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Abstract—In this paper we investigate an M /(G /c/c state-
dependent queueing network formula in the context of a
System Optimum (SO) problem. The SO formulation is
equivalent to a situation in which users cooperate with each
other in order to minimize the overall travel cost, which is
usually expressed in terms of travel times. Differently from
the classical travel cost formulas, the expression used here
is not convex but S-shaped. Consequently, multiple solutions
may be present for the SO, which justifies the use heuristic
procedures such as the Differential Evolution (DE) algorithms.
Preliminary results from computational experiments with an
DE are given to attest for the efficiency of the approach and
the quality of the solutions given.

Index Terms— System optimum, state-dependent, queues,
queueing networks.

I. INTRODUCTION

In the classical Wardrop System Optimum (SO) assign-
ment model, the users are assumed to cooperate with each
other in order to minimize the overall travel costs [1].
Even though the SO is based on a rather non-realistic
behavioral assumption, we argue that its solution may be
seen as a result of a well-succeeded control action on the
transportation network. In other words, signal timings may
be re-optimized and alternative routes may be re-defined in
response to an increase in demand causing cxtra green light
timings, as it is known that traffic lights and routing can
improve the flow, depending on the traffic densities (e.g.,
Dynamic Routing Information Panel Systems - DRIPS).

One major problem is that the overall travel costs,
usually expressed in term of time, are based on deter-
ministic travel times on the single links, yet these times
are known to be rather variable between trips, within and
between days etc. Usually, only the mean travel times
are represented in the SO model and an important issue
in urban transportation networks is to model congestion,
especially during rush hours, when the demand exceeds
capacity. As seen in Figure 1, which presents results from
many empirical studies for North American roads [2]-[6],
congestion may be perceived as a decrease in the mean
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Fig. 1. Empirical Distributions for Vehicular Traffic Flows [2]-[6] and
M /G [efc State-dependent Models [9]

speed when the vehicular density increases, resulting in
the well-known speed-flow density curves (see the seminal
work by Greenshields [4]).

There have been successful attempts in the literature
to model how users select their route in a congested
network [7]. Under the assumption that drivers have perfect
knowledge about travel costs, they will choose the best
route according to Wardrop’s first principle, which is
equivalent to the mixed-strategy Nash equilibrium of n-
players, non-cooperative game [8]. This leads to the De-
terministic User Equilibrium (UE), another classical traffic
assignment model [1]. In the equilibrium, routes carrying
a positive flow will have equal travel costs. Unfortunately
the conclusion is that, by doing so, scarce resources (street
and road capacity) are used in an inefficient way [7]. For
this reason, the focus here will be in the SO model.

In this paper, we discuss an extension of the SO model
by applying the state-dependent M/G/c/c queueing net-
work model in order to estimate the travel times, usually
the main factor for route selection. The M/G/c/c state-
dependent model has been used in the past [9]. In fact,
Cruz et al. [10] have shown recently that the M/G/c/c
state-dependent model is also quite effective for modeling
the travel time on single links, in comparison to well-
established formulas, because of its capability of represent-
ing traffic congestion, as it is seen in Figure 1.

Also discussed in this paper is a successful way to solve
the SO, by means of a finite state-dependent queueing
network approach and by using a Differential Evolution
(DE) heuristic, which is part of the family of Genetic Al-
gorithms (GA). The hybrid modeling approach (queueing
networks and Differential Evolution) results in efficient and
acceptable solutions for the problem on hand.

In Section II the mathematical programming formulation
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TABLE 1
BASIC NETWORK NOTATION

Variable Description

A node (index) set
A arc (index) set
R set of origin nodes; R C N
S set of destination nodes; S C N
Ks set of paths connecting origin-destination (O-D) pair 7-s;
reR,s €S,
xe flowonarca; x=(...,Taq,...)
ca(xq) travel time on arc a; ¢(x) = (..., ea(xa),...)
7% flow on path k connecting O-D pair r-s; f7°
Conog T i =0 s B %50 )
c® travel time on path k connecting O-D pair r-s; ¢ =
(cooref’yndie=(...,c™,...)
g™®  trip rate between origin r and destination s; (q)™ = ¢"*
6;:1 indicator variable:

P 1. if link a is on path k between O-D pair v-s,
ak 0, otherwise;

(AT =605 A=(...,A™,..))

for the classical SO assignment model is presented in detail.
Section 11l describes the algorithm for solving the SO, as
well as the performance evaluation algorithm. Section 1V
focuses on the computational experiments. Finally, Sec-
tion V summarizes the paper.

II. MATHEMATICAL PROGRAMMING FORMULATIONS

Well-known from the literature, the System Optimum
(SO) formulation is briefly reviewed as follows. The net-
work notation used is summarized in Table I. The SO
formulation is equivalent to a situation in which users
cooperate with each other in order to minimize the total
travel costs. According to Wardrop’s second principle, the
SO model is formulated as follows:

min Z(X) = Z Iucu(mu):
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where z, is the flow on link a, ¢,(z,) is the travel cost
on link a, f{* is the flow on route k& between origin r and
destination s, and ¢"* is the demand between  and s. The
complete notation is seen in Table L.

