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ABSTRACT 

This paper extends the analysis of queuing systems for real situations, where no one 

knows the pattern of arrivals of customers. Thus, for real systems, one must understand how the 

choice of a method of estimation influences the configuration of the system. In this manner, we 

evaluate some algorithms to estimate through kernel smoothing some performance measures of a 

GI
X
/M/c/N system, such as the invariant distribution of probability of the number of customers in 

the system, the blocking probability, the average queue size, and the average client queue time. 

Thus, we hope to adequately plan queuing systems and improve their performance. 
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1. Introduction 
1.1. Preliminaries 

When we are managing real queuing systems, generally we don’t know a priori the 

behavior of arrival process and service process. Mathematical modeling depends of this 

information and, naturally, there are several methods to obtain them. The most widely used 

methods are those that attempt to explain the density functions of interarrival time and service 

time through parametric statistical models. 

  Nevertheless, real data rarely fit straightly into a parametric model, or when fitted, makes 

a very complex mathematical modeling. Kalashnikov (1994) warned that "many parts of the 

theory of queues were developed as a 'pure science' with no practical application." Bareche & 

Aïssani (2008) assert that real systems are "generally very complicated, so their analysis cannot 

lead to analytical results or it leads to complicated results which are not useful in practice ". 

  An alternative approach is nonparametric. Some nonparametric methods that have taken 

great interest are those that use kernel smoothing. Kernel estimators provide a simple way of 

finding structure in data sets without the imposition of a parametric model (Wand & Jones, 

1995), which gives us flexibility to handle any data structure. There is some extensive literature 

about queuing systems or discussing kernel smoothing, but virtually there is no literature with the 

two concepts together. We will mention some of the most relevant papers. 

  In Kendall (1951) notation, the focus of this paper is GI
X
/M/c/N queues. In this situation, 

the interarrival times are independent and do not follow any specific distribution. The service 

times follow a Markov process (exponential time), we have c identical servers working in parallel 

and a maximum capacity N of the system. X is a random variable representing the size of the 

group arrival. Takács (1962) analyzed a closed solution for various systems that have non-

specific distributions, including some multiserver queues such as GI/M/c and M/G/c; Hokstad 

(1975) established some closed form results to the GI/M/c/N system; Chaudhry & Templeton 

(1983) analyzed various types of queue with bulk arrivals; Vijaya Laxmi & Gupta (2000) defined 

the linear equations needed to solve the GI
X
/M/c/N system; Zhao (2004) proposed a closed form 

solution for the GI
X
/M/c system; Bareche & Aïsani (2008) proposed a method to evaluate the 

proximity of GI/M/1 and M/M/1 systems when the density of the interarrival time is estimated by 

kernel estimators. 

The reader can find more information on kernel smoothing in Wand & Jones (1995). 

Zhang, Karunamuni & Jones (1999) proposed a boundary corrected kernel estimator based on 

pseudodata generation, transformation and reflection around the Y axis; Chen (2000) proposed 

the use of gamma kernel in order to avoid the boundary problem; Scaillet (2004) studied the 

application of other asymmetric kernels; Bouezmarni & Scaillet (2005) were concerned about the 

consistency of these asymmetrical estimators. 

Consequently, there is a huge interest in investigating the behavior of queuing systems, 

especially those of type GI
X
/M/c/N, where the arrival process and service process are evaluated 

through kernel smoothing. Queuing systems like those could be used in situations where we have 

relative control over how the servers work, but we don’t know primary how customers arrive to 

the system. 

1.2. Key Contributions 

Among the contributions of this paper, we could mention the following: 

 Presentation of an updated bibliography about kernel-estimators and queuing systems; 

 Development of algorithms to calculate performance measures of queuing systems, 

where the density of the interarrival time is estimated by kernel-estimators; 



 Evaluation of the performance of these algorithms as function of the kernel-estimator, the 

smoothing window, the intensity rate, and the sample size. 

