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Abstract

In the usual piecewise regression models, we should arbitrate beforehand the number
of segments (or blocks) and to define the observations in each segment. In this
paper, we propose a Bayesian approach for the segmented regression model that
considers as random variables both the number of segments and the instants when
the changes occur, thus removing the ad hoc nature of some segmented regression
models. Our proposal is based on the product partition model (PPM). We also
consider a modification in the usual piecewise regression model, in which the blocks
of observations are defined by the most probable partition provided by the Bayesian
model. Then, we apply the least squares method to estimate the parameters. The
proposed methods are compared for simulated data sets and used in the estimation
of the relationship between the Brazilian Industrial Production Index (BIP) and
the Brazilian Employment Index (BEI). We conclude that both methods explain
reasonably well the relationship between these indexes.

Key words: Change point identification, least squares estimates, product
estimates, Yao’s cohesions.

1 Introduction

In many studies, the random variables of interest may sometimes be connected
by linear relations whose parameters are subject to change in time. In such
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situations, in order to estimate the parameters in the usual way, firstly it is
necessary to define the number of changes, then to estimate the positions of
the change points. Being the data sequentially observed and assuming that
only contiguous blocks are possible, by identifying the position of the changes,
we are also identifying the observations within each block. Least squares, max-
imum likelihood, and Bayes estimators are the procedures usually suggested
to obtain the parameters in each block. This kind of problem is very common
in the economic settings as we, for instance, notice for the Brazilian Industrial
Production Index (BIP) and the Brazilian Employment Index (BEI), from
January, 1985, to April, 2001, presented in Figure 1.
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Fig. 1. Brazilian Industrial Production Index (BIP) and Employment Index (BEI).

There are many proposals in the literature to analyze piecewise regression
models. However, most of these papers refers either to the one-change-point
problem (Quant, 1958; McGee & Carleton, 1970; Ferreira, 1975; Holbert, 1982;
Hocking, 1996; Bai, 1997; Diniz et al., 2003), or to a case that does not fix
previously the number of change points but has to perform sequential tests of
hypothesis to define them (Bai & Perron, 1998). In spite of avoiding the ad

hoc choice of the number of changes in the latter, the type I error cannot be
quantified.

Notice that another possible way to treat segmented regression problems
that has been successful and well accepted within the Bayesian community
is through splines (see Wahba, 1983; Dias, 1999; Holmes & Mallick, 2001,
for example). However, for the sake of simplicity and because we sense that
the idea of bringing the PPM to piecewise regression with unknown number
of segments might be a useful tool and a basis for future research on more
elaborated approaches, we shall not deal with splines in here.

In this paper, we propose a full Bayesian approach for segmented regression
model with multiple segments that considers as random variables both the
number of segments and the instants when the changes occur. Our proposal is
based on the product partition model (PPM) introduced by Barry & Hartigan
(1993). Notice that the approach introduced here applies concepts and ideas
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developed by the authors in previous papers (Loschi & Cruz, 2002, 2005).
Thus, one of the main contributions of this paper is the inclusion of covariates
in the mean of the normal distribution leading to regression models.

Additionally, by means of an implementation developed in C++, available
from the authors upon request, the proposed Bayesian method is compared
with the usual piecewise regression model, estimated by the least squares
method. We also modify the usual piecewise regression model by considering
as blocks of observations the most probable partition provided by the Bayesian
model. In order to evaluate the performances, we apply both methods to sim-
ulated data sets, and to illustrate the methods, we estimate the relationship
between the Brazilian Industrial Production Index (BIP) and the Brazilian
Employment Index (BEI). From Figure 1 it is noticeable that a simple regres-
sion model would not be appropriate to model these two indices. A possible
way is by linear regression models that obey different regimes.

The paper is organized as follows. In Section 2 we introduce a full Bayesian
approach for analyzing piecewise linear regression models and present the al-
gorithm for change point detection. Section 3 presents a comparison between
the proposed model and the least squares method for piecewise regression
model in simulated data sets. In Section 4, the proposed methods are applied
to analyze the Brazilian Industrial Production Index (BIP) and the Brazilian
Employment Index (BEI) data sets. Finally, in Section 5, some final conclu-
sions and remarks close the paper.