Notice that the travel costs, c¢q (x4 ), are usually expressed
in terms of times and are usually given from classical
formulas (BPR-like [11]) that have been constructed over
the past 40 years for this purpose of describing the travel
time (e.g., [12]). However, as one shall see shortly, none
of these formulas is able to represent congestion as the
M /G /c/c state-dependent queueing model does.

111. ALGORITHMS

The SO and similar models have been solved by re-
searchers by many algorithms. Exact algorithms have been
proposed as well as heuristics including the differential
evolution algorithm itself [10]. Basically, what we have to
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Fig. 2. Three-road Network and Corresponding M /G /¢/c Model

do is to find routing probabilities for alternative routes to
go from A to B (e.g., p,, and p,,, as seen in Figure 2).
in such a way that the objective function za ZaCa(Ty) 1s
minimized. The steps are detailed as follows.

A. Differential Evolution Algorithm

A Differential Evolution (DE) algorithm will be used
to compute the optimal routing probability vector, p =
(... Pas---)s Ya € A. DE algorithms arc part of a
broader family of Genetic Algorithms (GA). Some of the
features of DE algorithms that justify their use for solving
SO problems include fastness, robustness, ease of use.
and ability to operate on flat surfaces. Additionally, Babu
and Sastry [13] found that DE algorithms were the best
evolutionary computation method after the study of seven
difficult design and control MINLP problems in chemical
engineering.

A DE algorithm is defined as a parallel direct search
method which operates on a population P of constant
size that is associated with each generation G' and con-
sists of NP vectors, or candidate solutions, X, g, p =

1,2,..., NP. Each vector X,, ¢ consists of D decision vari-
ables X, ¢, 0=1,2,...,D. This is briefly summarized
as:
Pg {X1,6,X2.¢,---, Xp,G1+- -1 XnP,G}H
xp.G = {Xl_.p,_G:X2,p,Ga--- on.p,G:---sXD,p,G}a
G = 11--‘101113:-(:
NP > 4.

Each routing probability is then considered as the de-
cision variable, X,, ¢ = p.. More details on the DE
algorithms, including mutation schemes, values for the
control parameters, other constraint handling methods, and
stopping criteria may be found in literature [14].

B. Computation of the Travel Times
Single Queues

First, a single road link may be seen as c parallel servers
to its occupants and c¢ is also the maximum number of
users simultaneously allowed in the system. Consequently,
there is no buffer (waiting space). Second, based on the
empirical results presented in Figure I, the service times
depend on the number of users currently in the system.
As a consequence, an M /G /c/c state-dependent queueing
model seems to be a reasonable tool to describe a single
link [9]. The limiting probabilities p, = Pr[N = n], for
the random number of entities N in an M/G/c/c state-
dependent queueing model will be:

em)]”
nlf(n)f(n—1)-- f(2)f(1)

p‘ﬂ = Po; (l)



where n = 1,2,...,c. The cmpty system probability, pq,
is given by:

I peml] :
Pt =12\ e Dm0 @
where A is the arrival rate and E[Ty] = [/V; is the

expected service time of a lone vehicle in a link of length
[, considering that V is the speed of a lone occupant. The
capacity, ¢, is given by:

c = |klw],

where [ is the length of the link, w is its width (in number
of lanes), k is its capacity (per length-unit per lane), and
|| is the largest integer not superior to x.

Considering vehicular related applications, k represents
the jam density parameter (in veh/mi-lane). Normally &
ranges from 185-265 veh/mi-lane. Additionally, f(n) =
Vi./Vi is the service rate, that is, the ratio of the average
speed of n users in the link to that of a lone occupant, V;.

Now the aim is to derive a congestion model that
represents the effect depicted in Figure 1, 1.e. a service
rate that decays with an increase in the number of users in
the system. The following exponential model seems quite

reasonable:
"
Fn) = exp [ () ] ,

s ] o (551):

B a—1 B b—1
 [log(Vi/ Vo)V~ [log(Va/ V)M

The values @ and b are arbitrary points used to adjust
the exponential curve. In vehicular applications, common
values are @ = 20lw and b = 140w, which correspond
to the densities of 20 and 140 veh/mi-lane respectively.
Looking at the curves presented in Figure 1, reasonable
values are V, = 48 mph and V}, = 20 mph.

