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ABSTRACT 

The focus of this paper is on the optimization of finite queueing networks which 
may represent the manufacturing networks in a joined manufacturing and product 
engineering environment. The performances of the queueing networks are evaluated in 
terms of their throughput by means of an advanced queueing network analyzer, the 
generalized expansion method. The problem solved is the joint buffer and server optimal 
allocation. Given the difficulty of the objective function which is not known in closed form, a 
heuristic method based on the Powell algorithm is used. Preliminary numerical results are 
presented to attest for the quality of the approach. Some new insights are given for this 
challenging and important stochastic optimization problem. 
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1. Introduction and Motivation 

The optimization of manufacturing systems and complex production lines has 
been the focus of numerous studies. Queueing networks are commonly used to model such 
complex systems (Suri, 1985). This paper discusses an optimization approach from a 
queueing theory point of view. More specifically, the focus are queueing networks that have 
finite buffer spaces, as seen in Figure 1, which is characterized by a blocking effect that 
eventually degrades the performance, commonly measured via the throughput Θ of the 
network. 

 

Figure 1: Network of finite general-service queues in an arbitrary series-split-merge topology 

A practical application for the finite queueing models includes the manufacturing 
step. Since product engineering is inevitably connected to the manufacturing process, a 
better understanding of the manufacturing part in the product engineering phase could 
lead to a strong and sustainable competitive advantage (Simchi-Levi et. al., 2009). 

Finite Queueing Networks 

Queueing networks are defined as open, closed, or mixed. In open queueing 
networks, entities enter the system from outside, receive some service at one or more 
nodes, and then leave the system. In closed queueing networks, entities never leave or enter 
the system: a fixed number of entities circulates within the network (Whitt, 1984). Mixed 
queueing networks are systems that are open with respect to some entities and are closed 
with respect to others (Balsamo et al., 2001). Research in the area of queueing networks is 
very active, resulting in a vast amount of journal papers, books, and reports. For a general 
and a more complete discussion on queueing networks, the reader is referred to e.g. 
Walrand (1988). In the remaining of this paper, we will focus on open queueing networks. 

An additional assumption is that the capacities (the buffer spaces) between two 
consecutively connected service stations are finite. As a consequence, each node in the 
network might be affected by events at other nodes, leading to the phenomena of blocking 
and starvation. 

In the literature, two general blocking mechanisms are presented, which are: 
blocking-after-service and blocking-before-service. Blocking-after-service occurs when after 
the service an entity sees that the buffer in front of it is full and as a consequence cannot 
continue its way throughout the network. Blocking-before-service implies that a server can 
start processing the next entity only if there is a space available in the downstream buffer. If 
not, the entity has to wait until a space becomes available. Most production lines operate 
under the blocking-after-service system. Moreover, in the literature it is the most 
commonly made assumption regarding the buffer behavior (Dallery & Gershwin, 1992). 

Performance evaluation tools include product form methods, numerical methods, 
and Monte Carlo simulation. Concerning the product form methods, the queueing system is 
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decomposed into single, pairs, or triplets of nodes. Each decomposed node can then be 
treated as an independent service provider, for which all results and insights of the single 
node queueing models can be used (e.g., see Gross et al., 2009). Decomposition techniques 
yield exact results for queueing networks with product form solutions. For networks 
without a product form solution, they will give only an approximation. If obtaining an exact 
solution is too difficult, numerical methods may be a good option. The main challenge is to 
be as close as possible to the exact values. Numerical methods are sometimes restricted to 
small networks (see, e.g., Balsamo et al., 2001). Finally, another strategy to obtain all 
relevant performance measures for a queueing network is making use of Monte Carlo 
simulation, a computationally intensive method (Law & Kelton, 2000). 

