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1 Introduction

Statistical models for recurrent events have been investigated in many papers in the liter-
ature. Such models are of great interest to study the reliability and maintenance policies
for repairable systems (Ascher and Feingold (1984), Bain and Engelhardt (1991), Rigdon
and Basu (2000)). Frequently, the adopted model under minimal repair maintenance is a
Nonhomogeneous Poisson Process (NHPP), {N(t) : t ≥ 0}, where N(t) is the number of fail-
ures from the beginning of the follow-up until time t (Barlow and Hunter, 1960). A flexible
parametric form for the intensity function of the NHPP is

λ(t) =
β

θ

(
t

θ

)β−1

, (1)

with mean function

Λ(t) = EN(t) =
∫ t

0
λ(u) du =

(
t

θ

)β
,

where θ > 0 and β > 0. This model, known as the Power Law Process (PLP), was proposed
by Crow (1974) and since then it has become the most popular parametric intensity in the
repairable systems literature. The intensity function is increasing for β > 1, decreasing for
β < 1 and constant (i.e. the NHPP is actually a Homogeneous Poisson Process) for β = 1.
Adequacy of the PLP for a particular data set can be diagnosed graphically using either
Duane plots (Duane, 1964) or some modified Total Time on Tests plots (Klefsjö and Kumar,
1992). More formal hypotheses tests are considered by Baker (1996) and Bhattacharjee et
al. (2004).

Statistical inference for the PLP is generally based on the maximum likelihood estimator
(MLE) and its asymptotic properties (Berman and Turner (1992), Zhao and Xie (1996)).
However, some papers appeared in the literature using the Bayesian approach for the PLP
model (Sen (2002), Guida et al. (1989)). The Bayesian approach deals with the uncertainty
of the parameters in the model used to describe a recurrent system. A prior distribution
is assumed to represent the uncertainty in the model parameters before the current data is
observed. Reference prior distributions have been used in the Bayesian context by Guida et
al. (1989), Sen (2002) and Yu et al. (2006), among others. On the other hand, identifying a
family of conjugate prior distributions will often result in mathematical and computational
simplifications. Moreover, a conjugate prior distribution can be interpreted as additional
data, hence making prior elicitation easier (Raiffa and Schlaifer, 1961; Gelman et al., 2003).
Huang and Bier (1998), Huang (2001) and Kim et al. (2008) have proposed a conjugate prior
distribution for the parameters of the PLP looking at the functional form of the likelihood
function. More precisely, suppose that we observe n events at times t1 < · · · < tn and that
the process has been either time truncated (T is fixed, n is random and tn < T ) or failure
truncated (n is fixed, T = tn is random). In both cases the likelihood function is

L(β, θ) = [
n∏
i=1

λ(ti)] e
−Λ(T ) = βnθ−nβ [

n∏
i=1

ti]
β−1 exp{−(T/θ)β} (2)
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(Berman and Turner, 1992; Rigdon and Basu, 2000). Huang and Bier (1998) parametrize
the intensity (1) in terms of β and λ0 = θ−β and, by analogy with the resulting likelihood,
find the four parameters (i.e. m, c, α and y below) conjugate family

π(β, λ0) ∝ λm−1
0 βm−1[yme−α]β−1 exp{−λ0cy

β} . (3)

They go on by finding the normalizing constant and some moments and discussing properties
of the resulting posterior. However, the whole approach becomes somewhat difficult because
the parameter λ0 lacks an operational interpretation and the distributions in the family (3)
do not belong to any known class. Motivated by this, and also partly by results obtained
by Sen and Khattree (1998) and Sen (2002) for the posterior analysis under noninformative
priors of the form (θ βδ)−1, we propose here to parametrize the problem in terms of β and
η = Λ(T ) = (T/θ)β. On one side, β and η have simple operational definitions which will
often make prior elicitation easier. On the other side, in the (β, η) parametrization the
likelihood (2) becomes

L(β, η) = c [βne−nβ/β̂] [ηne−η] ∝ γ(β|n+ 1, n/β̂) γ(η|n+ 1, 1) , (4)

where c =
∏n
j=1 t

−1
j , β̂ = n/

∑n
j=1 log(T/tj) is the MLE of β and γ(x| a, b) = baxa−1e−bx/Γ(a)

(x, a, b > 0) is the density of the Gamma distribution with shape and scale parameters
equal to a and b, respectively. It follows then that β and η are orthogonal and the natural
conjugate family has densities of the form

π(β, η) = γ(β| aβ, bβ)× γ(η| aη, bη) , (5)

where the prior parameters aβ, bβ, aη and bη must all be positive if we want π(β, η) to be
proper, although non positive values can also be entertained as long as the posterior becomes
proper. The posterior density is

π(β, η| t1, . . . , tn, T ) ∝ L(β, η) π(β, η) ∝ γ(β| aβ + n, bβ + n/β̂)× γ(η| aη + n, bη + 1) , (6)

so that both a priori and a posteriori β and η are independent, each following a Gamma
distribution. Hence, the form of the posterior is quite tractable and, even when dealing
with parameters whose exact expectations are difficult to attain, it is quite easy to obtain
accurate approximations based on an i.i.d. posterior sample.