2 Statistical model

In this section we present a full Bayesian approach for cluster analysis in
linear regression model. We also adapt the algorithm proposed by Loschi &
Cruz (2005), for cluster detection, to the piecewise linear regression model.

2.1 Cluster for linear regression model

Let (X1, Y1), . . . , (Xn, Yn) be a sequence of observations. Assume that, for all
k = 1, . . . , n, the vector (Xk, Yk) obeys the usual regression model specification

Yk = αk + ψkXk + ek, (1)

in which αk ∈ R denotes the intercept and ψk ∈ R denotes the slope at instant
k. Assume also independent errors ek ∼ N (0, σ2

k), k = 1, . . . , n. Consequently,
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we have that, conditional on Xk, αk, ψk, and σ2
k, the variables Y1, . . . , Yn are

independent such that

Yk|Xk, αk, ψk, σ
2
k

ind
∼ N (αk + ψkXk, σ

2
k), ∀ k = 1, . . . , n. (2)

Notice that to make the regression more robust the Student-t distribution
could be used but conjugacy could be lost and more general and less efficient
sampling algorithms could be necessary, compromising the computational ef-
ficiency of the methodology.

Let us consider the vector θ = (θ1, . . . , θn), in which θk = (αk, ψk, σ
2
k), that

can be rewritten as follows

θ =
n

∑

j=1

(

θ[ij−1ij ]1{ij−1 < 1 ≤ ij}, . . . , θ[ij−1ij ]1{ij−1 < n ≤ ij}
)

, (3)

in which {i0, . . . , ib} is the value of the random partition ρ that denotes the
instants in which the changes occur and satisfies the condition 0 = i0 < · · · <
ib = n, B = b denotes the number of blocks in ρ, 1{A} is the indicator
function of event A, and θ[ij] = (α[ij], ψ[ij], σ2[ij]) denotes the common value for
θk, i < k ≤ j.

Notice that a cluster structure follows the definition presented in (3) for θ.
The prior distribution for θ can be constructed as follows. Firstly, elicit a
prior distribution for the random partition ρ that discloses your opinion about
the groups defined by each common parameter θ[ij] = (α[ij], ψ[ij], σ

2
[ij]), i < j,

i, j = 1, . . . , n. After that, specify the prior distribution for θ, given that
ρ = {i0, i1, . . . , ib−1, ib}, which is equivalent to assign a prior distribution for
the common parameters θ[i0i1], . . . , θ[ib−1ib].

Assuming that the data are sequentially observed and that only contiguous
blocks are possible, we construct the prior distribution for ρ as follows. Assume
that p denotes the probability of a change to take place at any instant. Define
the Markov chain {Zk : k ∈ N} generated by the instants when the changes
occurred, that is, Zk is the instant when the kth change occurs and it is such
that, Z0 = i0. For k > 0, Zk assumes values in the set {Zk−1 + 1, . . . , n}, if
Zk−1 6= n, and Zk is n, if Zk−1 = n. Consequently, the one step transition
probability associated with {Zk : k ∈ N} is given by

c[ij] =











p(1 − p)j−i−1, if j < n,

(1 − p)j−i−1, if j = n.
(4)
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Assume that P (Z0 = i0|p) = 1. Thus, the prior distribution of ρ given p is

P (ρ = {i0, . . . , ib}|p) = P (Z0 = i0, Z1 = i1, . . . , Zb = ib|p)

= P (Zb = ib|Zb−1 = ib−1, . . . , Z0 = i0, p) . . . P (Z0 = i0|p)

= pb(1 − p)(n−b), (5)

for all b ∈ I = {1, . . . , n}.