In this paper, the generalized expansion method (GEM) is used as the prime 
performance evaluation tool. The method was proposed originally by Kerbache & Smith 
(1987) and it is combination of a node-by-node decomposition and an iterative numerical 
approximation. Details will not be given here but may be found in the literature (see, e.g., 
Kerbache & Smith, 1988). 

Structure of the paper 

This paper is structured as follows. In Section 2, we detail the mathematical 
programming formulation for the queueing network optimization problem. In Section 3, the 
optimization methodology is discussed. Preliminary results are presented in Section 4. 
Finally, Section 5 concludes the paper with final remarks and topics for future research in 
this area. 

2. Mathematical Programming Formulation 

The network structure is defined on a digraph G(V,A), in which V is the set of 
queues, characterized by Poisson arrivals, multiple servers, generally distributed service 
times, and a total capacity K (i.e., including the items under service), that is, in Kendall 
notation, M/G/c/K queues. Additionally, the queues are interconnected by a set of arcs A, 
with a given routing probability. Then, we seek for the optimal number of buffers and 
servers in each queue Vi. We can write the generic optimization model as follows: 

)(min XfZ  , 

subject to: 
 )(X , 

0X , 

that minimizes the total allocation cost,  


Vi iXf )(X , constrained to provide a 

minimum throughput Θτ. 
A number of specific models can be specified based on the above generic model. In 

this paper, we are interested in the combination of buffers Bi and servers ci allocation, 
which is done by setting X≡(B,c). In this case, some integrality constraints must be 
included, Bi∊ℕ, ci∊ℕ, ∀i∊V. Next to this integrality constraint, more constraints are needed. 
It is necessary to ensure that there is at least one server per vertex, ci≥1, ∀i∊V. Note also 
that buffers, defined as Bi= Ki -ci, ∀i∊V, can be equal to zero, hence leading to a zero-buffer 
system. 

Secondly, note that the objective function needs to be adapted slightly to take into 
account the two objectives (i.e., the buffers and servers allocation). We consider that the 
objective function can be written as a weighted sum of these two objectives, giving the so 
called joint buffer and server allocation problem (BCAP): 

  







 

 Vi

i

Vi

i cBZ 1minBCAP . 

We assign a cost of (1-ω) to buffers and ω to servers. We can then modify the value 
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of ω, such that 0≤ω≤1, to reflect the relative cost of buffers versus servers. As ω is 
increased, the cost of buffers will become relatively lower than that of the servers. That is, 
servers are then more expensive than buffers. Alternatively, when the value of ω is 
decreased, the buffers become more costly relative to the servers and therefore the buffers 
become more expensive than the servers. In this way, we evaluate whether different pricing 
of buffers and servers results in a significantly different buffer and server allocation. It is 
worthwhile to mention that if ω=0, the above problem reduces to the pure buffer allocation 
problem (BAP) and if ω   =1, the pure server allocation problem (CAP) is obtained. 

3. Optimization Methodology 

While the GEM computes the performance measures for the queueing network, 
Θ(B,c), the mathematical programming formulation described earlier need to be optimized 
on the decision variables X≡(B,c). Of course, there exist many optimization methods that 
could be applied to the BCAP. An exhaustive discussion is left out of this paper, but the 
interested reader is referred to Aarts & Lenstra (2003) and the references therein. We 
describe one of the methodologies that have proven to be successful to similar models, 
namely the Powell (1964) algorithm, mainly because of the difficulty of obtaining Θ(B,c) in 
closed form. Of course, small problems can always be enumerated. 

The Powell algorithm can be described as an unconstrained optimization 
procedure that does not require the calculation of first derivatives of the function, which is 
very convenient for the problem on hand because of its relaxed objective function presented 
below which is not available in closed form: 

   







 



 ),(1minBCAP cB
Vi

i

Vi

i cBZ . 

