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Abstract — In this article, we describe a new yet simple

statistical procedure to better assess the quality of pseudo-

random number generators. The new procedure builds on

the statistical test suite proposed by the National Institute

of Standards and Technology (NIST) and is especially use-

ful for applications in economics. Making use of properties

of the binomial distribution, we estimate the conjoint sig-

nificance level of the test. We apply the proposed procedure

to several well-known pseudo-random number generators,

and the results confirm its effectiveness.
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1 INTRODUCTION

GENERATING pseudo-random numbers seems to be
a key issue across many different practical con-

texts. Mainly due to the popularity of Markov chain
Monte Carlo (MCMC) simulation methods and boot-
strap methods, which are widely used in computational
economics (Kolsrud, 2008; Diks et al., 2008; Lima and
Tabak, 2009), pseudo-random number generation is a
pervasive topic in the literature (Kundu and Gupta,
2007). In Kimbrough and Murphy (2009), for instance,
pseudo-random number generation is the basis of their
study of the properties of equilibrium in oligopolies.
Kimbrough and Murphy (2009) have run extensive sim-
ulations that were analyzed using appropriate statisti-
cal tools. Additionally, with the emerging success of
stochastic methods for optimization, particularly the so-
called evolutionary algorithms, pseudo-random num-
ber generation has also been the focus of many stud-
ies, as it is on the base of these methods (Ali, 2007). In
economics, the use of genetic and other evolutionary al-
gorithms is grounded in the ability of these methods
to represent the capacity that individuals have to adapt
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and learn over time (Maschek, 2010). Finally, we must
mention the great importance of random number gen-
eration in cryptography; in this context, unpredictable
data must be inserted during transmission, and ran-
dom numbers must be used to generate digital signa-
tures and security keys to ensure security (Rukhin et al.,
2001). Yet the search for even better pseudo-random
number generators with respect to quality and compu-
tational efficiency still continues (Wichmann and Hill,
2006).

Testing a given pseudo-random number generator in-
volves identifying many of its features to evaluate its
computational performance, randomness and the de-
gree of independence of the values that it generates.
There is a long list of tests designed to perform such
tasks. In this context, we note Crypt-X, which is a
package used to efficiently test stream ciphers (i.e., ran-
dom bit generators) developed by the Information Secu-
rity Institute of the Queensland University of Technol-
ogy, Australia (see Information Security Institute, 2008,
for a description of the statistical tests included in this
package). Considered by Knuth (1998) to provide the
most rigorous battery of tests, Marsaglia’s DIEHARD
(Marsaglia, 1995) is also very popular. In fact, at Duke
University DIEHARD has been extended into what is
called ’dieharder’, which is a suite of several pseudo-
random number generation tests1. Finally, there is a
comprehensive statistical test suite developed by the
National Institute of Standards and Technology (NIST)
for assessing quality mainly for cryptographic applica-
tions (Rukhin et al., 2001). For our convenience, we
build on the latter suite, but we note the methodology
developed here could be applied to any test suite.

The procedure we propose here combines the results
from the NIST suite using binomial distribution in order
to control the conjoint significance level, which to the
best of our knowledge has not yet been done. One could
argue that a better usage of NIST suite is to use it hun-
dreds, or even thousands, of times for different seeds in
order to precisely identify when the generator fails; this
is especially crucial in cryptography, as would-be crack-
ers may find ways to reduce the apparent entropy of the

1See http://www.phy.duke.edu/˜rgb for a list of ongoing work.
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series and the space that must be exhaustively searched
to crack a given encryption. However, the aim here
is to develop a simple and easy-to-implement testing
methodology that could be automated to produce fairly
reliable classifications of pseudo-random number gen-
erators as a first step prior to more rigorous and time-
consuming analysis.

The remainder of this article is organized as follows.
In Section 2 we briefly describe the statistical tests from
the NIST suite, and in Section 3 we explain in detail how
these tests could be combined to estimate a conjoint p-
value. The proposed procedure is applied to several
well-known pseudo-random number generators, and
the results are presented in Section 4. We conclude the
article in Section 5 with final remarks and topics for fu-
ture research.

2 THE NIST STATISTICAL TESTS

The NIST test suite was developed in 2000 with the pub-
lication of the special report 800-22 (Rukhin et al., 2001).
It is comprised of fifteen tests, as presented in Table 1.
The strategy suggested by NIST is presented in Fig. 1.
For the sake of conciseness, details about these statisti-
cal tests are not given here, as they can easily be found
elsewhere (Rukhin et al., 2001). For each test, detailed
instructions are given to compute the corresponding p-
values and to perform the following hypotheses tests.