In order to assign the joint prior distribution for θ, given ρ and p, we assume
that:

• the common independent parameters θ[i0i1], . . . , θ[ib−1ib] are independent from
p; and

• for all i, j = 1, . . . , b, i < j, parameters α[ij] and ψ[ij] are independent,
conditional on σ2

[ij]. We also consider that they have the following prior
distributions

α[ij]|σ2[ij] ∼N (M, τ 2
0σ

2
[ij]), (6)

ψ[ij]|σ2[ij] ∼N (m, γ2
0σ

2
[ij]), (7)

σ2
[ij] ∼IG(a/2, d/2), (8)

in which a, d, τ 2
0 , and γ2

0 are positive numbers, m and M are real values, and
N , IG stand respectively for the normal and inverse-gamma distributions.

Observe that the model above is usually called product partition model (PPM),
introduced in the general context by Hartigan (1990) and in its parametric
version by Barry & Hartigan (1992). The model developed here is equivalent
to the PPM, for sequentially observed data and Yao’s prior cohesions (Yao,
1984).

The product estimates (or posterior means) for parameters θk = (αk, ψk, σ
2
k),

for all k = 1, . . . , n, can be obtained by means of the respective expectations

E(αk|X[0n], Y[0n]) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]M
∗

[ij],

E(ψk|X[0n], Y[0n]) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]m
∗

[ij],

E(σ2
k|X[0n], Y[0n]) =

k−1
∑

i=0

n
∑

j=k

r∗[ij]
a∗[ij]

d∗[ij] − 2
,

in which r∗[ij], called the posterior relevance of block [ij], denotes the posterior
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probability of a block [ij] to be in the partition ρ. Additionally, we have that

d∗[ij] = d+ j − i,

M∗

[ij] =
G[ij](M + τ 2

0

∑j
k=i+1 Yk) − τ 2

0

∑j
k=i+1Xk(m+ γ2

0

∑j
k=i+1 YkXk)

V[ij]y

,

V[ij]y =G[ij] + (j − i)τ 2
0G[ij] − τ 2

0 γ
2
0





j
∑

k=i+1

Xk





2

,

G[ij] = γ2
0

j
∑

k=i+1

X2
k + 1,

t[ij] =1 + τ 2
0 (j − i),

m∗

[ij] =
t[ij](m + γ2

0

∑j
k=i+1 YkXk) − γ2

0

∑j
k=i+1Xk(M + τ 2

0

∑j
k=i+1 Yk)

V[ij]y

,

a∗[ij] = a +
t[ij](m

2τ 2
0 + τ 2

0 γ
2
0

∑j
k=i+1 Y

2
k +M2γ2

0)

τ 2
0 γ

2
0t[ij]

−
τ 4
0γ

2
0(

∑j
k=i+1 Yk)

2

τ 2
0 γ

2
0t[ij]

−

(

t[ij](m + τ 2
0 γ

2
0

∑j
k=i+1 YkXk) − γ2

0

∑j
k=i+1Xk(τ

2
0

∑j
k=i+1 Yk +M)

)2

γ2
0t[ij](t[ij]G[ij] − τ 2

0 γ
2
0(

∑j
k=i+1Xk)2

−
M2γ2

0 + 2Mτ 2
0 γ

2
0

∑j
k=i+1 Yk

τ 2
0 γ

2
0t[ij]

.

In order to obtain the posterior relevance for each block and the posterior
distributions for ρ, p, and B, we will apply the algorithm described in the
next section.

2.2 Algorithm for cluster analysis

Let Ui be an auxiliary random quantity reflecting whether or not a change
point occurs at time i, that is

Ui =











1, if θi = θi+1,

0, if θi 6= θi+1,

for i = 1, . . . , n− 1. Notice that each vector U = (U1, . . . , Un−1) immediately
leads to a corresponding partition ρ. The sth partition Us = (U1,s, . . ., U(n−1),s)
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is generated by using Gibbs sampling through the following ratio

Rr =
f[xy](Y[xy]|X[xy])

