
Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

Performance Optimization of
Open Zero-Buffer Multi-Server

Queueing Networks

R. Andriansyah∗ T. Van Woensel†‡ F. R. B. Cruz§ L. Duczmal¶

r.andriansyah@tue.nl t.v.woensel@tm.tue.nl frc@cs.nott.ac.uk duczmal@est.ufmg.br

September 23, 2009

Abstract — Open zero-buffer multi-server general queue-

ing networks occur throughout a number of physical sys-

tems in the semi-process and process industries. In this pa-

per, we evaluate the performance of these systems in terms

of throughput using the generalized expansion method

(GEM) and compare our results with simulation. Secondly,

we embed the performance evaluation in a multi-objective

optimization setting. This multi-objective optimization ap-

proach results in the Pareto efficient curves showing the

trade-off between the total number of servers used and the

throughput. Experiments for a large number of settings and

different network topologies are presented in detail.

Keywords — Zero buffer systems; Pareto efficiency; perfor-
mance evaluation and optimization; genetic algorithms.

1 INTRODUCTION AND MOTIVATION

BUFFERLESS networks occur throughout a number of
real-life physical systems in the semi-process and

process industries (refer to Fransoo and Rutten [1], for
more general information on process industries). A
zero-buffer production environment might be necessary
due to the processing technology of the product itself, or
simply due to the absence of any intermediate storage
capacity between two consecutive operations of a job.

In their paper, Hall and Sriskandarajah [2] describe
a steel production process. Molten steel goes through
a series of operations ranging from ingots, un-molding,
reheating, soaking, and preliminary rolling. In this pro-
duction process, the steel must pass one operation to

∗Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands.

†Department of Technology Management, Operations, Planning,
Accounting and Control, Eindhoven University of Technology, Eind-
hoven, The Netherlands.

‡Corresponding author.
§School of Computer Science and Information Technology, Uni-

versity of Nottingham, Jubilee Campus, Wollaton Road, Nottingham
NG8 1BB, UK. On sabbatical leave.

¶Department of Statistics, Federal University of Minas Gerais,
31270-901 - Belo Horizonte - MG, Brazil.

another continuously, without any waiting or buffering
of work-in-process, since such waiting would result in
cooling down the steel to a temperature that is not ac-
ceptable for the next process. Hence, either a job is fin-
ished and transferred directly to the next process, or it is
buffered in the machine itself until the downstream pro-
cess is ready to receive another job. Similarly, in food-
processing environments no buffer space is allowed be-
tween the cooking operation and before the canning op-
eration. This is due to the requirement that the product
should still be fresh when it is canned. Similar issues
can be found in producing juice and beer (e.g., see Fey
[3]). In these cited examples, restrictions in the process-
ing technology and its characteristics creates zero-buffer
production system.

Ramudhin and Ratliff [4] studied a condiments man-
ufacturer, with mayonnaise and various types of salad
dressing as the product. The nature of the product dic-
tates hygienic consideration as one of the critical fac-
tor in production. Hence, there is no space for work-
in-process inventory and the product must never wait
between two operations. As a last example, third gen-
eration mobile communication networks are character-
ized by a multi-server zero-buffer queueing system [5].
In such systems, arrivals are represented by requests
of audio, data, and video messages, whereas the ser-
vice time is the message transmission time. Here, zero-
buffers are caused due to simple absence of storage ca-
pacity between operations. Despite the high industrial
relevance of zero-buffer networks particularly in pro-
cess and semi-process industries, only scant literature
is available focusing exclusively on these types of net-
works. Our paper reviews the current work in the field,
completes and complements the literature where neces-
sary.

The system of interest in this paper is a zero-buffer
multi-server general queueing network (as shown in Fig. 1
for a queueing network network representation for a
tandem line). Zero-buffer systems are a special case of
a restricted queueing network. Restricted queueing net-

DocNum 2009923-904 1

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

works have a finite capacity in each node, referred to
as the total buffer capacity of size Kj . That is, a finite
node j can only hold entities up to a certain quantity Kj

including those entities in service. The buffer capacity
at finite node j causes blocking to occur when the ar-
riving quantity to node j exceeds its buffer capacity Kj

[6]. As a consequence, each node in the network might
be affected by events at other nodes, leading to the phe-
nomena of blocking and starvation [7]. A particular case
where a queueing network has a finite capacity but no
buffers before servers is denoted as a zero-buffer queue-
ing network (also denoted in the literature as bufferless,
no intermediate buffers etc.). In this specific case, the
buffer space at node j is equal to the number of server
cj in that node, that is, Kj = cj . Given that there is
no space to queue, a job in the upstream node can only
enter the downstream node if the servers have finished
processing their jobs (see Fig. 1).

Figure 1: A zero-buffer queueing network representa-
tion

This type of system operates as follows. Jobs arrive to
the first node in the system with a certain arrival rate
λa. The job is then processed by an available server
with service rate µ. After the service is finished, the
job proceeds to the next connected node in the system
only if a server is available at this node. If this is not
the case, then the finished job has to wait at the pre-
vious server until there is an available server at the
downstream node. There is no queueing space between
servers. The only buffer space available in each node are
the servers themselves. Due to the possibility of block-
ing, the throughput rate of the network thus might be
smaller than the arrival rate (i.e. λd ≤ λa). Note that if
the first node is full, (part of) the arrivals are lost for the
system. In this paper, we both evaluate and optimize
this type of zero-buffer systems. The networks used
in this paper are characterized by combinations of split
systems (where one flow splits into two flows), tandem
lines, and merge systems (where two flows merge into
a single flow). Moreover, the networks analyzed are as-
sumed to be acyclic, i.e. no cycling or feedback loops
are allowed as this creates a difficult to handle depen-
dency in the network. A number of methods are avail-
able to evaluate the performance of restricted queueing
networks, as we will see in Sec. 2.

In this paper, we will use the Generalized Expansion
Method, described in Sec. 3, as the performance evalu-
ation tool. The optimization is done via a genetic algo-
rithm, a heuristic procedure specially designed for the
problem on-hand. Since there are no buffers in the net-
work, the optimization problem on-hand is essentially
a server allocation problem for zero-buffer general ser-

vice queueing networks. As servers are expensive, one
would like to minimize the amount of servers as much
as possible. On the other hand, one would also like to
maximize the throughput of the network. This through-
put is affected by the allocated servers, i.e., more servers
lead to a higher throughput. In Sec. 4, we model this
trade-off as a multi-objective optimization problem with
two conflicting objectives, minimize the total number
of servers allocated in the network and maximize the
throughput. This results in highly insightful Pareto sets
which explicitly show the trade-off between all objec-
tives.

The main contributions of this paper are the follow-
ing.

1. The paper on-hand deepens the knowledge on
zero-buffer systems. More specifically, this paper
reviews, completes and extends the current state of the
literature. Reviewing the literature, we show that
few papers are found on the specific zero-buffer
systems analyzed in the present paper. Moreover,
these papers are mainly limited to single server tan-
dem line settings and only few zero-buffer cases
were evaluated without much details analyzed (see
e.g. Jain and Smith [8]). We complete this scarce
literature by executing a very large number of ex-
periments for these zero-buffer systems and derive
relevant generic insights based on this performance
evaluation. As such, this paper is very comple-
mentary with the current literature. Finally, we ex-
tend the current state of the literature developing a
multi-objective optimization method designed for
the zero-buffer system.

2. We compare our results with simulation, and show
that the generalized expansion method (GEM) pro-
posed by Kerbache and Smith [9] gives an excel-
lent approximation for the performance measures
of the zero-buffer systems studied. We show that
the GEM delivers results with an accuracy mostly
less than 5% (with maxima up to 16% for heavy
congested systems, similar as in [8]), for basic se-
ries, merge, and split topologies, both symmetrical
and asymmetrical.

3. We present a multi-objective optimization method-
ology for zero-buffer systems, which provides par-
ticularly insightful results. It is the first time to our
knowledge that a multi-objective approach is con-
sidered for the optimization of networks of buffer-
less systems. The proposed methodology is proven
to be successful to derive Pareto sets, which among
other things showed that although some optimal
configurations could be correctly ‘guessed’ (mainly
for symmetrical networks), this is not always the
case, as seen for asymmetrical networks.

4. We demonstrate the usefulness of the developed
tools in the system design phase of zero-buffer sys-
tems. More specifically, we elaborate on several

DocNum 2009923-904 2

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

network topologies, including a complex, arbitrar-
ily acyclic configured zero-buffer system. Based
on this analysis, we see that our proposed opti-
mization method is a feasible alternative to op-
timize real-life multi-objective zero-buffer queue-
ing networks and can provide answers to difficult
managerial questions regarding the system’s per-
formance and its optimal configuration.