{
H0 : the sequence is random;
Ha : the sequence is not random.

3 TOWARD A CONJOINT p-VALUE

3.1 Preliminaries

According to the scheme presented in Fig. 1, for each
statistical test, a set of p-values corresponding to the
number of sequences that were generated is produced.
The statistical analysis of these data could be conducted
in various ways. NIST includes (i) an analysis of the
distribution of the p-values, which is expected to be ap-
proximately uniformly distributed under H0, and (ii) an
analysis of the proportion of sequences that passes the
test, that is, for which H0 is not rejected because the p-
value is above a given critical value (say, α = 0.01 for a
1% level of significance).

The idea behind the first analysis is that if a generator
fails a test, it will produce some non-uniform distribu-
tion of p-values. If the test is run enough times, the dis-
tribution of the p-values will approach its non-uniform
asymptotic form and produce p-values arbitrarily close
to zero in a Kolmogorov-Smirnov test (Marks, 2007). Al-
ternatively, a binned multinomial test could be used (or
any other statistical test of uniformity) at perhaps lower
resolution as well as with lower computational effort
(for details on the classical χ2 test and an interesting ap-
plication on fraud detection, see Geyer and Williamson,
2004).

To perform the proportion analysis, empirical results
are collected for each one of the tests regarding the num-
ber of sequences that passes the test, that is, for which
p-value ≥ α. Notice that there is an ongoing debate
as to whether the use of this decision rule is appro-
priate. Over ten years ago, Glaser (1999) raised con-
cerns regarding the misuses and misinterpretations of
p-values in a detailed and well-documented analysis
of the history behind significance testing. Alternatives
have been proposed (Sanabria and Killeen, 2007) that
claim to avoid some flaws and problems in null hypoth-
esis significance testing, mainly in the social sciences.
However, this remains an open debate; no alternative
has been widely accepted, and it is beyond the scope of
this paper to adjudicate on the available alternatives.

Let S be the number of sequences that have passed
the test. Then an estimate for the proportion that have
passed is p̂ = S/m. Six-sigma limits for the acceptable
proportion under the null hypotheses H0 can be given
by

p± 3

√
p(1− p)

m
, (1)

where p = 1 − α and m is the sample size. Notice that
we are using the normal approximation for the binomial
distribution and that such an approximation works bet-
ter under certain requirements. Namely, the probability
of success p must be close to 0.5, and the sample size
m must be large enough such that the products p × n
and (1 − p) × n are both above 5 (Johnson et al., 1992).
Thus, n must be large enough to assure the products
defined earlier are above 5; otherwise, the Normal ap-
proximation may not be appropriate. For all those tests
presented in Table 1 except tests #12 and #13 (Random
Excursions Test and Random Excursions Variant Test), the
limits for p = 0.99 and m = 1, 000, are given by

0.990± 3

√
0.99(0.01)

1, 000
= 0.990± 0.009 ⇒ [0.981; 0.999].

That is, the proportion estimates must be above 0.981
for a given generator. For tests #12 and #13, these lim-
its depend on the number of sequences tested and are
given as output.

3.2 Performance evaluation based on statistical process con-
trol

There is a great deal of difficulty practically deciding
whether a given generator is accepted based on a p-
value covered (or not covered) by the intervals from
Eq. (1). Theoretically, a good pseudo-random number
generator should produce p-values in any given inter-
val from 0 to 1 proportionate to the size of the interval.
That is, it should produce p-values in the range of 0 to
α around 100% of the time. Indeed, as we shall see in
Section 4, some generators fail some of the tests but are
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Table 1: NIST tests and settings

index test category settings

1 Frequency Test (monobit) non-parametric n/a
2 Frequency Test Within a Block parametric block length = 128
3 Cumulative Sums Test non-parametric n/a
4 Run Test non-parametric n/a
5 Test for the Longest Run of Ones non-parametric n/a
6 Binary Matrix Rank Test non-parametric n/a
7 Discrete Fourier Transform Test non-parametric n/a
8 Non-overlapping Templates Match parametric template length = 9
9 Overlapping Templates Matching Test parametric template length = 9
10 Maurer’s Universal Statistical Test parametric block length = 7 and

number of initialization steps = 1280
11 Approximate Entropy Test parametric block length = 10
12 Random Excursions Test non-parametric n/a
13 Random Excursions Variant Test non-parametric n/a
14 Serial Test parametric block length = 16
15 Linear Complexity Test parametric block length = 500

step 1: Select a pseudo-random number generator.
step 2: Generate 1,000 sequences of size 1,000,000 from the selected generator.