∫ 1
0 p

b−2(1 − p)n−b+1dπ(p)

f[xr](Y[xr]|X[xr])f[ry](Y[ry]|X[ry])
∫ 1
0 p

b−1(1 − p)n−bdπ(p)
, (9)

for r = 1, . . . , n− 1, in which x denotes the last change point before r and y
denotes the next change point following r. For the linear regression model, the
joint density f[ij](Y[ij]|X[ij]) is the (j − i)-variate Student-t distribution with
density function

f[ij](Y[ij]|X[ij]) =
ad/2Γ

(

d∗
[ij]

2

)

π(j−i)/2Γ
(

d
2

)

(V ∗

[ij]y)
1/2

(a∗[ij]y)
−d∗

[ij]
/2
,

in which d∗[ij], V
∗

[ij]y, t[ij], G[ij], M
∗

[ij] and m∗

[ij] are as defined earlier and

a∗[ij]y = a +
M2

τ 2
0

+
m2

γ2
0

+
j

∑

k=i+1

Y 2
k − 2M∗

[ij]m
∗

[ij]

j
∑

k=i+1

Xk

−
(M∗

[ij])
2t[ij]

τ 2
0

−
(m∗

[ij])
2G[ij]

γ2
0

.

Thus, assuming that p ∼ B(η, β), that is, a beta prior distribution, each sample
of the posterior distribution of p may be generated from

ps ∼ B
[

(η + bs − 1), (n+ β − bs)
]

,

for s ≥ 1, in which bs is the number of blocks of the sth vector Us, obtained
by Bs = 1 +

∑n−1
i=1 (1 − Ui,s).

Consequently, the posterior distribution of B (or alternatively, the number
of change points, B − 1) and the posterior relevance of block [ij] may be
estimated, respectively, by

P̂ (B = b|X[0n], Y[0n]) =

∑T
s=1 1{Bs = b}

T
,

r̂∗[ij] =
M

T
,

in which 1{B} denotes the indicator function of event B, M is the number of
vectors Us for which it is observed that Ui,s = 0, U(i+1),s = · · · = U(j−1),s = 1,
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Uj,s = 0, and T is the total number of vectors Us generated. For further
details, the interested reader is encouraged to check in Loschi & Cruz (2005).

3 Comparing the methods by simulated data sets

In order to evaluate the performance of the proposed piecewise linear regres-
sion model, we consider in this section several generated data sets and compare
the product estimates with the least squares estimates (Hocking, 1996). The
least squares estimates are computed considering the most probable block
indicated by the Bayesian model. The block information is included in the
model through dummy variables. We consider R2 as the fit-of-model measure.
In the least squares method, R2 is computed twice, that is, assuming and
not assuming iterations among the variables. In the Bayesian model we do
not consider iterations among the variables. The results for the least squares
method may be obtained by using any common statistical software. For the
Bayesian model, we developed an implementation in C++, a powerful and
flexible programming language, available from the authors upon request.

We generated series of size 200 with only one change point, at the instant 101.
We also considered that the change could occur in one, two, or in all three
parameters of the regression model.

For the Gibbs sampling scheme 11, 000 samples of 0-1 values were generated,
with the same dimension of the time series, starting from a sequence of zeros.
Because convergence was reached before the 1, 000th step, the initial 1, 000
iterations were discharged for burn-in. In order to avoid correlation among
vectors a lag of 10 was selected. Notice that the inclusion of covariates slow
down the convergence in comparison with the “free of covariate” case (see
Loschi & Cruz, 2005).

Because the scenarios considered here presented only one change point, a beta
prior distribution with most of its mass in small values of p was considered. We
assumed that p ∼ B(5, 50), which means that the prior mean of p is 0.091 and
its standard deviation, 0.039. As a consequence, the mean number of change
points in the sequence, B − 1, is 18.1. That is, in the prior evaluation we
chose to overestimate the number of changes to see how the Bayesian method
performs.

