1.34 1.87 1.80 2.57 10.9

2 0.00 0.80 1.88 2.65 2.55 3.53 16.6

3 0.01 1.86 4.17 6.17 6.05 8.77 45.0

8,000 1 0.00 0.30 0.74 1.83 8.68 1.54 106

2 0.00 0.35 1.07 2.72 8.93 2.42 88.3

3 0.00 1.02 2.52 6.27 16.3 5.00 113

16,000 1 0.00 0.14 0.37 1.86 14.2 0.78 157

2 0.00 0.19 0.52 2.68 15.9 1.26 161

3 0.00 0.52 1.15 6.06 25.6 2.55 171

Figs. 14 and 15 present the behavior of the service times
on cells (that is, the residence times on cells) and the corre-
sponding histograms, for � = 1, 000 and 4,000 veh/h,
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algorithm Simulate

/* initialize event queue */

Inicitialize(MgccEventQueue);

/* create and insert ‘last’ event */

MgccEvent← new();

MgccEvent.occurTime← totalTime;

MgccEvent.type← end simulation;

Insert(MgccEventQueue,MgccEvent);

/* create and insert ‘first’ events */

for ∀n∣ �n ∕= 0 do

MgccEvent← new();

MgccEvent.whichQueue← n;

MgccEvent.occurTime← 0.0;

MgccEvent.type← arrival;

Insert(MgccEventQueue,MgccEvent);

end for

/* simulate */

MgccEvent← GetNext(MgccEventQueue);

while MgccEvent.type ∕= end simulation do

if MgccEvent.type = arrival then

ProcessArrival(MgccEventQueue,MgccEvent);

else if MgccEvent.type = departure then

ProcessDeparture(MgccEventQueue,MgccEvent);

else

error, unknown event

end if

MgccEvent← GetNext(MgccEventQueue);

end while

print results

end algorithm

Figure 5: Simulation algorithm

respectively. For � = 4, 000, the output of the M/G/c/c
state-dependent queueing network surprisingly indi-
cates that the random variable residence times on cells has
a very low variability. The important conclusion that
can be drawn from these simulation results is that one
will need to exercise extra care in adjusting some prob-
ability distribution for the random variable service time.
The congestion that a given arrival rate might cause in
the transportation link is hardly predictable without us-
ing a simulation tool such as the one used here, or some
other analytical model.

3.3 Merge topology

The merge topology, Fig. 7, was considered only to at-
test to the symmetry of the results. One sees easily from
Tab. 3 and Figs. 16, 17, and 18, that some symmetry is
indeed present. In other words, nodes #3 and #1 be-
have exactly as nodes #1 and #3, respectively, in the split
topology case. This behavior was expected and is an in-
dication that the simulation model may be correct.

Table 3: Descriptive statistics of the average time be-
tween departures in merge topology

� Cell Min. Q1 Median Mean StD Q3 Max.

1,000 1 0.01 3.32 7.52 11.7 12.3 17.2 114

2 0.00 1.66 3.71 4.98 4.69 6.72 33.4

3 0.00 1.05 2.49 3.47 3.24 4.85 23.1

2,000 1 0.02 1.86 3.99 5.82 5.47 8.20 31.3

2 0.02 1.03 1.98 2.74 2.46 3.70 20.4

3 0.02 0.66 1.34 1.86 1.71 2.40 10.4

4,000 1 0.00 0.96 2.46 3.74 3.69 5.19 29.4

2 0.00 0.71 2.20 3.69 6.05 4.40 57.6

3 0.00 0.44 1.21 1.86 2.13 2.38 14.7

8,000 1 0.03 0.54 1.59 3.68 6.22 4.03 45.5

2 0.02 0.51 1.51 3.62 6.88 3.83 54.6

3 0.02 0.41 1.09 1.83 2.67 2.02 17.4

16,000 1 0.01 0.25 0.98 3.66 9.55 2.35 79.4

2 0.00 0.43 0.95 3.59 15.3 1.98 158

3 0.00 0.18 0.50 1.81 6.12 1.34 65.2

3.4 Mixed topology

Finally, a mixed topology was considered. It is shown
in Fig. 9, along with the corresponding routing prob-
abilities and arrival rates. This complex topology was
chosen to show that the simulation model is able to
deal with more general cases rather than only with sim-
ple basic configurations. However, one must bear in
mind that since the model is based on intensive simula-
tion, the size of the manageable instances may be rather
small. The simulation times may be prohibitive for large
instances, but one could rely on the effectiveness of de-
composition and aggregation techniques to reduce the
size of real-life cases and make them tractable for simu-
lation.