S1 = (0, 0, 1, 1, 0, 1, 1, 1, 0, . . . , 1)
S2 = (1, 1, 0, 1, 0, 0, 0, 1, 0, . . . , 0)
S3 = (0, 1, 0, 1, 0, 1, 0, 0, 1, . . . , 0)
...

S1000 = (1, 0, 0, 1, 1, 0, 1, 0, 1, . . . , 1)



























sequences of size 1,000,000

step 3: Submit each sequence to the fifteen statistical tests.
Each test returns one or several p-values as follows.

tests → 1 2 . . . 15
S1 P1,1 P1,2 . . . P1,15

S2 P2,1 P2,2 . . . P2,15

S3 P3,1 P3,2 . . . P3,15

...
...

...
. . .

...
S1000 P1000,1 P1000,2 . . . P1000,15

step 4: Print the p-values, which indicate the type-I error probability.

Figure 1: NIST Strategy of Testing

nevertheless still considered to be good. We here pro-
pose a set of decision rules based on the binomial distri-
bution (Johnson et al., 1992) to take into account purely
random fluctuations in the estimated proportion of time
that p-values are deemed too low by a given test.

It is clear that modeling test results in terms of n
Bernoulli experiments with probability of success p and
the number of positive test results the random variable
X yields a binomial distribution with X ∼ BIN(n, p).
Table 2 presents the cumulative probabilities for X for
p = 0.99 and the number of tests in the NIST suite
n = 15.

It is apparent that we could accept a generator that
fails for at most two tests yet still consider it a good gen-
erator for which the type-I error is as small as P (X ≤

13) = 0.00963. The problem is still not completely
solved, though. Some NIST tests provide output of
more than one p-value, such as the Non-overlapping Tem-
plates Match, the Random Excursions Test, and the Random
Excursions Variant Test. Thus, we must apply an analo-
gous principle to the one already described here to de-

cide if the generator fails in these tests. Note that these
tests output 148, 8, and 18 p-values, respectively. The
cumulative probabilities for X are presented in Table 3.

Based on Table 3, it is acceptable that a sequence fails
the Non-overlapping Templates Match at most 4 out of the
148 words tested before considered to fail the entire test,
with P (X ≤ 144) = 0.06222. Likewise, a sequence
could fail the Random Excursion Test in at most 1 out of
8 excursions tested, with P (X ≤ 7) = 0.07726. Simi-
larly, for the Random Excursion Variant Test, it is accept-
able that 2 out of 18 excursions fail, with P (X ≤ 16) =
0.01376.

4 EXPERIMENTAL RESULTS

In this section, we present results obtained by using
the proposed method to analyze some of the well-
known pseudo-random number generators (Rukhin
et al., 2001). The six different generators presented in
Table 4 are tested and ranked according to quality. All
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Table 2: The binomial distribution for the NIST suite

success (x) fail (n− x) proportion P (X = x) P (X ≤ x)

15 0 1.00000 0.86006 1.00000
14 1 0.93333 0.13031 0.13994
13 2 0.86667 0.00921 0.00963
12 3 0.80000 0.00040 0.00042
11 4 0.73333 0.00001 0.00001

Table 3: The binomial distribution for multiple p-value tests

test success (x) fail (n− x) proportion P (X = x) P (X ≤ x)

#8: 148 0 1.00000 0.22595 1.00000
non-overlapping 147 1 0.99324 0.33778 0.77405
template match 146 2 0.98649 0.25078 0.43627

145 3 0.97973 0.12328 0.18549
144 4 0.97297 0.04514 0.06222
143 5 0.96622 0.01313 0.01708
142 6 0.95946 0.00316 0.00395
141 7 0.95270 0.00065 0.00078
140 8 0.94595 0.00012 0.00014

#12: 8 0 1.00000 0.92275 1.00000
random excursions 7 1 0.87500 0.07457 0.07726

6 2 0.75000 0.00264 0.00269
5 3 0.62500 0.00005 0.00005
4 4 0.50000 0.00000 0.00000

#13: 18 0 1.00000 0.83451 1.00000
random excursions 17 1 0.94444 0.15173 0.16549
variant 16 2 0.88889 0.01303 0.01376

15 3 0.83333 0.00070 0.00073
14 4 0.77778 0.00003 0.00003

tests were performed in accordance with the NIST test
suite, using settings from Table 1 and Fig.1.

4.1 Analysis of algorithms classified as superior

Two well-known pseudo-random number generators of
superior quality were tested. The first is the BBS method
proposed by Blum et al. (1986). The second is the ANSI
X9.17, which has been approved as the Federal Informa-
tion Processing Standard and usually is employed for
the generation of random keys. Both algorithms were
submitted as part of the NIST tests.