From (1), important performance measures can be de-
rived

with

and

B

p. = Pr[N =/,
8 - )\(1 _pr_'):
L = E[N]= anm

n=1

W = E[T|=1L/6,
where p. is the blocking probability, § = =z, is the
throughput in veh/h, L is the expected number of customers
in the link (also known as work-in-process, WIP), and

W = c.(z,) is the expected service time in hours (here
derived from Little’s formula).
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Fig. 3. One-mile Vehicular Traffic Flows [10]

Networks of Queues

We remind that so far the performance evaluation is an
issue only half solved. Indeed, deriving performance mea-
sures for networks of M /G /c/c state-dependent queues is
a task considerably more complex. The input in each queue
is a function of the routing probabilities which defines the
overall performance along with the inter-blocking effects.
The Generalized Expansion Method (GEM) is a technique
to approximately evaluate the performance of finite queue-
ing networks. The method was proposed by Kerbache and
Smith [9] and is a combination of repeated trials and node-
by-node decomposition approximation methods, Further
details will not be given here but can be found easily in the
literature [9]. Equation (3) represents the final step of the
GEM, which ultimate goal is to provide an approximation
scheme to update the service rates y; of upstream nodes
that takes into account all blocking after service caused by
downstream nodes j:

-1 —

Bt =t peg ()7 3)
Final Remarks

In conclusion, for a given routing probability vector,
p, it should not be hard to estimate the corresponding
performance measure, ) | z4¢,(z,), which is the objective
function to be minimized. The problem is that the use of
state-dependent travel times complicates the optimization
problem. In fact, as seen in Figure 3, typical travel time
functions (BPR-like) differ quite much from M/G/c/c
state-dependent queueing model functions, specially under
heavy traffic. Under low traffic, the queueing approach is
close to the classical formula but the M /G /c/c model pre-
dicts S-shaped travel-time curves, which represent serious
trouble for any optimization algorithm,

IV. COMPUTATIONAL EXPERIMENTS

The algorithm was coded in C++ and is available
from the authors upon request for research and educational
purposes. The experiments were conducted in a PC, under
Windows Vista operating system. The example illustrated
in Figure 2 is a three-link network. A and B are connected
by link @y and two alternative links, as and a3, where one
of the alternative routes is longer (and consequently slower)
than the other. The adjustments for the M /G/c/c model is
presented in Table II. The algorithm was run for different

arrival rates (A) and the results obtained may be seen in
Table III.




TABLE 11
SETTINGS FOR THE THREE-ROAD NETWORK

Route Length®  Width! v Vi e(veh)  E[T)

ay 080 (050) 5  25(40) 23(37) 10(16) 800 0.0320 (115)
az  250(155) 2 20(32) 18(29) 6(10) 1,000 0.1250 (450)
as  1.85(115) 2 20(32) 18(29) 6(10) 740  0.0925 (333)

Remarks: “in miles (km); Tin # lanes; *in mph (km/h); Fin h (5);

TABLE III

OPTIMAL ASSIGNMENTS FOR THE THREE-ROAD NETWORK

A route assignment E[T]*
0 aj-as n/a 0.1570 (565)
a1-ag n/a 0.1245 (448}
1,000 a1-az 370 0.1635 (588)
a1-a3 630 0.1341 (483)
2,000 aj-as 890 0.1791 (645)
ai-as 1,110 0.1484 (534)
4,000 ay-az 1,496 0.4742 (1,707)
ai-as 1,225 0.8964 (3,227)
8,000 ay-az 1,507 0.4750 (1,710)
a1-n3 1,224 0.8970 (3,229)

*in hours (in seconds);

When there is no arrivals (rate is zero), we have that the
expected travel time is of a lone occupant, which is the sum
of the lone occupant expected travel times of the respective
links. From A = 1,000, we observe an increase on the
expected travel time caused by the congestion level. Notice
that the expected service times for both routes are never
equal which means that users with knowledge about the
travel costs could reduce their own travel time by changing
from a slow to a fast route. Such improvements would be
impossible for an UE optimum solution (see Sheffi [1]) but
not for the SO. In fact, the SO model seeks overall (instead
of individual) minimum costs.

Concerning the optimum assignments, we remark that
the traffic is mostly directed towards the fastest route (i.e.,
the route with the lowest expected travel time) and then
the remaining traffic goes through the slowest route. This
is what it should be expected, which is encouraging. For
this network, we also observe that up to the arrival rate
of 2,000 users per time unit, all the traffic goes through
the network without any blocking (i.c., roughly the sum of
the assignments equals the arrival rate). However, above
this critical rate the network seems to have reached its
capacity because only a fraction of the additional traffic
can successfully go through.

Finally we would like to notice a somewhat unexpected
behavior at link a;-ag, that is, an increase on its travel time
(from 0.8964 to 0.8970) in spite of a reduction of the traffic
on it (from 1,225 to 1,224). This is a type of behavior that
would be impossible under BPR-like travel time estimation
formulas but that is perfectly reasonable under M/G/c/c
state-dependent models. Indeed, as reported by many re-
searchers the M /G /¢/c state-dependent models induce
a throughput-vs.-arrival curve that reaches a maximum,
decreases a bit, and then stabilizes (see Figure 4).

V. CONCLUDING REMARKS

The System Optimum (SO) problem was solved under
a different stochastic travel time formula which is based
on M/G/e/c state-dependent queues. This new formula
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clearly has advantages over some expressions that do not
properly represent the congestion (i.e., the travel times
should be reduced with an increase link congestion). On the
other hand, the resulting travel time function is S-shaped,
which brings difficulties to the optimization algorithms as
now local optima may be present. Computational results
attest that Differential Evolution (DE) heuristics may be
effective in solving the SO problem, as sound solutions
were found. Additionally, the solutions seemed to be robust
as demonstrated by our computational experiments.
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