In all scenarios, to be described shortly, the independent variable was gener-
ated from a standard normal distribution. We also considered a low informa-
tive prior distribution for the variance σ2.
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3.1 Analysis of scenario #1

In scenario #1, we assumed a data set with one change taking place only in
the slope ψk. That is, we supposed a regression system obeying two separate
regimes in which the dependent variables were generated as follows

Yk|xk, αk, ψk, σ
2
k ∼N (1 − xk, 0.1), k = 1, . . . , 100,

Yk|xk, αk, ψk, σ
2
k ∼N (1 + xk, 0.1), k = 101, . . . , 200.

The data sets are presented in Figure 2, jointly with the fitted models. As prior
specifications for the common parameters, we assumed the distributions σ2

[ij] ∼

IG(0.201/2; 0.01/2), α[ij]|σ
2
[ij] ∼ N (1.0; σ2

[ij]), and ψ[ij]|σ
2
[ij] ∼ N (0.0; σ2

[ij]). No-

tice that it means that under the 0-1 loss function the prior estimates for σ2
k,

αk, and ψk are 0.1, 1.0, and 0.0, respectively. In the posterior evaluation, we
found

P̂ (ρ = {0, 100, 200}|Y[0,200], X[0,200])= 0.997,

P̂ (B = 2|Y[0,200], X[0,200])= 0.997,

that is, the posterior most probable partition indicated a change at instant
101. The posterior mode of the number of change points was 1.

Figure 3 presents the product estimates, the least squares estimates, and the
real value for αk, ψk, and σ2

k, plotted together. In order to compute the least
squares estimates, we used the two blocks pointed out by the posterior most
probable partition.

It is noticeable from Figure 3 that the posterior estimates and the least squares
estimates presented similar behavior identifying a change at instant 101, in
all parameters. However, we also observe that the least squares estimates for
the variance were closer to the real value than the posterior estimates. For the
slope ψk (the only parameter that really experiences any change), we noticed
that the estimates were very close to the real values. However, the intercept
αk was underestimated by both methods. Figure 2 presents the adjust by
both methods. The fitted models presented R2 = 90.1% and R2 = 1.6%,
respectively by the Bayesian approach and least squares estimators, when any
iteration between the independent and the dummy variables was considered.
A considerable improvement in the least squares method was reached when
the iteration was considered (its R2 raised to 91.5%). However, an advantage
of the Bayesian approach is that we can also measure the posterior uncertainty
of the fitted model because we do have the posterior distributions of B and ρ.
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Fig. 2. Data set and fitted models for scenario #1.
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Fig. 3. Estimates for scenario #1.

3.2 Analysis of scenario #2

For scenario #2, we assumed a data set with one change occurring only in
the intercept αk. That is, we supposed that the values from the dependent
variable in the regression model were generated by

Yk|xk, αk, ψk, σ
2
k ∼N (−2 + xk, 0.1), k = 1, . . . , 100,

Yk|xk, αk, ψk, σ
2
k ∼N (1 + xk, 0.1), k = 101, . . . , 200.
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Fig. 5. Estimates for scenario #2.

The data sets and the fitted models are presented in Figure 4. As prior specifi-
cations for the common parameters, we assumed the distributions α[ij]|σ2

[ij] ∼

N (−0.5; σ2
[ij]) and ψ[ij]|σ

2
[ij] ∼ N (1.0; σ2

[ij]). The prior distribution for σ2
[ij] was

the same as for scenario #1, σ2
[ij] ∼ IG(0.201/2; 0.01/2). Notice that it follows

from the 0-1 loss function that the prior estimates for σ2
k, αk, and ψk are 0.1,

−0.5, and 1.0, respectively.

The posterior distribution of B indicated that the number of change points
in the sequence was 1 with probability 1.0. We also noticed that the posterior
most probable partition was ρ = {0, 100, 200} with probability 1.0. Figure 5
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presents the product estimates, the least squares estimates, and the real value
for αk, ψk, and σ2

k, k = 1, . . . , n, plotted together.