The paper is structured as follows. First, a brief liter-
ature review on zero-buffer queueing networks is pre-
sented. Then, we describe how we obtain the block-
ing probability, one of the most important performance
measures in the analysis. Next, the performance eval-
uation methodology applied is described. In this pa-
per, we use the GEM to obtain the relevant performance
measures. After this, we use a genetic algorithm ap-
proach to optimize this kind of queueing networks. In
the following section, we elaborate on the experimen-
tal results obtained for a large number of situations (i.e.,
tandem, split, merge cases, and large complex topolo-
gies). We analyze the performance of these systems both
analytically and by simulation. The last section con-
cludes this paper, with final remarks and topics for fu-
ture research in the area.

2 LITERATURE REVIEW

The research in the area of queueing networks is very
active, resulting in a vast amount of journal and confer-
ence papers, books, reports etc. For a general and com-
plete classification of queueing networks, the reader is
referred to, e.g., Walrand [10]. Queueing networks can
be divided into two categories [7], unrestricted and re-
stricted queueing network. Unrestricted queueing net-
works include cases where all nodes within the net-
work have an unlimited capacity. Restricted queueing
networks have limited (finite) capacity for all nodes in
the network. Restricted queueing networks often repre-
sent real-life systems, where there normally exist finite
spaces for holding entities. In this paper, we focus on a
special case of restricted queueing networks where the
finite space is zero and thus blocking might occur.

In general, three blocking mechanisms can be dis-
tinguished in restricted queueing networks, blocking-
after-service (BAS), blocking-before-service (BBS), and
repetitive-service (RS). Most production lines operate
under the BAS system, which will be the only blocking
mechanism assumed here. Moreover, in the literature
it is the most common assumption regarding buffer be-
havior [11].

For small tandem line zero-buffer networks, exact so-
lutions are available. Small asynchronous single server
tandem lines with zero buffer and reliable machines
were partly analyzed by several authors [12, 13, 14, 15,
16]. Most of this exact analysis is based on Contin-
uous Time Markov processes. Here, we will rely on
simulations and on approximation techniques for an-
alyzing more complex queueing networks (including

splits, merges, and multiple servers per node and sy-
metrical/asymmetrical settings). More specifically, for
the system on-hand in this paper, we will obtain the
performance measures via the Generalized Expansion
Method (discussed in detail in section 3). In Kendall no-
tation, we look at M/M/c/K queueing models and set
the buffer size equal to the number of servers, K = c,
resulting in M/M/c/c queueing models.

There are some other papers dealing with a similar
type of networks but with different server settings. For
example, Cruz et al. [17] describe in their paper a perfor-
mance optimization methodology for open finite single-
server queueing networks, focusing on networks of
single-server queues, M/G/1/K, and a single-objective
optimization derivative-free search algorithm. Cheah
and Smith [18], Jain and Smith [19], Cruz et al. [20],
and Cruz and Smith [21] choose do deal with M/G/c/c
state-dependent queueing networks, that is, queues
with Markovian arrivals, general state-dependent ser-
vice rates, c parallel servers, and the total capacity c,
including the servers. It was observed that the service
rates in (pedestrian) traffic flow network applications
were exhibiting a certain state-dependent behavior, i.e.
congestion has an influence on the service rate. Finally,
it is worthwhile mentioning the paper from Jain and
Smith [8], in which few experiments were reported for
zero-buffer multi-server queueing networks.

3 PERFORMANCE EVALUATION OF ZERO BUFFER

NETWORKS

The GEM is a robust and effective approximation tech-
nique developed by Kerbache and Smith [22]. It has
been successfully used to estimate performance mea-
sures for finite queueing networks. As described in
previous papers, this method is basically a combina-
tion of repeated trials and node-by-node decomposi-
tion in which each queue is analyzed separately and
then corrections are made in order to take into account
the interrelation between the queues in the network.
The GEM uses Blocking After Service, which is preva-
lent in most production and manufacturing, transporta-
tion, and other similar systems, as said earlier. In this
section, we present an overview of the method. For
more detailed information and applications of the GEM,
the reader is referred to the papers by Kerbache and
Smith [9, 22, 23], Jain and Smith [8], Spinellis et al.
[24], and Smith and Cruz [25]. The GEM involves three
stages, network reconfiguration, parameter estimation,
and feedback elimination. Before discussing each stage
in detail, the variables used in this section are defined in
Tab. 1.

3.1 Network reconfiguration

The first step in the GEM involves reconfiguring the net-
work. An artificial node is added for each finite node in
the network. The artificial node is added to register the

DocNum 2009923-904 3

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

Table 1: Variables used in this paper

Variable Description
hj The holding node added to the network, pre-

ceding each finite node j
λj The arrival rate to node j

λ̃j The effective arrival rate to node j
µj The service rate at node j
µ̃j The effective service rate at node j
pcj Blocking probability of finite queue of size cj
p′cj Feedback blocking probability in the GEM
µhj

The service rate at the holding node hj

blocked customers at the finite node [9].

-
M/M/ci/ci

-
��
��

-i

M/M/cj/cj

-
��
��

-j

- -
M/M/ci/ci

-
��
��

-i

M/G/∞

-
��
��

-hj

M/M/cj/cj

-
��
��

-j
6

?

λi θj

λi
pcj

p′

cj

(1 − p′

cj
) θj

(1 − pcj
)

Figure 2: The generalized expansion method

Following Kerbache and Smith [23], the GEM thus
creates for each finite queue, represented by vertex j, an
auxiliary vertex hj , modeled as an M/G/∞ queue (see
Figure 2). When an entity arrives to the system, vertex j
may be blocked with probability pcj , or unblocked, with
probability (1 − pcj). Under blocking, the entities are
rerouted to vertex hj for a delay while node j is busy.
Vertex hj helps to accumulate the time an entity has to
wait before entering vertex j and to compute the effec-
tive arrival rate to vertex j. In other words, the GEM
ultimate goal is to provide an approximation scheme to
update the service rates of upstream nodes that takes
into account all blocking after service in there, caused
by downstream nodes:

µ̃−1
i = µ−1

i + pcj (µ
′

hj
)−1.

3.2 Parameter estimation

In the second stage, the parameter estimation of all un-
knowns for the system described above are determined.
More specifically, the following equations and the rele-
vant references are used.

1. Utilizing the analytical results for the M/M/c/c,
the probability of a customer being blocked, pc (for
clarity, we omit the subscript for node j), is pro-
vided by the following expression (also known as
Erlang B formula):

pc =

(
λ
µ

)c

/c!

c∑
i=0

(
λ
µ

)i

/i!

.

2. The probability that customers are forced back to
the holding node given that they were rejected at
the previous trial, p′c, is not available in closed
form. Then, we use and approximation give by La-
betoulle and Pujolle [26] obtained using diffusion
techniques:

p
′
c =

[
µj + µh

µh

−

λ[(rc2 − rc1)− (rc−1
2 − rc−1

1)]

µh[(r
c+1
2 − rc+1

1)− (rc2 − rc1)]

]−1

,

in which r1 and r2 are the roots to the polynomial:

λ− (λ+ µh + µj)x+ µhx
2 = 0,

with λ = λj − λh(1 − p′c) and λj and λh are the ac-
tual arrival rates to the finite and artificial holding
nodes respectively. Labetoulle and Pujolle [26] il-
lustrate in their paper a comparison of their method
for computing p′c with an Erlang service system and
an hyper-exponential system and it is shown that
the calculation for p′c is very reasonable for general
service systems. Given these results, we felt com-
fortable in applying p′c for the general service situ-
ation.

In fact, the arrival rate to the finite node j is given
by:

λj = λ̃i(1− pc) = λ̃i − λh.

Let us examine the following argument to deter-
mine the service time at the artificial node. If an
arriving customer is blocked, the queue is full and
thus a customer is being serviced, so the arriving
customer to the holding node has to remain in ser-
vice at the artificial holding node for the remain-
ing service time interval of the customer in ser-
vice. The delay distribution of a blocked customer
at the holding node has the same distribution as
the remaining service time of the customer being
serviced at the node doing the blocking. Using re-
newal theory, one can show that the remaining ser-
vice time distribution has the following rate µh:

µh =
2µj

1 + σ2
jµ

2
j

,

where σ2
j is the service time variance given by

Kleinrock [27]. Notice that if the service time dis-
tribution at the finite queue doing the blocking is
exponential with rate µj , then:

µh = µj ,

DocNum 2009923-904 4

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

i.e., the service time at the artificial node is also ex-
ponentially distributed with rate µj . When the ser-
vice time of the blocking node is not exponential,
then µh will be affected by σ2

j .