Numerical examples have shown that the Powell algorithm is capable of 
minimizing a function with up to twenty variables (Powell, 1964; Himmelblau, 1972). The 
Powell algorithm locates the minimum of a non-linear function f(X) by successive 
unidimensional searches from an initial starting point X(0) along a set of conjugate 
directions. These conjugate directions are generated within the procedure itself. The Powell 
algorithm is based on the idea that if a minimum of a non-linear function f(X) is found along 
p conjugate directions in a stage of the search, and an appropriate step is made in each 
direction, the overall step from the beginning to the p-th step is conjugate to all of the p sub-
directions of the search. 

4. Results and Insights 

In this section, we will focus on one example network. We consider a combination 
of the three basic topologies (series, split, and merge), as shown in Figure 1 (Smith & Cruz, 
2005). This network consists of 16 nodes (finite queues) with the server processing rates μ, 
as shown in Figure 1. Concerning its efficiency, the Powell algorithm seems to be dependent 
on the arrival rate at the network and also on the squared coefficient of the variation of the 
service times, as seen in Figure 2. Large arrival rates and large squared coefficient of 
variation imply large solution spaces that must be sought. However, the processing time 
does not increase dramatically, which is encouraging. 

The sub-optimal allocations for buffers and servers are presented in Table 1 along 
with the optimal values for the relaxed objective function ZBCAPε (for α=1,000). We used the 
values for the external arrival rate Λ and for the squared coefficient of variation of the 
service time s2 as given in the table and the 50%-50% routing probabilities for the splitting 
node (i.e., nodes #1 and #2). Note that the routing probability #1 refers to the up tier of the 
node, while #2 refers to the low tier. Refer to Figure 1 for the position of each node in the 
network. 

In Table 1, the c/B price ratio gives the relative cost of servers compared to 
buffers. A price ratio of 1 means that servers are as much expensive as the buffers, that is, 
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(1-ω):ω≡0.5:0.5. An extensive study about the influence of such a ratio was presented 
elsewhere (Authors, year) and it will not be repeated here. We only mention that it has 
been found that M/G/1/K queues (i.e., single-server queues) are not an optimal 
configuration for this particular queueing network, except when the buffers are very 
expensive compared to the servers (about 8 times or more). This makes sense since the 
servers play a double role, that is, servers are service providers and also spaces for staying. 
These results justify research efforts to extend the single-server based models into the 
multiple-server based models, as proposed here. 

 

Figure 2: Running times 

Table 1 shows suboptimal solutions for several external arrivals Λ (i.e., from 0.5 to 
8.0 entities per time unit). We observe the presence of the bowl effect (i.e, larger spaces are 
allocated at the borders than in the middle), as well-known long ago for lines in series (Rao, 
1976). Additionally, zero-buffer configurations are identified almost everywhere which is 
expected since servers are comparably cheaper than buffers. Varying the coefficient of 
variation of the service time does result in some changes in the optimal buffer and server 
allocation, which shows the importance of models that deals with general service times 
(that is, with s2≠1.0). The results show that the number of servers seems to be large with 
high variability, as it could be expected, since the increase in the squared coefficient of 
variation of the service times means an increase in the variability. Additional servers are 
allocated to help handling the extra variability. Also noticeable is that usually under high 
traffic the preferred configurations are bufferless. Of course, this is because of the low c/B 
ratio considered. 

Practical Issues 

In a number of industrial improvement projects carried out, we observed that the 
critical issue to be able to use similar queue based models is related to data availability. 
More specifically, processing rates, arrival rates, uncertainty in the service process etc., 
needs to be extracted from the available databases. An interesting approach to obtaining 
the relevant data is the effective process time (EPT) point of view. 

According to Hopp & Spearman (1996) the random variable of primary interest in 
factory physics is the effective process time (EPT) of a job at a workstation. The label 
effective is used because the authors refer to the total time seen by a job at a station. From a 
logistical point of view, it does not matter whether the job is actually being processed or is 
being held up because the workstation is being repaired, undergoing a setup, reworking the 
part due to a quality problem, or waiting for an operator to return from a break. For this 
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reason, it is possible to combine these effects into one aggregate measure of variability. 