The results are presented in Fig. 2. Note that there
is only one rejection for test #8. Because the proposed
evaluation procedure as described in the previous sec-
tion allows up to four rejections for this test, we cannot
reject that the generated sequences are random. With re-
spect to the latter generator, there are two rejections for
tests #12 and #13, but the evaluation procedure allows
up to one and two rejections for these tests, respectively.
Thus, we cannot reject that the generated sequences are
random.

4.2 Analysis of algorithms classified as average

Here, we also analyze two algorithms. The first one is
the linear congruential (LCG) algorithm, which uses a
given seed z0 to generate a pseudo-random sequence
from zi+1 = a ∗ zi mod (231 − 1); in the experiments,
we used z0 = 23482349. The other generator in this
category was the quadratic congruential II (QCG-II)
algorithm, according to which the sequence is built

from xi+1 = 2x2
i + 3xi + 1 mod 2512, with x0 =

7844506a9456c564b8b8538e0cc15aff46c95 e69600f084f06
57c2401b3c244734b62ea9bb95be4923b9b7e84eeaf1a224
894ef0328d44bc3eb3e983644da3f5.

After running the NIST tests and observing the re-
sults for LCG presented in Fig. 3-a, we note two rejec-
tions for tests #8 and #12. Because our evaluation proce-
dures accept up to four and one rejections, respectively,
we do not reject that the generated sequences by LCG
are random. For QCG-II, Fig. 3-b also shows two re-
jections for tests #7 and #8. Again, the randomness of
the generated sequences is not rejected. We remark that
perhaps the proposed test should have rejected these al-
gorithms, but we note that the proposed method pro-
vides a method to make decisions concerning the qual-
ity of the PRNGs based on samples of sequences. In
other words, we reduce the cost of testing the gener-
ators at the cost of increased type-I and type-II errors,
which may be an issue here.

4.3 Analysis of algorithms classified as low

In the XOR algorithm, we select a sequence of bits
x1, x2, . . . , x127 and build a pseudo-random se-
quence from xi = xi−1

⊕
xi−127, for i ≥ 128. In

addition, in the modular exponentiation (ModExp)
algorithm, a pseudo-random sequence is generated
as follows. A prime sequence p of 512 bits, a base
g, and a 160-bit seed y0 are chosen. The sequence
is generated from x1 = gy0 mod p and xi+1 = gyi

mod p, for i ≥ 1, so that the sequence of yi is
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(a) BBS algorithm
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(b) ANSI X 9.17 algorithm

Figure 2: Results for two superior quality random number generators
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(a) LCG algorithm

QCG-II
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(b) QCG-II algorithm

Figure 3: Results for two average quality random number generators
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(a) XOR algorithm

ModExp
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(b) ModExp algorithm

Figure 4: Results for two low quality random number generators
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Table 4: Generators analyzed

index algorithm quality†

1 Blum-Blum-Shub superior
2 ANSI X9.17 superior
3 Quadratic Congruential II average
4 Linear Congruential average
5 XOR low
6 Exponential Modular low

†As described in <http://www.lavarnd.org/what/nist-test.html>.

the 160 lower-order bits from xi (this study, y0 =
7AB36982CE1ADF832019CDFEB2393CABDF0214EC,
p = 987b6a6bf2c56a97291c445409920032499f9ee7ad1283
01b5d0254aa1a9633fdbd378d40149f1e23a13849f3d45992
f5c4c 6b7104099bc301f6005f9d8115e1, and g = 3844506a
9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3
c244734 b62ea 9bb95be4923b9b7e84eeaf1a224894ef032
8d44bc3eb3e983644da3f5).

The results obtained after performing the NIST tests
on the generated sequences by these two algorithms are
presented in Fig. 4. We see that there are many more fail-
ures generated by the tests than are acceptable. There-
fore, we conclude that the sequences generated by these
two algorithms are not random so that these algorithms
are not acceptable at the given confidence level.

5 CONCLUSIONS AND FINAL REMARKS

In this article, we address the quality assessment of
pseudo-random number generators using an original
method based on the binomial distribution. The method
builds on a well-known test suite from NIST and may
be useful for the analysis of new pseudo-random num-
ber generators. As an illustration, the new method was
applied to known generators to confirm their quality in
generating pseudo-random sequences.

Future work in this area might include the analysis of
different generators and/or the same generators under
different type-I errors. The development of simulation
procedures to estimate type-II errors might be helpful
as well.
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