For more details, the reader is referred to the paper by
Jain and Smith [8].

3.3 Feedback elimination

The repeated visits to the holding nodes (due to the
feedbacks), create strong dependence in the arrival pro-
cess. Therefore, the repeated immediate feedback is
eliminated. This is done by giving the customer enough
service time during the first passage through the hold-
ing node. The adapted service rate for the holding node
µ′

h then becomes:

µ′

h = (1− p′c)µh.

3.4 Bringing it all together

Similar equations can be established with respect to
each of the finite nodes. Ultimately, we have simulta-
neous non-linear equations in variables pc, p′c, and µ−1

h ,

along with auxiliary variables such as µ and λ̃i. Solving
these equations simultaneously we can compute all the
performance measures of the network:

λ = λj − λh(1− p′c), (1)

λj = λ̃i(1− pc), (2)

λj = λ̃i − λh, (3)

p′−1
c =

[
µj + µh

µh
−

λ[(rc2 − rc1)− (rc−1
2 − rc−1

1)]

µh[(r
c+1
2 − rc+1

1)− (rc2 − rc1)]

]
,(4)

z = (λ+ 2µh)
2 − 4λµh, (5)

r1 =
[(λ+ 2µh)− z

1

2]

2µh
, (6)

r2 =
[(λ+ 2µh) + z

1

2]

2µh
, (7)

pc =

(
λ
µ

)c

/c!

c∑
i=0

(
λ
µ

)i

/i!

. (8)

Equations (1) to (4) are related to the arrivals and
feedback in the holding node. Equations (5) to (7) are
used for solving Eq. (4) with z used as a dummy pa-
rameter for simplicity of the solution. Lastly, Eq. (8)
gives the blocking probability for the M/M/c/c queue.
Hence, we essentially have five equations to solve viz.
Eq. (1)–Eq. (4) and Eq. (8).

Recapitulating, we first expand the network. Then,
the blocking probabilities and the service delay in the
artificial holding node are approximated. Finally the
feedback arc at the holding node is eliminated and the
actual service rate of each node preceded by a finite

node is corrected. Once these three stages are complete,
we have an expanded network which can then be used
to compute the performance measures for the original
network. As a decomposition technique this approach
allows successive addition of a holding node for every
finite node, estimation of the parameters, and subse-
quent elimination of the holding node. An important
point about this process is that we do not physically
modify the networks, only represent the expansion pro-
cess through the software.

The actual throughput at a node i, preceded by a finite
node, is then obtained as follows (for clarity, we omit the
subscripts):

θ = λ (1− pc) = λ

1−

(λ/µ̃)
c
/c!

c∑
i=0

(λ/µ̃)
i
/i!

 (9)

The throughput of the overall queueing network is
the sum of all throughput(s) obtained at the last node(s)
of the network.

As a final note, for M/M/c/c models, it is known that
the probability of the system being full at any time in
steady state, given that the maximum number of jobs in
the system equals to the number of servers in the sys-
tem, corresponds to the Erlang’s loss formula, Eq. (8).
Note that simple approximations such as the one re-
cently developed by Adelman [28] could also be used.
It turns out that Eq. (8) also holds for any service-time
distribution (other than Markovian). More specifically,
this means that for M/G/c/c queueing systems with no
waiting space, the above equation is also valid regard-
less of the service time variability or the distribution it-
self. The expressions for the steady-state probabilities
for this M/G/c/c case are identical to those for the corre-
sponding M/M/c/c system (see Gross and Harris [29]).
This means that all results presented here, also immedi-
ately hold for the general service-time distribution case.

4 MULTI-OBJECTIVE OPTIMIZATION OF

ZERO-BUFFER NETWORKS

In this section, we consider the multi-objective opti-
mization of zero-buffer systems where the GEM is in-
corporated in a genetic algorithm (GA) approach.

4.1 Model Formulation

The problem described can be formulated as a multi-
objective optimization problem with two conflicting ob-
jectives, minimizing the total number of servers and
maximizing the throughput. The following mathemati-
cal formulation represents the multi-objective optimiza-
tion problem.
(MOO):

minimize F (x) =
(
f1(x),−f2(x)

)T

, (10)

DocNum 2009923-904 5

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

subject to

xi ∈ {1, 2, . . .}, ∀i ∈ {1, 2, . . . , N}, (11)

in which f1(x) =
∑N

i=1 xi, for xi ≡ ci, is the server allo-
cation to node i, f2(x) = Θ(x) is the throughput profit,
and N is the number of nodes in the network.

In the above formulation, we make the trade-off be-
tween throughput versus total number of servers. Of
course, instead of the throughput, we could have used
the cycle time or other performance measure. We feel,
however, that the first criterion in the network opti-
mization should be assuring a certain throughput com-
pared to the arrival rate. As such, we consider the other
variables, such as cycle time, as secondary criteria. Of
course, the methodology can be extended taking into
account these variables. For the sake of presentation of
the results and the insights, we choose not to do this
(see, e.g., Smith and Cruz [25], for a similar approach).

4.2 A Genetic Algorithm

To solve the MOO problem formulation, Eq. (10)-(11),
we use a powerful class of optimization heuristics
called genetic algorithm (GA). GA’s were chosen be-
cause they are a good fit for multi-objective optimiza-
tion, as demonstrated by many articles recently pub-
lished in the area (e.g., see Purshouse and Fleming [30],
and references therein). Of course, any other multi-
objective optimization approach could be used for the
same purpose, but the comparison and evaluation of
different optimization approaches for our problem on-
hand is not the subject of this paper.

One particular quality of a GA is that it is capable
of generating an entire set of multi-objective solutions
called the Pareto-optimal set. As such, a GA searches for
a set of optimal solutions of a problem with more than
one objective function in a single run. A GA finds the set
of non-dominated solutions, also known as efficient solu-
tions. The resulting Pareto curve allows one to see the
trade-off among the objective function values from dif-
ferent solutions. That is, a GA allows for evaluating the
change in one objective (e.g. the throughput) compared
to a simultaneous change in another objective (e.g. the
total server allocation).

The instance of GA used in this article is presented
in Fig. 3. In short, GA’s are optimization algorithms
to perform an approximate global search relaying on
the information obtained from the evaluation of several
points, usually in a high dimensional search space, and
obtaining a population of points that converges to the
optimum through the application of the so-called ge-
netic operators, mutation, crossover, selection, and elitism.
For each implementation of these operators, a particular
instance of GA is derived.

Following the steps presented in the algorithm from
Fig. 3, the setting of the problem to be solved is read
and an initial population is generated, composed by (i)

algorithm

read graph, arrival, service rates, G(V,A), λv , µv , ∀ v ∈ V

/* generate initial population */

P1 ← GetInitPopulation(popSize)

for i = 1 until numGen do

/* generate offspring by crossover and mutation */

Qi ←MakeNewPopulation(popSize, Pi)

/* combine parent and offspring */

Rt ← Pt ∪Qt

/* select new population */

Pt+1 ← SelectNewPopulation(popSize, Rt)

end for

write PnumGen+1

end algorithm

Figure 3: A genetic algorithm

the extreme solution c = (1, 1, . . . , 1), (ii) the other ex-
treme solution c = (M,M, . . . ,M), with M being a big
enough number, and (iii) arbitrary solutions uniformly
distributed between these two extremes. Once two par-
ents are chosen from the population, an offspring is gen-
erated.

Specifically for the problem on hand, we find that
a simple fitness-oriented crossover scheme does what
is necessary for a satisfactory convergence speed, al-
though, sometimes, the crossover step is not even re-
quired (that is, the genetic algorithm performs simply a
pure random search; for instance, see the case of a bi-
level linear programming successfully solved by Math-
ieu et al. [31], by means of a pure random search GA).
The crossover used here starts by selecting a pair of in-
dividuals (solutions) with a probability proportional to
their fitness to function f2(x), that is, the throughput de-
livered by the respective solution, Θ(x). The crossover
position is then selected by uniform distribution and the
two individuals are mixed accordingly.