Table 1: Results for the BCAP 

c/B s2
L c K S c SK SB  Z BCAP  CPU(s)

1.0 0.5 0.5 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) (2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2) 16 18 2 0.4990 10.0 1.1
1.0 (2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2) (2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2) 24 24 0 0.9989 13.1 1.5
2.0 (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) 32 32 0 1.9994 16.6 2.0
4.0 (3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3) (3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3) 34 34 0 3.9983 18.7 2.3
8.0 (5,3,3,3,3,2,2,2,2,2,2,2,2,3,3,5) (5,3,3,3,3,2,2,2,2,2,2,2,2,3,3,5) 44 44 0 7.9976 24.4 2.7

1.0 0.5 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) (2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2) 16 18 2 0.4988 10.2 1.1
1.0 (2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2) (2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2) 24 24 0 0.9988 13.2 1.5
2.0 (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) 32 32 0 1.9993 16.7 2.5
4.0 (3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3) (3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3) 34 34 0 3.9978 19.2 2.5
8.0 (5,3,3,3,3,2,2,2,2,2,2,2,2,3,3,5) (5,3,3,3,3,2,2,2,2,2,2,2,2,3,3,5) 44 44 0 7.9970 25.0 3.0

2.0 0.5 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) (2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2) 16 18 2 0.4984 10.6 1.1
1.0 (2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2) (2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2) 24 24 0 0.9984 13.6 1.5
2.0 (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) 32 32 0 1.9989 17.1 2.8
4.0 (5,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5) (5,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5) 38 38 0 3.9969 22.1 2.5
8.0 (6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6) (6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6) 54 54 0 7.9992 27.8 3.1  

Kock et al. (2008) propose an EPT approach in four steps (see Figure 3). The first 
step is to measure realizations from the manufacturing system. An EPT-realization 
represents the time a job consumed capacity from the respective workstation. EPT 
realizations can be obtained from event data, such as arrivals and departures of jobs on 
workstations. The second step is to describe the EPT realizations by statistical distributions. 
The third step is to build an aggregate model (either simulation or analytical) from the 
obtained distributions. The fourth step is to validate the aggregate model by comparing the 
throughput and lead-time as estimated by the model to the throughput and lead-time 
observed in the actual system. 

 

Figure 3: The effective processing time approach 

Of course, if the project on-hand is a pure design issue in a green field study, it is 
not trivial to find the right data. In this case, specifications from machine builders or from 
similar situations could be used. 

5. Conclusions and Future Research Directions 

This paper presented preliminary results for the joint buffer and server allocation 
problem. We used the general expansion method as the performance evaluation tool for the 
finite queueing networks. This methodology has proved in the literature to be a valuable 
approach. The joint buffer and server allocation problem was then ‘solved’ by means of a 

2218



Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

 

 

Powell based heuristic. The paper ended with a summary of some results for different 
settings considered for a complex queueing network. 

Concerning the practical use of the methodology we discussed briefly the 
advantages of the effective process time (EPT) approach. Thus various types of 
disturbances on the shop-floor can be aggregated into EPT distributions which enable 
effective modeling. However, it is important to note that disturbances which are aggregated 
into the EPT distribution cannot be analyzed afterwards. Hence, shop-floor realities or 
disturbances which are modeled explicitly and excluded from aggregation in the EPT are 
defined beforehand. 

In this paper, we considered the throughput as the main performance measure. 
Instead of the throughput, it would be interesting to evaluate the behavior of the models 
based on the cycle time, the work-in-process (WIP), or some other performance measures. 
Topics for future research would also include the analysis and optimization of networks 
with cycles, for instance, to model systems with feed-back loops caused by re-work, or even 
the extension to more general queueing networks, such as networks of GI/G/c/K queues 
(i.e., that include generally distributed and independent arrivals). 
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