In this topology, each cell covers two transportation
links rather than one. Each queue represents a link
one kilometer long by one lane wide. From Tab. 4 and
Fig. 19, one sees that an exponential model is fairly ac-
ceptable for the time between arrivals, if the arrival rate
is not so high as to saturate the system (in this case, for
� ≤ 4, 000 veh/h).

Table 4: Descriptive statistics of the average time be-
tween departures in a mixed topology

� Cell Min. Q1 Median Mean StD Q3 Max.

1,000 1 0.00 0.92 2.26 3.19 3.17 4.37 19.5

2 0.00 0.57 1.43 2.02 1.99 2.83 12.6

2,000 1 0.00 0.47 1.20 1.69 1.70 2.35 17.4

2 0.00 0.32 0.77 1.08 1.04 1.53 7.56

4,000 1 0.00 0.45 1.11 1.57 1.61 2.26 13.6

2 0.00 0.31 0.74 0.96 0.89 1.35 6.85

8,000 1 0.00 0.36 1.07 1.58 1.96 2.00 17.7

2 0.00 0.26 0.67 0.95 1.06 1.32 12.2

16,000 1 0.00 0.21 0.69 1.54 3.29 1.62 33.1

2 0.00 0.17 0.43 0.93 2.47 0.86 33.1
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Figure 10: Time between departures in series topology
for � = 4, 000
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Figure 11: Service time in series topology for � = 1, 000
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Figure 12: Service time in series topology for � = 4, 000
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Figure 13: Time between departures in split topology
for � = 4, 000
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Figure 14: Service time in split topology for � = 1, 000
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Figure 15: Service time in split topology for � = 4, 000
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Figure 16: Time between departures in merge topology
for � = 4, 000
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Figure 17: Service time in merge topology for � = 1, 000
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Figure 18: Service time in merge topology for � = 4, 000
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Figure 19: Time between departures in mixed topology
for � = 4, 000
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It is when one analyzes the residence time on cells that
the most curious result appears. Bimodal distributions
emerge, as seen in Figs. 20 and 21. From these results, it
is clear that sometimes the analyst will need to use mix-
tures of probability distributions for the random vari-
able residence time on cells, rather than any single model.
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Figure 20: Service time in mixed topology for � = 1, 000
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Figure 21: Service time in mixed topology for � = 4, 000

4 CONCLUSIONS AND FINAL REMARKS

A novel approach was proposed to model mobility
in communication networks, based on finite state-
dependent queueing models. This stochastic model was
applied successfully in the past for vehicular and pedes-
trian traffic problems, as well as in manufacturing sys-
tem modeling. Basically, this new approach does not
use anything conceptually new in modeling vehicular
traffic, since it merely considers the reduction of the av-
erage speed (service rate), with the increase in density
of users in the system. However, to the best knowledge
of the authors, such a strongly intuitive key concept has
not previously been used explicitly in modeling users
on mobile communication networks. With the aim of
stressing the impact of including the state dependency
on the mobility models, we present a newly-developed

discrete-event simulation model and highlighted some
of its performance measures.

Among the main insights garnered from the simula-
tions, we note that, contrary to the belief of some re-
searchers, the arrival process at the cells may not ad-
here to a Markovian process, under heavily loaded mo-
bile systems, as happens often in large cities. Addi-
tionally, the simulation studies confirmed that the res-
idence times on cells are not truly exponential, and it
may be risky to consider any other probability distribu-
tion without a careful evaluation of the congestion sta-
tus of the cell. Finally, in complex topologies, one may
even find multi-modal probability distributions for the
residence time on cells.

Some questions were answered by this research, but
the results presented give rise to many others. Firstly,
it is unknown what the maximum size of the manage-
able instance is in this simulation model. We do not
expect it to be too large, as simulation usually tends
to be time-consuming. Although someone could ar-
gue that one could use decomposition and aggregation
techniques, as an approximation to complex systems, it
would be of benefit to develop ad-hoc analytical mod-
els. We were only concerned here about the influence of
state-dependent stochastic models in one random vari-
able, namely, the residence time on cells. Actually, using
finite state-dependent queueing models is only the be-
ginning. Once this has been established, it is important
to consider the effects, for instance, on the traffic of calls,
the number of handoffs, call duration, and overall call
performance, which are completely unknown. Addi-
tionally, another interesting area of research is capac-
ity allocation. Indeed, successful results have been re-
ported for finite queueing networks in manufacturing
systems [4], for which a minimum capacity must be set
while ensuring a certain quality of service, described in
terms of low blocking probabilities.
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