Mutation happens at a specific rate, RateMut, for
each one of the gens of the individuals, and represents
and increment or decrement in ci, that is, ±1, uniformly
distributed. Notice that after crossover and mutation,
constraint (11) must hold, in order to guarantee feasibil-
ity. If not, the values are adjusted accordingly. In other
words, the scheme proposed is guaranteed to generate
only feasible (i.e., integer) solutions, if it is fed with ini-
tial feasible solutions.

Particularly important for a multi-objective optimiza-
tion problem is defining the selection and the elitism op-
erators to determine the best individual from the search
space. One of the most widely used selection and elitist
operator is the non-dominated sorting scheme, known
as NSGA-II [32]. It has been shown that NSGA-II re-
quires less computational effort as compared to other
GA algorithms. For a complete elaboration on this algo-
rithm, see Deb et al. [32]. We will use a GA as the search

DocNum 2009923-904 6

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

method, in combination with the GEM as the perfor-
mance evaluation method. As a final remark, it is well-
known that critical to the convergence of GA’s are the
mutation rate, RateMut, the population size, popSize,
and the number of generations, numGen. The effect and
iterations of these parameters were empirically tested
and will be presented shortly in the following section.

5 EXPERIMENTAL RESULTS

We first discuss the results of using the GEM as a perfor-
mance evaluation tool. Secondly, we use a GA heuris-
tic in combination with the GEM to solve the multi-
objective optimization problem as described previously.
Finally, we provide a complex topology to demonstrate
the performance of our approach in the design of large
and complex zero buffer networks. All algorithms de-
scribed are coded in Fortran and are available from the
authors upon request.

5.1 Quality Assessment of the Performance Evaluation

To assess the quality of the GEM as an approximate per-
formance evaluation tool of our queueing networks, we
conducted experiments using four different topologies,
namely series, split, merge, and mixed topologies. We
examine some of these topologies for both symmetri-
cal as asymmetrical settings. Please bear in mind that
the range of possible experiments is exponential itself,
so we have determined a select sample to present. The
configurations tested are shown in Figures 4, 5, 6, and 7.

Figure 4: Series topology

Symmetrical Networks

In each topology, we analyze several number of nodes,
N ∈ {3, 5, 9}, and servers, c ∈ {2, 4, 10}. We set differ-
ent values for the arrival rates, λ ∈ {2, 4, 8, 16}. In all
settings a service rate with a mean of µ = 10 was used.
With these combinations of parameters, we ended up
with 36 different systems for each of the topologies (se-
ries, merge, and split). The series topology consists of
a series of nodes (N), in which each node has c number
of servers (see Fig. 4). In the split topology (see Fig. 5),
we divide the arriving jobs to subsequent nodes after
departing from the first node in the system. That is, the
splitting node is positioned directly after the first node.

Figure 5: Split topology

Figure 6: Merge topology

Λ1
-�

�
��

A
A
AU

- n -1

M/M/c1/c1

- n -2

M/M/c2/c2

A
A
A
A
A
AU

- n -3

M/M/c3/c3

- n -4

M/M/c4/c4

A
A
AU

�
�
��

- Θ

Figure 7: Yet another network structure

The routing probabilities for both routes are set to be
equal to each other (0.5). Every case in this topology
has two ending nodes in the system (N − 1 and N). In
the merge topology (see Fig. 6), the jobs arrive from two
different source nodes. The overall arrival rate is then
divided equally for the two source nodes. The last node
merges the two streams.

Tab. 2 shows the results for all different sets and
topologies. The results reported are the overall through-
put at the network. Tab. 2 is read as follows. The 3-node

DocNum 2009923-904 7

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

Table 2: Throughput θ for the symmetrical cases

Series N = 3 N = 5 N = 9

c (2,2,2) (4,4,4) (10,10,10) (2,. . . ,2) (4,. . . ,4) (10,. . . ,10) (2,. . . ,2) (4,. . . ,4) (10,. . . ,10)
λ = 2 1.996(∗) 2.000 2.000 1.996 2.000(∗) 2.000 1.995 2.000 2.000(∗)

λ = 4 3.949(∗) 4.000 4.000 3.940 4.000(∗) 4.000 3.924 4.000 4.000(∗)

λ = 8 7.394(∗) 7.988 8.000 7.257 7.988(∗) 8.000 7.009 7.987 8.000(∗)

λ = 16 11.50(∗) 15.63 16.00 10.70 15.61(∗) 16.00 9.572 15.56 16.00(∗)

Merge N = 3 N = 5 N = 9

c (2,2,2) (4,4,4) (10,10,10) (2,. . . ,2) (4,. . . ,4) (10,. . . ,10) (2,. . . ,2) (4,. . . ,4) (10,. . . ,10)
λ = 2 2.000(∗) 2.000 2.000 2.000 2.000(∗) 2.000 2.000 2.000 2.000(∗)

λ = 4 3.993(∗) 4.000 4.000 3.993 4.000(∗) 4.000 3.992 4.000 4.000(∗)

λ = 8 7.900(∗) 7.999 8.000 7.892 7.999(∗) 8.000 7.875 7.999 8.000(∗)

λ = 16 14.52(∗) 15.98 16.00 14.40 15.98(∗) 16.00 14.16 15.98 16.00(∗)

Split N = 3 N = 5 N = 9

c (2,2,2) (4,4,4) (10,10,10) (2,. . . ,2) (4,. . . ,4) (10,. . . ,10) (2,. . . ,2) (4,. . . ,4) (10,. . . ,10)
λ = 2 1.997(∗) 2.000 2.000 1.997 2.000(∗) 2.000 1.997 2.000 2.000(∗)

λ = 4 3.957(∗) 4.000 4.000 3.957 4.000(∗) 4.000 3.956 4.000 4.000(∗)

λ = 8 7.538(∗) 7.988 8.000 7.531 7.988(∗) 8.000 7.517 7.988 8.000(∗)

λ = 16 12.59(∗) 15.65 16.00 12.52 15.65(∗) 16.00 12.38 15.65 16.00(∗)

(∗)Earmarked experiments confirmed by simulation (see Tab. 3).

Table 3: Simulation results for the symmetrical cases

Analytical Simulation
Topology N c λ θ θs δ CPU(min) ∆%θ

Series 3 (2,2,2) 2 1.996 1.966 0.001 2.0 1.53
4 3.949(∗) 3.952 0.002 5.8 -0.09
8 7.394 7.424 0.003 12 -0.41
16 11.50 11.32 0.002 22 1.59

5 (4,4,4,4,4) 2 2.000 1.999 0.002 5.0 0.05
4 4.000 3.999 0.002 5.2 0.03
8 7.988(∗) 7.987 0.003 20 0.02
16 15.61 15.61 0.004 40 0.03

9 (10,...,10) 2 2.000 2.000 0.001 9.0 0.02
4 4.000 4.000 0.002 18 0.00
8 8.000 8.002 0.003 36 -0.02
16 16.00(∗) 16.00 0.003 73 -0.01

Merge 3 (2,2,2) 2 2.000 1.991 0.002 1.9 0.45
4 3.993 3.930 0.001 3.8 1.61
8 7.900 7.473 0.002 8.2 5.71
16 14.52 12.54 0.003 14 15.8

5 (4,4,4,4,4) 2 2.000 1.999 0.001 3.0 0.04
4 4.000 3.999 0.002 5.8 0.03
8 7.999 7.993 0.003 12 0.08
16 15.98 15.88 0.003 24 0.63

9 (10,...,10) 2 2.000 1.999 0.001 5.3 0.04
4 4.000 4.000 0.003 10 0.05
8 8.000 7.998 0.003 20 0.03
16 16.00 16.00 0.005 45 0.00

Split 3 (2,2,2) 2 1.997 1.967 0.002 2.1 1.53
4 3.957 3.783 0.002 4.8 4.59
8 7.538 6.785 0.002 8.9 11.1
16 12.59 10.65 0.002 15 18.2

5 (4,4,4,4,4) 2 2.000 2.000 0.001 4.5 0.00
4 4.000 3.996 0.002 5.7 0.10
8 7.988 7.936 0.003 17 0.65
16 15.65 15.09 0.004 28 3.69

9 (10,...,10) 2 2.000 2.000 0.002 12 0.00
4 4.000 3.999 0.002 13 0.02
8 8.000 7.999 0.003 25 0.01
16 16.00 16.00 0.004 150 0.00

(∗)Earmarked results presented in Fig. 10.

experiment with an arrival rate λ = 2 and the number
of servers c equal to (2, 2, 2) results in a throughput of
1.996. In general, we observe that the blocking effect
becomes more severe for high arrival rates relative to

the service rates. For those cases, the throughput rates
are significantly lower than the arrival rates, in oppo-
sition to less congested settings. This rule holds true
for all three types of topologies involved in the exper-

DocNum 2009923-904 8

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

iment. Similarly, the lower the number of servers, for
a given arrival rate, the higher the blocking (and lower
the throughput).