1.3. Structure of Paper 

The organization is presented below. In Section 2 we present the fundamental concepts 

relevant to understand the model of the queuing system proposed. The concept of estimation by 

kernel-estimators is also discussed in this section along with some models adopted and the 

problem of choosing the smoothing parameter. The steps developed for the calculation of 

estimates of system performance are presented in Section  3 together with the description and the 

results of comparative simulations with the different methods discussed. Finally, in Section 4 we 

present the main conclusions with some ideas for future work in the area. 

2. Fundamental Concepts 
2.1. The GI

X
/M/c/N model with partial blocks 

Vijaya Laxmi & Gupta (2000) described a generalization of the system GI/M/c when 

customers arrive in groups of size X with P(X = i) = gi (i ≥ 1) and mean E(X) = g . Let Bn be the 

number of clients who were served between the arrival of the nth customer and its successor. 

Therefore, the number of clients the nth customer finds in the system at the arrival, Yn, would 

depend on Xn and Bn, such that    nnnn BXYY 1 . Since Yn+1 depends only of Yn, Bn and Xn, 

not Yn-1, Yn-2, etc., the stochastic process {Yn} is a Markov Chain. 

The GI
X
/M/c/N is a finite capacity system such that a customer that arrives to the 

saturated system is refused with a probability that we will call PBL. Partial blocks means the case 

which an arrival group with size greater than the remaining spots of the system is denied partially 

according to the number of these remaining vacancies, thus completing the system. 

Vijaya Laxmi & Gupta (2000) report that when the traffic intensity rate   cg  is 

smaller than 1, this Markov Chain has an invariant distribution of probability 

)(lim kYP nnk   ),2,1,0( k  associated with the number of clients an arbitrary 

customer finds the system at the arrival. The k ’s are often called prearrival probabilities. 

The prearrival probabilities may be determined by a system of linear equations 
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where pjk are named transition probabilities such that 
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 jki  , Nj  , Nk   and )(, zkij  is the serving probability of (j – k + i) clients under the 

assumption of the interarrival time zn  . We shall analyze how )(, zkij  behave. 

When cij   and ck  , there will be more clients than the servers can handle at the 

whole interval. Since the service process is Markovian, we can then take server group as a single 

unit who serves customers at a rate zc  
and this transition probability by a Poisson distribution: 
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When cij  all clients within the system are being serviced and only k customers will 

remain in the system to time. Knowing that the probability of a service time greater than z is 
ze  , we can describe this transition probability as Binomial distribution: 
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And when cij  and ck  , there will be  (j + i – c) customers waiting and c 

customers being served at the beginning of interval, but (c – k) spots at the end. Let y be the 

interval ended immediately before (j + i – c+1) clients being served. If each service time is 

exponentially distributed with rate c , then y is distributed as a gamma of shape (j + i – c+1) 

and rate c . The other c customers will be served in a time (z – y) and only k will remain. The 

transition probability of this subinterval will follow a Binomial with success probability 
)( yze 
. 

)(, zkij can be obtained by the convolution of these two variables: 
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Therefore, we can get Vijaya Laxmi & Gupta (2000) transitions probabilities when we 

take each transition probability )(, zkij  as )(, zkN while jNi  .  
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They named the integration of )(, zkij  with kij   and kijV , : 
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2.2.  Kernel-estimators 

Suppose we have a sample of the interarrival times X1 ,..., Xn that have density τ(t) 

unknown. The kernel-estimator is an analytical tool that provides a very effective way of 

revealing the structure behind the sample. 

2.2.1. The gamma kernel-estimator 

Chen (2000) recently suggested an asymmetric kernel with naturally varying shape, in a 

way to never allocate weight for negative values. The gamma kernel-estimators, in particular, are 

always non-negative, free of boundary bias and achieve the optimal rate of convergence for the 

MSE in the class of non-negative kernel-estimators. Bouezmarni & Scaillet (2005) showed that 

the estimator is consistent and able to avoid boundary bias. Be KG(p,q) the gamma density 

function with shape p and rate q. The gamma kernel considered is 
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where b is a smoothing parameter satisfying the condition  that 0b , nb as n . The 

gamma kernel estimator is 
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The smoothing parameter b is critical for the overall performance of the kernel-estimator 

considered. A smaller b leads to a relatively jagged density, while a larger one results in a 

smoother looking. There are several methods to determine the best fit and they start from a 

minimization of the mean integrated squared error (MISE) of );( bt


 or its asymptotic behavior 

(AMISE). 
The Least Squares Cross Validation (LSCV) method starts from the MISE expansion 

  dxxEdxxbxEdxbxEbxMISE 22 )()();(2);()};({ 
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. 

