Modeling and Optimization of Buffers and Servers in Finite Queueing Networks^{*}

Helgem S. Martins¹, Frederico R. B. Cruz², Anderson R. Duarte¹, Fernando L. P. Oliveira¹

¹Departamento de Estatística Universidade Federal de Ouro Preto 35400-000 - Ouro Preto - MG, Brazil

²Departamento de Estatística Universidade Federal de Minas Gerais 31270-901 - Belo Horizonte - MG, Brazil

helgem@ufop.edu.br, fcruz@est.ufmg.br anderson.duarte@ufop.edu.br, fernandoluiz@ufop.edu.br

March 23, 2019

Abstract

The joint buffer and server optimization problem (BCAP) is a non-linear optimization problem with integer decision variables that optimizes the numbers of buffers and servers such that the resulting throughput is greater than a pre-defined threshold throughput. This work presents a detailed review of the current literature that addresses allocation problems, particularly the BCAP, and a quite effective methodology for solving this problem, which consists of a combination of approximate methods and the Powell algorithm, a derivativefree optimization algorithm. The methodology was applied to networks of queues in the basic topologies series, split, and merge, producing very encouraging results that pointed at robust and homogeneous solutions.

Keywords: Buffer and server allocation, finite queues, queueing networks, generalized expansion method.

^{*}OPSEARCH. March 2019, Volume 56, Issue 1, p. 123-150. Copyright © 2019, Martins *et al.* All rights reserved. DOI: 10.1007/s12597-019-00362-7. The final publication will be available at https://link.springer.com/.