In order to evaluate the solution quality of the GEM,
we set up simulation experiments for selected cases in
the series, merge, and split topologies. We used an ob-
servation period of 200,000 time unit and a warm-up
period of 2,000 time units for 20 independent replica-
tions (for details on how to select a warm-up period,
see Robinson [33]). The simulation was carried out us-
ing ARENA [34]. Tab. 3 presents the simulation results.
In the column labeled analytical, we give the through-
put result from the GEM for each of the cases. We then
compare this analytical result with the average result
obtained via the simulation. The column δ refers to
the half-width of the 95% confidence interval. Also in-
cluded in the tables is the % deviation for the analytical

results on the throughput, ∆%θ
def
= (θ−θs)

θs × 100%.
We see that the analytical results are very reasonable

and acceptable (see column ∆%θ) although they are not
always as accurate as desirable. For instance, under ex-
treme high utilization rates, that is, heavy traffic and
quite few servers, the error may be as high as ≈ 20%.
As we seek optimal server allocation, such a high uti-
lization rate is not expected. Thus based on the simula-
tion output, we conclude that the analytical results are
reliable, for our optimization purposes.

Asymmetrical Networks

In the previous section, we considered cases with sym-
metrical settings in the service rates for the different
nodes. In this section, we set up some asymmetri-
cal experiments unbalancing the routing probabilities,
for the split topologies (routing probabilities 0.4-0.6, in
the spliting nodes), and the arrival rates, for the merge
topologies (external arrivals 0.4λ and 0.6λ, in the front
nodes), and assuming different service rates, µ’s, and
different number of servers, c’s, along the networks.
The analytical results are shown in Tab. 4, along with
simulation results. Based on the asymmetrical results,
we can see that the main conclusions hold. As observed
for the symmetrical results, the errors may be quite high
under high utilization. We see that the blocking effects
becomes more important with the increase of the ar-
rival rates. With regards to the simulations, we note
that the GEM tends to both overestimate and sometimes
underestimate the throughput as compared to the ‘true’
throughput from simulation (as reflected in the values
for ∆%θ). This is in line with what should be expected
when comparing simulation with analytical results.

Yet Another network structure

As a final demonstration of the methodology we eval-
uate the network structure depicted in Fig. 7. Interest-
ingly, this is a network with different paths which are
linked to each other (e.g. 1-4; 2-4). This is distinct from

the previous topologies, where we had articulation ver-
tices in all instances. The results may be seen in Tab. 5.

A final word on the GEM accuracy

Fig. 9 shows a number of boxplots of the % deviation,
∆%θ, as function of the chosen topology, the number of
nodes, the different arrival rates, and type of network
(series, split, merge, or the mixed type).

0
5

10
15

series split merge mix

topology

0
5

10
15

3 4 5 10

nodes

0
5

10
15

2 4 8 16

arrival rate

0
5

10
15

Symmetrical Asymmetrical

type

% deviation

Figure 8: Boxplots of the errors observed

Concerning the topologies, series presented the low-
est errors and the lowest variabilities, while splits give
the highest errors and variabilities. The number of
nodes in the network and their type, symmetrical or
asymmetrical, do not seem to have a significant effect
in the % deviations and their variabilities. Clearly the
arrival rate plays a important role in the % deviations
and variabilities, mainly because of the increase of the
congestion in the network with the increase of the ar-
rival rate. The GEM is well-know for its inaccuracy in
highly congested queueing networks.

5.2 Network Optimization

In this section, we identify the optimal server configu-
ration, changing the network structure, arrival rate, and
processing rates, similarly to that of the previous sec-
tions. We consider both symmetrical and asymmetri-
cal settings. In this section, we will again focus on the
earmarked networks from Tabs. 2 and 4. Using the GA
in conjunction with the GEM, we identify the Pareto-
optimal set, as explained previously.

After extensive experimentation, we came to some in-
teresting conclusions concerning the GA. We observe in
Fig. 9-(a) to (c) how evolves the maximal crowding dis-
tance from the Pareto set approximation, along with the
number of generations, for the 9-node symmetrical se-
ries network earmarked in Tab. 2. The crowding dis-
tance is a measure of the spread of the non-dominated

DocNum 2009923-904 9

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

Table 4: Simulation results for the asymmetrical cases

Analytical Simulation
Topology c µ λ θ θs δ CPU(min) ∆%θ

Series (2,4,10) (12,11,10) 2 1.998 1.977 0.001 3.0 1.06
4 3.974(∗) 3.973 0.002 6.3 0.02
8 7.698 7.698 0.002 12 0.00

16 13.50 13.50 0.002 43 0.00
(2,4,10,2,4) (12,11,10,12,11) 2 1.998 1.997 0.001 5.0 0.04

4 3.974 3.839 0.002 9.9 3.52
8 7.697(∗) 7.700 0.003 20 -0.04

16 13.47 13.50 0.002 37 -0.21
(2,4,10,2,4,10,2,4,10) (12,11,10,12,11,10,12,11,10) 2 1.998 1.999 0.001 11 -0.03

4 3.974 3.973 0.002 18 0.03
8 7.969 7.759 0.002 35 2.71

16 13.45(∗) 13.36 0.003 68 0.71
Merge (4,4,2) (11,11,12) 2 2.000 2.000 0.002 1.9 -0.01

4 4.000 4.000 0.002 4.2 0.00
8 8.000 7.987 0.003 8.2 0.16

16 15.92 15.472 0.003 17 2.90
(10,10,4,4,2) (10,10,11,11,12) 2 2.000 2.000 0.002 3.0 -0.01

4 4.000 3.999 0.002 5.8 0.03
8 8.000 7.998 0.002 12 0.03

16 15.93 16.00 0.005 29 -0.44
(2,2,4,4,10,10,4,4,2) (12,12,11,11,10,10,11,11,12) 2 2.000 1.994 0.001 5.1 0.33

4 3.996 3.952 0.002 10 1.12
8 7.947 7.652 0.003 20 3.86

16 15.35 14.12 0.002 41 8.73
Split (2,4,4) (12,11,11) 2 1.998 1.973 0.001 2.1 1.27

4 3.974 3.839 0.002 2.5 3.51
8 7.698 7.057 0.003 4.7 9.08

16 13.51 11.59 0.003 8.1 16.6
(2,4,4,10,10) (12,11,11,10,10) 2 1.998 1.977 0.002 1.8 1.09

4 3.974 3.980 0.002 6.1 -0.15
8 7.698 7.058 0.002 6.7 9.07

16 13.51 11.59 0.003 11 16.62
(2,4,4,10,10,4,4,2,2) (12,11,11,10,10,11,11,12,12) 2 1.998 1.976 0.001 3.0 1.12

4 3.974 3.839 0.002 5.8 3.51
8 7.698 7.654 0.002 22 0.57

16 13.51 12.88 0.030 38 4.89
(∗)Earmarked results presented in Fig. 11.

Table 5: Simulation results for mixed topology

Analytical Simulation
λ c θ θs δ CPU(min) ∆%θ

2.0 (2,2,2,2) 1.9995 1.991 0.002 1.6 0.42%
(4,4,4,4) 2.0000 2.001 0.002 1.6 -0.03%

(10,10,10,10) 2.0000 2.000 0.002 1.6 0.03%
4.0 (2,2,2,2) 3.9934 3.933 0.002 3.1 1.53%

(4,4,4,4) 3.9999 4.000 0.002 3.1 0.00%
(10,10,10,10) 4.0000 4.000 0.002 3.1 0.01%

8.0 (2,2,2,2) 7.9119 7.541 0.003 6.0 4.92%
(4,4,4,4) 7.9994 7.992 0.003 6.2 0.10%

(10,10,10,10) 8.0000 7.999 0.003 6.3 0.01%
16.0 (2,2,2,2) 14.966 13.237 0.003 11 13.1%

(4,4,4,4) 15.975 15.871 0.003 12 0.66%
(10,10,10,10) 16.000 15.998 0.004 13 0.01%

solutions (more details, on Deb et al. [32]) and the sta-
bilization of the maximal crowding distance may give
us some indication of convergence [35]. From Figure 9-
(a) we clearly see that a combined scheme including
mutation and crossover operators is effective for speed-
ing up the convergence. In Figure 9-(b) we see that,
unfortunately, an arbitrarily high mutation probability
cannot guarantee a fast convergence. For the problems
tested, the mutation rate was fixed to 20%, as we believe
that this is the value around which the maximal conver-

gence speed will be. Finally, observing Figure 9-(c), we
conclude that the population size does not change dra-
matically the convergence speed beyond a certain point.
Thus, in the light of the computational experiments, we
use here a population of 40 individuals, for the small
nets (up to nine nodes), and 80, for the large and com-
plex network. The number of generations is set to 500,
for the three- and five-node configurations, and 1,000,
for the nine-node and the large complex networks.