The minimization of the first term is equivalent to the minimization of 
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The right-hand side is unkown since it depends on τ. However, it can be shown 

that an unbiased estimator for this quantity is 
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where );( hX ii 


 is the density estimate based on the sample with Xi deleted, often 

called the “leave-one-out” density estimator. However, this estimator suffers from high 

variation. 

An alternative parameter selector will consider the asymptotic behavior of the 

MISE of the gamma kernel estimator. Chen (2000) uses some aspects of the gamma 

distribution and Taylor expansion to determine the MISE in this case. It is thus defined as 
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The asymptotic MISE disregards the last term. So the optimal b which minimizes 

the leading terms above is 

 

 

5/2

0

21

0

2/11

)(''2)('4

)(2































dxxxxxn

dxxx
bAMISE




 

where the functions τ, τ’ e τ’’, are unknown. These quantities have been computed from 

the fitted gamma density with parameters adjusted from the sample. This solution still 

requires further studies, but our paper has already shown some performance results.  

2.2.2. Zhang, Karunamuni & Jones (1999) Estimator 

Zhang, Karunamuni & Jones (1999) submited a model that works particularly well when   

τ(0) > 0 and combine pseudo data creation, transformation and reflection around Y axis, 

consisting of three steps: 



• Transform the original data X1 ,..., Xn to g(X1),..., g(Xn) while keeping the original data 

where g is a nonnegative, continuous and monotonically increasing function from [0,∞) to [0,∞). 

Based on extensive simulations, the transformation that is best suited to varied types of densities 

was 32
)( Adxdxxxg  , where A > 1/3 and d=f’(0)/f(0). 

• Reflection of pseudo data g(X1),..., g(Xn) around the origin. 

• Based on the enlarged data sample –g(X1),..., –g(Xn), X1 ,..., Xn the new estimator is 

defined as 
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where h is an smoothing parameter, K is a symetric probability function with support [-1, 1] as 

Epanechnikov kernel 
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 Notice that the transformation g defined above is not available in practice, because d is 

unknown. The a good estimator can be obtained when d is writen as (d/dx)logf(x)|x=0. So  

,
)0(log)(log

h

nfhnf
nd


  

where 

,
2

1
),0(

*
max)0(,

2

1
)(

*
)( 










n
nfnf

n
hnfhnf  

,
1 0

0
0

1
)0(

*
,

1

1
)(

*



































 n

j h

jX
K

nh
nf

n

j h

jXx
K

nh
hnf  

and K0 is a so-called endpoint kernel satisfying  
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Zhang, Karunamuni & Jones (1999) asserted that for t ≥ h, the effect of reflected pseudo 

data is insignificant and the estimator can be reduced to the Parzen-Rosenblatt estimator. 
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They also stated that  
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 only integrates to 1 when dn = 0, so gn(Xi) = Xi, or when Xi = 0 for all Xi’s, 

because gn(0) = 0. However, when n , both limits of the second term will eventually 

converge to 0 and )(tn


 will integrates to 1 asymptotically. 

Zhang & Karunamuni (1998) used the endpoint kernel 
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and showed that this kernel minimizes the MSE when estimating τ(0). Therefore, h0 = 2h is 

approximately the optimal smoothing parameter for estimating τ(0) except when τ(0) = 0. 

 Chiu (1991) came up with a parameter selector method that considered the optimal h 

which minimizes the asymptotic MISE when K is a symmetric probability function with up to the 

fourth moment finite 
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where the functional  dxx 2)(''  is unknown.  