Similarly to what we have observed for scenario #1, both methods provided
very close estimates to the real intercept αk (the only parameter that re-
ally changed). As observed for scenario #1, we noticed that the least squares
method provided the best estimates for the variance. However, we noticed for
the intercept ψk that the posterior estimates were closer to the real values than
the least squares estimates. In scenario #2 we observed that the fitted models
presented R2 = 95.3% and R2 = 96.6%, respectively by using the Bayesian
approach and least squares estimators. For this scenario the iterations between
the independent and dummy variables were not significant.

3.3 Analysis of scenario #3

The data now followed the two separate regression regimes bellow

Yk|xk, αk, ψk, σ
2
k ∼N (1 + xk, 0.1), k = 1, . . . , 100,

Yk|xk, αk, ψk, σ
2
k ∼N (1 + xk, 0.5), k = 101, . . . , 200.

The data sets are presented in Figure 6 jointly with the fitted models. As
prior specifications for the common parameters, we assumed that σ2

[ij] ∼

IG(0.603/2; 0.01/2) and, given σ2
[ij], we assumed that α[ij] and ψ[ij] were iden-

tically distributed with normal distribution N (1.0; σ2
[ij]). The prior modes for

σ2
k, αk, and ψk distributions are 0.3, 1.0, and 1.0, respectively.

As for scenario #2, the posterior distribution of B indicated that the number
of change points in the sequence was one with probability 1.0. However, the
posterior most probable partition for scenario #3 was ρ = {0, 97, 200} with
probability 58.8%.

As noticed for scenarios #1 and #2, both methods identified change points in
parameters that really did not change at all. Notice also from Figure 7 that
in this case the intercept was best estimated by the least squares method.
The estimates for the slope and variance were very similar. The fitted models
presented R2 = 81.2% and R2 = 80.9%, respectively by the Bayesian approach
and least squares estimators, explaining reasonably well the variability in the
data. For scenario #3, we also observed that the iteration was not significant.
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Fig. 7. Estimates for scenario #3.

3.4 Analysis of scenario #4

In scenario #4 we supposed that all parameters experienced one change at
the instant 101. That is, we considered a data set that obeyed the following
two separate regimes

Yk|xk, αk, ψk, σ
2
k ∼N (0 + xk, 0.1), k = 1, . . . , 100,

Yk|xk, αk, ψk, σ
2
k ∼N (5 − xk, 0.5), k = 101, . . . , 200.
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Fig. 8. Data set and fitted models for scenario #4.
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Fig. 9. Estimates for scenario #4.

The data set are presented in Figure 8, jointly with the fitted models. As
prior specifications we assumed that σ2

[ij] ∼ IG(0.603/2; 0.01/2), and, given

σ2
[ij], we assumed that α[ij] and ψ[ij] had normal distributions with means equal

to 2.5 and 0.0, respectively, and variance equal to σ2
[ij]. The prior modes for

the distributions of σ2
k, αk, and ψk are 0.3, 2.5, and 0.0, respectively.

The posterior distribution of B indicated that the number of change points
in the sequence was one with probability 99.9%. The posterior most probable
partition for scenario #4 was ρ = {0, 100, 200}, with probability 99.7%.
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Notice from Figure 9 that the estimates for αk and ψk are very similar to
the real parameters. Here, we also observe that the Bayesian method over-
estimate the variance. From Figure 8, it is noticeable that both models ex-
plain reasonable well the variability in the data. The fitted models presented
R2 = 94.6% and R2 = 81.6%, respectively by using the Bayesian approach
and least squares estimators (without iteration). In this scenario the Bayesian
method was the most efficient in explaining the variability of the dependent
variable. An improvement in the least squares method was obtained by consid-
ering the iteration between the independent and dummy variables, for which
we had R2 = 96.4%.

4 Application

In this section we apply the methodology developed to analyze the behav-
ior throughout the time of the Brazilian Industrial Production Index (BIP)
and the Brazilian Employment Index (BEI), recorded monthly, from January,
1985, to April, 2001. From Figure 1, it is noticeable that the variables seem to
be linearly correlated within different blocks. Notice that for the sake of con-
ciseness aspects concerning the time series structure, such as long memory,
unit roots, and cointegration were not discussed explicitly in here but they
must be considered before proceeding with the regression (Bai, 1997; Bai &
Perron, 1998).