The resulting Pareto-optimal sets for some series sym-

DocNum 2009923-904 10

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

generation

m
ax

im
al

 c
ro

w
di

ng
 d

is
ta

nc
e

0 100 200 300 400 500

0.
1

0.
2

0.
3

0.
4

pure mutation (20%)
pure crossover
combination

(a) mutation and crossover iteration

generation

m
ax

im
al

 c
ro

w
di

ng
 d

is
ta

nc
e

0 100 200 300 400 500

0.
1

0.
2

0.
3

0.
4

1% mutation
20% mutation
50% mutation

(b) mutation effect

generation

m
ax

im
al

 c
ro

w
di

ng
 d

is
ta

nc
e

0 100 200 300 400 500

0.
1

0.
2

0.
3

0.
4

0.
5

pop_size=10
pop_size=20
pop_size=40

(c) population size effect

Figure 9: Performance assessment of GA algorithm

metrical settings are provided in Fig. 10. The other
topologies presented similar results (not shown). It is
worthwhile noticing that when applying the GA to find

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

4 6 8 10 12 14

3.
0

3.
5

4.
0

reference configuration
simulation

(a) 3-node series, λ = 4

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

5 10 15 20 25 30

4
5

6
7

8

reference configuration

(b) 5-node series, λ = 8

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

20 40 60 80

5
10

15

reference configuration

(c) 9-node series, λ = 16

Figure 10: GA optimization for some symmetrical set-
tings

the Pareto sets, some of the cases included heavy traf-
fic situations (for instance, in Fig. 10-a, for a total of

DocNum 2009923-904 11

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

3 servers, the throughput is as low as 3.258, while the
arrival rate equals 4.0). Since the GEM notably deteri-
orates its performance under heavy traffic, as noticed
in the last paragraph of Sec. 5.1, we have also pro-
vided some comparisons with simulated results, seen in
Fig. 10-(a), in order to attest for the quality and robust-
ness of the Pareto sets. Based on the simulations, we
run for 200,000 time units and replicated 20 times, we
found the half-width of the 95% confidence intervals too
small (≈ 0.002) to be noticeable in the graphs. Compar-
ing analytical and simulated results, we notice a some-
what larger disagreement between these two values for
heavier traffic in the network (i.e., the total number of
servers reduces). In conclusion, the methodology may
not find the best solutions under heavy traffic because
the actual throughput is not so accurately estimated by
the GEM in these cases. When the target throughput is
considerably lower than the arrival rate, i.e. the system
operates under heavy traffic, a lower number of servers
than what is actually necessary is indicated by the algo-
rithm to achieve a pre-specified throughput.

Figs. 10-(a)–(c) show that the throughput of all the
symmetrical setting (identified in the graphs as reference
configuration) lie on the Pareto-optimal set. As such,
these settings are optimal given the corresponding net-
work structure, arrival rate, and processing rates. A
valuable insight from the Pareto-optimal set generated
by the GA is that we are able to quantify the additional
throughput gained by adding one or more servers into
the network and optimizing the allocation of the addi-
tional servers. For example, the Pareto graph in Fig. 10-
(c) shows that too many servers are utilized and that
less servers could have been used without reducing the
throughput significantly. Eventually, one may use this
information to evaluate whether the cost of adding ex-
tra servers into the network is justified by the benefit
gained from the additional throughput. This informa-
tion is critical given the fact that there are cases where
additional servers only give marginal increase to the
throughput, and other cases where additional servers
give significant increase to the throughput.

Fig. 11 shows the GA optimization results for some
series asymmetrical settings (again, similar results, not
shown, were found for the other topologies). We
also presented comparisons with simulations, seen in
Fig. 11-(b), because some heavy traffic situations are
present. In fact, as seen in Fig. 11-(b), for a total number
of servers of 5, for instance, the approximate through-
put given from the GEM is only 4.984, for an external
arrival rate of 16. Confirming what we have observed
earlier, the GEM tends to estimate the throughput less
accurately when the network is under such heavy traf-
fic situations and the approximate Pareto set may not be
as accurate for such cases.

Analyzing Fig. 11 in more detail, we observe that the
throughput from all settings is below the Pareto-optimal
set, which means that our settings for the network struc-
ture, arrival rates, and processing rates were not opti-

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

5 10 15 20

6
8

10
12

14
16

18

reference configuration

(a) 3-node series, λ = 16

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

10 20 30

6
8

10
12

14
16

18

reference configuration
simulation

(b) 5-node series, λ = 16

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

10 20 30 40 50

5
10

15

reference configuration

(c) 9-node series, λ = 16

Figure 11: GA optimization for some asymmetrical set-
tings

mal, as previously for the symmetrical networks. More
specifically, for the same total number of servers in the

DocNum 2009923-904 12

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

network, there exists another server allocation that re-
sults in a better throughput. For example, in the case
of asymmetrical serial topology with 3 nodes, Fig. 11-
(a), processing rates of (12, 11, 10) for nodes 1, 2, and 3
respectively, and arrival rate λ = 16, the GA found a
much better server allocation, (7, 4, 5), with the same to-
tal allocation as (2, 4, 10). In other words, configuration
(7, 4, 5) results in a throughput of 15.997 as opposed to
a throughput of only 13.50, when the server allocation
was (2, 4, 10), as seen in Tab. 4. Note that both results
have a total number of 16 servers, but that the actual
configuration can be improved such that the through-
put can be increased. Depending upon the managerial
preference, one can thus decide to increase the through-
put by using the same number of servers but in a dif-
ferent configuration (i.e. find vertically the nearest con-
figuration on the Pareto-optimal set). Alternatively, one
can also accept the current throughput but achieve this
throughput with less servers used (i.e. find horizontally
the nearest configuration on the Pareto curve).

5.3 A large and complex topology

In this section, we analyze a large and complex topol-
ogy. This topology is inspired by an example fruit juice
blending and packaging plant. A detailed description
can be found in Fey [3]. Using this complex topology,
we elaborate in detail on the merits of the methodol-
ogy, by applying the GEM and the multi-objective ap-
proach to this large design problem. More specifically,
the queueing network structure given in Fig. 12 is ana-
lyzed.

It should be clear that this queueing network com-
bines all three topologies that have been investi-
gated separately in the previous section (namely series,
merge, and split). It is interesting to see whether the
proposed methodology performs well in such a compli-
cated queueing network setting. In this section, three
critical decisions are investigated in designing and opti-
mizing this zero buffer production system:

1. The effect of different arrival rates to the through-
put of the system;

2. The effect of different service rates of the servers to
the throughput of the system;

3. The effect of a different network structure to the
throughput of the system.

We run the GEM using the parameter values given in
Tab. 6. We set the arrival rate to 30.215 units/h. We con-
sider two situations, namely a slow server setting and a
fast server setting (see Tab. 6). The slow server setting
is created by using low processing rates of machines as
compared to the arrival rate. On the contrary, the fast
server setting is characterized by high processing rates
of machines as compared to the arrival rate. As such,
we would like to see the performance of the GEM in the
presence of both low and high blocking situations.

We compare the results from simulation with that of
the GEM and obtain the results depicted in Tab. 7. The
GEM performs quite well given such a complex queue-
ing network setting (that is, queueing network with
serial, merge and split topologies with a total of 137
servers involved). There is a notable reduction of the
GEM’s accuracy under a queueing network setting with
high blocking probabilities. However, it is clear that the
GEM is able to approximate the throughput of a very
complex queueing setting in a matter of seconds. This
eliminates the necessity to conduct lengthy simulations,
as indicated in Tab. 7 for the required CPU time.