His “plug in” method consists in estimate this quantity through the characteristic function 

of the sample 
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and calculate the optimal h through the formula above . The characteristic function of τ is 
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thus, 




   dex xi )()2()('´' 21 , 

and, 

     dxxdxdedxdedxx xixi 242142212 )]([])()2[(])()2[()(''    

Using Parseval’s Identity, we can show that 


  ddxx

24124 )()2()]([ . 

 Chiu (1991) introduced a cutoff value Λ for λ, such that nc /)(ˆ
2
 . Bessegato, 

Atuncar & Duczmal (2002) affirm that c = 3 minimizes the estimator variance. The final “plug 

in” estimator is 
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3. Experimental Results 

This section presents some results of simulations in R 2.8.0 environment on GI
X
/M/c/N 

systems with partial blocks, where the interarrival time is estimated through the following 

methods: 

 Zhang, Karunamuni & Jones (1999) estimator with “plug in” method; 

 Gamma kernel-estimator with LSCV method; 

 Gamma kennel-estimator with optimal bAMISE. 

To evaluate the performance of the estimators we will compare the Mean Squared Error 

(MSE) of each pre-arrival estimated probability based on 100 samples of interarrival time. To 

perform this work we elaborated an algorithm based on the general following steps: 

(1) Generate a sample of size n of general interrarrival distribution τ. 

(2) Calculate the mean service rate μ= g (ρcE(τ))
-1

. 

(3) Estimate the optimal smoothing parameter h or b. 

(4) Use the kernel density method to estimate the theoretical density function τ(x). 

(5) Find each estimated transition probability. 

(6) Solve the linear system 
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The algorithm above was coded in R and is available upon request from the authors for 

educational and research purposes. The theoretical interrarrival distributions considered in this 

experiment were: 

 Weibull distribution with shape = 2 and rate = 20; 

 Gama distribution with shape = 10 ans rate = 2; 

 Gamma mixture: 0,45 weight on Γ(5,2) and 0,55 weight on  Γ(30,1). 

The first density has τ´(0) ≠ 0, the second has τ´(0) = 0 and the last one is bimodal. We 

choose the weibull and gamma distribution based on their flexibilities. The group size considered 

is constant (=1) and the system size N = 15. The simulations compared systems with 5 and 10 

servers. Samples of size 100 were used. Figures 1 and 2 show some results. 

The parameter selector LSCV seems to have a slight advantage under parameter selector 

bAMISE on the first and last distributions. Zhang, Karunamuni & Jones (1999) estimator had the 

worst performance on the first and revealed a singular distribution behavior on the last 

distribution. On the second distribution, there was no difference.  

  
Figure 1. πn e EQM( n


) with c = 5   Figure 2. πn e EQM( n


) with c = 10  

4. Concluding Remarks 

We studied the adequacy of methods of core estimators to calculate the invariant 

probability distribution and performance measures of queuing systems that have general 

distribution of interarrival times. Simulations showed that when τ´(0) ≠ 0, the gamma kernel 

method had better performance. This results point out the understanting that Zhang, Karunamuni 

& Jones (1999) method does not work well when τ(0) > 0. At the same time, its behavior with the 

bimodal density showed a very low EQM for probabilities near the maximum state. This might 

imply a good estimation of the blocking probability and other performance measures. 

Weibull(2,20

) 

Gamma(10,2) 

Gamma mixture 

Weibull(2,20

) 

Gamma(10,2) 

Gamma mixture 



The method of selection of smoothing parameter on the gama kernel-estimator did not 

have great impact. A better selector could be developed in a way that the functional of its AMISE 

optimal parameter would be estimated just like the “plug in” method for symmetric kernels. 

Future research can take other possible directions, like the mathematical explanation of 

how the estimate of the pre-arrival invariant distribution moves away from its real value. An 

attempt would be from the variance of the bias and variance of each probability estimated. For 

example, the variance of an estimate of transition probability pij could depend on the variance of 

the term 0̂  , so we would need to find 





0

0 )),(ˆvar()ˆvar( dzhze zc   . 

Finally, we can take this research to some areas of great practical interest like telephony, 

health and industry. For example, a medical emergency hall has critical need of resource 

allocation. 
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