Because we do not have much prior information about the parameters and we
expect few changes along the time in the relationship between BIP and BEI,
the following prior distributions are considered reasonable

σ2
[ij] ∼IG(0.001/2; 0.001/2),

α[ij]|σ
2
[ij] ∼N (0.0; σ2

[ij]),

ψ[ij]|σ
2
[ij] ∼N (0.0; σ2

[ij]),

p∼B(5.0; 50.0).

As a consequence, it follows that the prior expected number of change points
is 17.4, with standard deviation equals to 8.3 changes. For the Gibbs sampling
scheme we considered the same sample size, burn-in, and lag assumed earlier.

The posterior most probable partition identified that changes occurred at in-
stants 102 (June, 1993) and 149 (May, 1997) with probability 1.0. It was also
identified that P̂ (B = 3| Y[0,196], X[0,196]) = 1.0, which means that only two
changes took place with probability 1.0 in the linear relationship between BIP
and BEI.
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Fig. 10. Estimates for BIP versus BEI.
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Fig. 11. Data set and fitted models for BEI vs. BIP.

From Figure 10 we can notice that the product estimates and least squares
estimates identified changes in all three parameters at the same time. However,
we can perceive that the estimates were not only different but also presented
different behavior. For instance, while the product estimates indicated that
the intercept decreased after May, 1997, the least squares estimate indicated
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Fig. 12. Posterior distribution of p and probability of change for BEI vs. BIP.

that the intercept increased.

Figure 11 shows the fitted models by using the Bayesian and least squares ap-
proaches for which it was obtained R2 = 88.3% and R2 = 87.2%, respectively.
As observed for the simulated data sets, an improvement was reached for the
least squares method by adding iteration between the dummy variables and
the BIP, which raised R2 to 91.2%.

By means of the Bayesian approach we have some other measurements that
can help evaluating the model, which are the posterior distribution for the
probability p of a change to take place at any month and the probability
of each month to be a change point. It is noticeable from Figure 12 that
the posterior distribution for p is more concentrated (standard deviation =
0.0104) and located at smaller values (posterior mean = 0.0277) than the
prior distribution. We also noticed that all months but June, 1993, and May,
1997 (which are change points with probability 1.0) had probability zero of
being change points.

5 Conclusions and Final Comments

We proposed a full Bayesian approach based on the product partition model
(PPM) for piecewise linear regression. The proposed method considers mul-
tiple segments and models. Besides, it assumes as random both the num-
ber of segments and the instants when the changes occur. We compared the
Bayesian model with a modified least squares approach whose blocks of ob-
servations were provided by the Bayesian posterior most probable partition.
The methods were applied to analyze simulated data sets and to estimate the
relationship between the Brazilian Industrial Production Index (BIP) and the
Brazilian Employment Index (BEI) along the time. In all cases, low informa-
tive prior distribution was considered for the variances and the results were
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quite satisfactory.

In general, the Bayesian approach provided the highest R2 values, when no
iteration was considered between the independent and dummy variables in
the least squares approach. An improvement was obtained in the least squares
models when the iterations were included in the model. Despite of this, the
Bayesian approach has advantages over the least squares approach because it
also may provide some other measures that permit a more complete evaluation
of the model, such as the posterior distributions of the number of blocks, the
instants when changes occurred, and the posterior probability of each instant
to be a change point. For the simulated scenarios, it was noticed that the
product estimates tend to overestimate the variance of the model. This could
be a consequence of using low informative prior distribution for the parameter.

As a final remark, it has been confirmed here an issue related to the PPM,
which is its inefficiency to precisely identifying change points when only one
parameter changes its levels. Thus it is expected that heteroschedasticity, typ-
ically present in regression data, may compromise the quality of the inferences
for the intercept and slope.
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