Again using the GA in conjunction with the GEM, we
derive the Pareto-optimal set for the minimal number
of servers and the maximal throughput. We focus on
the results for the slow server case discussed in Tab. 6.
Fig. 13 gives the results for the Pareto set as the popula-
tion evolves. Clearly, the Pareto-set converges for a rea-
sonable number of generations (from 100). The white
dots in Fig. 13 corresponds to the total server alloca-
tion, 137, and corresponding throughput, 17.939, for the
slow-server case (see in Tab. 6 and 7). Fig. 13 clearly
shows that it is possible to either increase the through-
put with the same number of servers (vertical line from
white dot), or to reduce the total number of servers with
the same throughput (horizontal line from white dot).
Similar results were obtained for the fast server case.

The fact that the methodology is able to approximate
the throughput with high accuracy and within a short
amount of time allows us to analyze diverse system
design problems, which otherwise would be extremely
time consuming to do by using simulation. Follow-
ing these encouraging results, we will next consider
three particular system design problems of queueing
networks, namely (1) evaluating the effect of the ar-
rival rate, (2) evaluating the effect of different process-
ing rates, and (3) evaluating the network structure itself.

Different arrival rates

We consider the case in which it is possible to change
the arrival rate into the queueing network, while hold-
ing the service rate of each server constant. This situ-
ation typically denotes the case where a plant manager
wants to investigate the threshold of arrival rate beyond
which the current server setting is incapable of deliver-
ing the desirable throughput. To tackle this issue, we
vary the arrival rate into the system and analyze the per-
centage of blocking compared to the arrivals. Using the
same service rate as provided in Tab. 6, we obtain the
throughput for different arrival rates.

In Fig. 14, the results from different arrival rates give
us insight about the system’s capability of handling dif-
ferent arrival volumes. We can see, for example, that
the slow server configuration of the system is able to
handle an arrival rate up to 10 units/h with a resulting
blocking of less than 5%, while the fast server configura-
tion would handle much more. Higher arrival rates will
cause a significant increase in blocking percentage, as it

DocNum 2009923-904 13

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

Figure 12: Queueing network structure

Table 6: Processing rates used in the complex topology

Server Number of servers Slow servers (units/h) Fast servers (units/h)

Phase 1 server 1 19 5.833 15.42
Phase 1 server 2 14 3.400 20.00
Phase 1 server 3 5 3.400 11.05
Phase 1 server 4 3 3.400 11.05
Phase 2 servers 12 2.000 26.25
Ph3a servers 21 7.500 23.63
Ph3b servers 21 2.213 22.13
Ph3c servers 21 2.213 22.13
Ph3d servers 21 2.213 22.13

Table 7: Results for the large and complex topology

Analytical Simulation
λ θ θs δ CPU (min) ∆%θ

Slow servers 30.215 17.939 18.464 0.02 120 -2.8%
Fast servers 30.215 29.909 30.213 0.006 70.1 -1.0%

can be seen from Fig. 14. As a practical implication, the
plant manager can use this insight to determine the ap-
propriate arrival rate such that the blocking probability
is under the predefined blocking probability threshold.
This example shows how the GEM can be used effec-
tively to predict system performance given different ar-
rival rates, and suggest the threshold arrival rate that
will seriously impair the performance of the system in
terms of blocking.

Different processing rates

Another common case in system design, involves the
choice of the facilities used in the network. In particu-
lar, we assume that there are several choices of facilities
characterized with different processing rates. We treat
the arrival rate as an external variable that is difficult
or impossible to change. Given this setting, we would
like to evaluate the effect on throughput of changing the
service rates, while holding the arrival rate and all other

DocNum 2009923-904 14

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

0 50 100 150 200

0
10

20
30

reference configuration

initial population

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

0 50 100 150 200

0
10

20
30

after 10 generations

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

0 50 100 150 200

0
10

20
30

after 100 generations

f1(x), total # servers

f2
(x

),
 th

ro
ug

hp
ut

0 50 100 150 200

0
10

20
30

after 1,000 generations

Figure 13: GA optimization for the complex topology

arrival rate (units/h)

th
ro

ug
hp

ut
 (

un
its

/h
)

0 20 40 60 80 100 120 140

0
20

40
60

80
10

0
12

0 Slow servers
Fast servers

Figure 14: Plot of throughput for different arrival rates

parameters constant. We again set the arrival rate fixed
at 30.215 units/h, and use three alternative server pro-
cessing rates as given in Tab. 8. The number of servers
for each facility is that of Tab. 6. Given the fixed arrival

rate, each alternative configuration is evaluated on the
throughput as provided in the last line of Tab. 8.

We assume that configuration #1 is the default config-
uration of the queueing network. Note that this configu-
ration is similar to the previous case where we consider
high utilization setting. The resulting throughput from
the GEM is 17.939 units/h, as before. Given the pro-
cessing rates and the number of available servers, one
can easily notice that Phase 2 acts as the bottleneck in
the network. As such, one may increase the processing
rate of this particular node, as this could be advanta-
geous for the throughput. Furthermore, the last part of
the system (Phase 3) also has a relatively high utilization,
creating heavy imbalance in the system. Tab. 8 gives
the resulting throughput when the processing rates of
these phases are increased. Using this configuration, the
throughput is increased by 18%. As a last example, we
increase the processing rates of all last three nodes in
Phase 3 in the system and the bottleneck node (see con-
figuration #3). Consequently, the throughput increases
further to 34% compared to the default configuration.

This example shows how the GEM can be used ef-
fectively to predict system performance under varying

DocNum 2009923-904 15

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

Table 8: Throughput rates for different configurations

Server Configuration #1 (units/h) Configuration #2 (units/h) Configuration #3 (units/h)
Phase 1 server 1 5.833 5.833 5.833
Phase 1 server 2 3.400 3.400 3.400
Phase 1 server 3 3.400 3.400 3.400
Phase 1 server 4 3.400 3.400 3.400
Phase 2 servers 2.000 6.000 6.000
Ph3a servers 7.500 7.500 7.500
Ph3b servers 2.213 2.213 3.320
Ph3c servers 2.213 2.213 3.320
Ph3d servers 2.213 3.320 3.320
Throughput 17.939 21.191 24.030
Improvement 18% 34%

processing rates of servers in the zero buffer network.
The result from this analysis can be used as a basis for
i.e. benefit/cost analysis in order to justify the poten-
tial investment for increasing the servers’ capacity. Fol-
lowing this line of analysis, one can argue whether or
not the cost of increasing the capacity of the servers is
justified by the benefit from the additional throughput
gained.

Different network structures

We now consider the case where it is possible to ma-
nipulate the structure of the queueing network in order
to increase its throughput. One way to reduce conges-
tion (and thus increase the throughput) of a queueing
network is by combining multiple sources of variability,
which is known as the concept of variability pooling [36].
This can be achieved, in one way, by sharing the queue
through the use of more flexible machines.

Let us assume that by using more flexible machines
it is possible to reduce the number of lines in Phase 3
from 21 to only three lines. As such, we assume that the
new machines are capable of performing multiple tasks.
The new queueing network structure is given in Fig. 15.
Note that for the three-line structure, we will use the
data of configuration #1 in Tab. 8.

Using the same total number of servers as in config-
uration #1, we obtain a throughput of 23.613 units/h,
higher than before for this three-line structure, as com-
pared to the throughput of 17.939 units/h for the 21-line
structure (see Tab. 8, configuration #1). The additional
throughput gain can be the used to evaluate whether it
is beneficial to use more flexible packaging machines in
the network.

6 CONCLUSIONS AND FUTURE RESEARCH

Throughout this paper, we demonstrated the use of the
generalized expansion method (GEM) to both evaluate
and optimize the performance of a zero-buffer queue-
ing network. Concerning the performance evaluation
algorithm employed, the GEM, we have shown that it
typically delivers results within 5% of error, for basic se-
ries, merge, split, and mixed topologies, both symmet-

rical and asymmetrical. The maximum error observed
may be higher, around ≈ 20%, for configurations un-
der very heavy traffic. These are new results, since the
GEM has never been used to evaluate M/M/c/c queue-
ing networks neither has its efficacy assessed as thor-
oughly as done here.

The proposed optimization methodology was suc-
cessful to derive Pareto sets which, among other things,
showed that although some optimal configurations
could be correctly ‘guessed’, mainly for symmetrical
networks, this is not always the case, as seen for asym-
metrical networks. GA’s are a feasible alternative to op-
timize real life multi-objective zero-buffer queueing net-
works, as shown in our example with a large and com-
plex topology. We considered several simple topologies
of queueing networks, taking into account both sym-
metrical and asymmetrical arrival and service rates. The
insights from the multi-objective optimization of zero-
buffer queueing networks were proved to be invaluable,
particularly in the design phase of such systems.

We also provided a realistic large scale complex topol-
ogy for which the GEM was used to approximate the
throughput rate. We argued that in addition to its ac-
curacy, both in low and moderate blocking probability
settings, the GEM provides a relatively simple mean to
see how changes in arrival rate or processing rate affects
the performance of a zero buffer queueing networks.
All in all, we found the GEM as a fast (runs typically
in a split second) and accurate approximation method
to measure the throughput rate of zero-buffer queueing
networks as well as for optimization purposes of such
networks.

Topics for future research include the analysis and op-
timization of networks with cycles, e.g., to model many
important industrial systems that have loops, such as
systems with reverse streams of products due to re-
work, or even the extension to networks of GI/G/c/c
queues, i.e. including generally distributed and inde-
pendent arrivals [37, 38]. Concerning the optimization
tool, efforts could be made in order to speed up its con-
vergence by mean of even more specialized crossover
operators. In another direction, successful results were
reported in the past using Powell coupled with the
GEM to buffer allocation in certain types of queue-

DocNum 2009923-904 16

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

Figure 15: New queueing network structure

ing networks [25]. Whether or not a single-objective
tool as Powell could be successfully embedded in a
multi-objective methodology, possibly drawing inspira-
tion from Hughes [39], is another interesting topic for
future research in the area.

ACKNOWLEDGMENTS

The research of Frederico Cruz has been
partially funded by CNPq (Conselho Na-
cional de Desenvolvimento Cientı́fico e Tec-
nológico; grants 201046/1994-6, 301809/1996-8,
307702/2004-9, 472066/2004-8, 304944/2007-6,
561259/2008-9, 553019/2009-0), by CAPES
(Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior; grant BEX-0522/07-4), and by FAPEMIG
(Fundação de Amparo à Pesquisa do Estado de Minas
Gerais; grants CEX-289/98, CEX-855/98, TEC-875/07,
and CEX-PPM-00401/08).

REFERENCES

[1] Fransoo JC, Rutten WGMM. A typology of pro-
duction control situations in process industries. In-
ternational Journal of Operations and Production
Management 1994; 14 (12),:47–57.

[2] Hall NG, Sriskandarajah C. A survey of machine
scheduling problems with blocking and no-wait in
process. Operations Research 1996; 44:510–525.

[3] Fey J. Design of a fruit juice blending and pack-

aging plant. Ph.D. thesis, Eindhoven University of
Technology; 2000.

[4] Ramudhin A, Ratliff HD. Generating daily produc-
tion schedules in process industries. IIE Transac-
tions 1995; 27:646–656.

[5] Tsybakov B. Optimum discarding in a bufferless
system. Queueing Systems 2002; 41:165–197.

[6] Buzacott J, Shanthikumar JG. Stochastic Models of
Manufacturing Systems, Prentice-Hall; 1993.

[7] Perros HG. Queueing Networks with Blocking,
Oxford University Press; 1994.

[8] Jain S, Smith JM. Open finite queueing networks
with M/M/C/K parallel servers. Computers &
Operations Research 1994; 21 (3):297–317.

[9] Kerbache L, Smith JM. Assymptotic behavior of the
expansion method for open finite queueing net-
works. Computers & Operations Research 1988;
15 (2):157–169.

[10] Walrand J. An Introduction to Queueing Networks,
Prentice-Hall, Englewoord Cliffs; 1988.

[11] Dallery Y, Gershwin SB. Manufacturing flow line
systems: A review of models and analytical results.
Queueing Systems 1992; 12:3–94.

[12] Hildebrand D. On the capacity of tandem server,
finite queue, service systems. Operations Research
1968; 16:72–82.

DocNum 2009923-904 17

Zero-Buffer Queueing Networks Andriansyah, van Woensel, Cruz, & Duczmal

[13] Hillier F, Boling R. Finite queues in series with ex-
ponential or Erlang service times: A numerical ap-
proach. Operations Research 1967; 16:286–303.

[14] Muth E, Alkaff A. The throughput rate of three-
station production lines: A unifying solution. In-
ternational Journal of Production Research 1987;
25:1405–1413.

[15] Rao N. A generalization of the bowl phenomenon
in series production systems. International Journal
of Production Research 1976; 14 (4):437–443.

[16] Rao N. A viable alternative to the method of stages
solution of series production systems with Erlang
service times. International Journal of Production
Research 1976; 14 (6):699–702.

[17] Cruz FRB, Duarte AR, van Woensel T. Buffer al-
location in general single-server queueing net-
work. Computers & Operations Research 2008;
35 (11):3581–3598.

[18] Cheah J, Smith JM. Generalized M/G/C/C state
dependent queueing models and pedestrian traffic
flows. Queueing Systems 1994;15:365–386.

[19] Jain R, Smith JM. Modeling vehicular traffic flow
using M/G/C/C state dependent queueing mod-
els. Transportation Science 1997; 31 (4):324–336.

[20] Cruz FRB, Smith JM, Queiroz DC. Service and
capacity allocation in M/G/C/C state dependent
queueing networks. Computers & Operations Re-
search 2005; 32 (6):1545–1563.

[21] Cruz FRB, Smith JM. Approximate analysis
of M/G/c/c state-dependent queueing net-
works. Computers & Operations Research 2007;
34 (8):2332–2344.

[22] Kerbache L, Smith JM. The generalized expansion
method for open finite queueing networks. Euro-
pean Journal of Operational Research 1987; 32:448–
461.

[23] Kerbache L, Smith JM. Multi-objective routing
within large scale facilities using open finite queue-
ing networks. European Journal of Operational Re-
search 2000; 121:105–123.

[24] Spinellis D, Papodopoulos C, Smith JM. Large pro-
duction line optimisation using simulated anneal-
ing. International Journal of Production Research
2000; 38 (3):509–541.

[25] Smith JM, Cruz FRB. The buffer allocation prob-
lem for general finite buffer queueing networks. IIE
Transactions 2005; 37 (4):343–365.

[26] Labetoulle J, Pujolle G. Isolation method in a net-
work of queues. IEEE Transactions on Software En-
gineering 1980; SE-6 (4):373–381.

[27] Kleinrock L. Queueing Systems, Vol. I: Theory,
John Wiley & Sons, New York; 1975.

[28] Adelman D. A simple algebraic approximation to
the Erlang loss system, Operations Research Let-
ters 2008; 36 (4):484–491.

[29] Gross D, Harris CM. Fundamentals of Queueing
Theory, 3rd Edition, Wiley Series in Probability and
Statistics, New York; 1998.

[30] Purshouse RC, Fleming PJ. On the evolutionary
optimization of many conflicting objectives. IEEE
Transactions on Evolutionary Computation 2007;
11 (6):770–784.

[31] Mathieu R, Pittard L, Anandalingam G. Genetic
algorithms based approach to bi-level linear pro-
gramming. Recherche Opérationnelle/Operations
Research 1994; 28 (1):1–21.

[32] Deb K, Agrawal S, Pratap A, Meyarivan T. A
fast elitist non-dominated sorting genetic algo-
rithm for multi-objective optimization: NSGA-II,
IEEE Transactions on on Evolutionary Computa-
tion 2002; 6:182–197.

[33] Robinson S. A statistical process control approach
to selecting a warm-up period for a discrete-event
simulation. European Journal of Operational Re-
search 2007; 176 (1):332–346.

[34] Kelton D, Sadowski RP, Sadowski DA. Simulation
with Arena, McGraw Hill College Div., New York;
2001.

[35] O. Rudenko, M. Schoenauer, A steady performance
stopping criterion for Pareto-based evolutionary
algorithms, in: Proceedings of the 6th International
Multi-Objective Programming and Goal Program-
ming Conference, Hammamet, Tunisia, 2004.

[36] Hopp WJ, Spearman ML. Factory Physics, Mc-
Graw Hill International Editions, New York; 2000.

[37] Choi DW, Kim NK, Chae KC. A two-moment
approximation for the GI/G/c queue with finite
capacity. INFORMS Journal on Computing 2005;
17 (1):75–81.

[38] Kim NK, Chae KC. Transform-free analysis of the
GI/G/1/K queue through the decomposed Little’s
formula. Computers & Operations Research 2003;
30 (3):353–365.

[39] Hughes EJ. Multiple single objective Pareto sam-
pling, in: I. Press (Ed.), Congress on Evolu-
tionary Computation (CEC’03), Piscataway, NJ,
2003; 2678–2684. URL doi:10.1109/CEC.2003.
1299427

DocNum 2009923-904 18