There are some advantages of using the Bayesian approach in this situation. First, even
if the likelihood takes essentially the same form, for both time and failure truncation, the
sampling distributions of the MLEs are different and hence a different analysis is required
for each case when using the frequentist approach. On the contrary, those two situations
can be considered simultaneously in the Bayesian approach, since the posterior distribution
will be the same (provided, of course, that we use the same prior). Second, the use of MLEs
is justified on asymptotic grounds and may require somewhat sophisticated arguments such
as appropriate reparametrizations to avoid extremely skewed sampling distributions, while
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the Bayesian approach deals quite naturally with small sample sizes and skewed posterior
distributions (for instance, the MLE β̂ is only defined when there has been observed at
least one event). Third, the Bayesian approach will typically produce results similar to
those based on MLEs when using appropriate reference priors. However, it also allows for
the introduction of external information to the data through the use of informative priors.
Moreover, the elicitation of such kind of prior distributions is facilitated in our approach due
to the operational interpretation attached to the parameters β and η (cf. subsection 2.2).
Fourth, even when using approximate inferences based on a posterior sample, the Bayesian
approach deals quite naturally when dealing with several quantities of interest. On the other
hand, obtaining estimates of standard errors for several MLEs may require the algebraic
calculation of gradients and hessians for each one of them. Finally, the Bayesian approach
also deals naturally with restrictions on the parameter space. For instance, inference about
the optimal maintenance time mentioned below requires the intensity to be increasing (i.e.
β > 1). In the Bayesian approach one simply specifies a prior distribution truncated for
β > 1 and the analysis proceeds in about the same manner as for the unrestricted case.
However, the frequentist approach will have trouble dealing with this situation when the
MLE β̂ lies close to β = 1, which is indeed the case for the transformers data set discussed
in Section 5.

The parametrization (β, η) suggests rather easily how to treat the case when several
realizations of the PLP are observed along overlapping time intervals. Although this case
appears frequently in practice, because repairable systems are usually observed in different
time intervals (truncation times), methodological developments have been somewhat lack-
ing in the literature, especially in the Bayesian setting. More precisely, suppose that K
realizations of the same PLP have been observed and let tij denote the j-th event time for
the i-th realization (j = 1, . . . , ni and i = 1, . . . , K). Let Ti be the truncation time corre-
sponding to the i − th realization. Then we show in Section 3 that the parameters β and
η =

∑K
i=1 Λ(Ti) =

∑K
i=1(Ti/θ)

β are orthogonal and that, under the prior specification (5),
the posterior has the same form (6) but with an additional factor which does not depend

on η and is proportional to exp{KL[(
T β̂1∑K

h=1
T β̂
h

, · · · , T β̂K∑K

h=1
T β̂
h

)||( Tβ1∑K

h=1
Tβ
h

, · · · , TβK∑K

h=1
Tβ
h

)]}, where

KL[·||·] is the Kullback-Leibler divergence. Hence, the form of the posterior lends itself to
an easy i.i.d. simulation using for instance the rejection sampling algorithm.

Our interest in the case of many overlapping realizations stems mainly from a real ap-
plication concerning the estimation of the optimal maintenance time for a set of power
transformers, which we discuss in Section 5. In short, consider a repairable system modeled
by a NHPP with an increasing intensity function subject to two types of repairs: either a
minimal repair after a failure which restores the system (i.e. the intensity) to exactly the
same level it was immediately before the failure or a preventive maintenance which restores
the system to ”as good as new” condition. If the preventive maintenances are performed
every τ units of time, the expected cost per unit of time is

H(τ) = [CPM + CMREN(τ)]/τ = [CPM + CMRΛ(τ)]/τ , (7)
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where CMR and CPM are the expected costs associated to the two types of repair actions. It
can be shown (Barlow and Hunter, 1960; Gilardoni and Colosimo, 2007) that the periodicity
τ which minimizes H(τ) satisfies that τλ(τ)−Λ(τ) = CPM/CMR. In the special case of the
PLP, τ becomes

τ = θ

[
CPM

(β − 1)CMR

]1/β

. (8)

However, inference about τ only makes sense when β > 1, leading to the necessity of trun-
cating the prior density for β. This can be done preserving conjugacy by truncating the
prior (5) to the set β > 1, because then the posterior density would be the same as (6) but
also truncated for β > 1. However, because of the term (β − 1)1/β in the denominator of τ
and the fact that the posterior density is non null near β = 1, the posterior expectation of
τ will be infinite. Still, under the truncated prior, one can use for instance a maximum a
posteriori estimate for the optimal time. An alternative, non-conjugate formulation, which
puts less weight to values of β close to one and hence will make the posterior expectation of
τ finite, is to consider a priori that (β − 1) follows a Gamma distribution.

Besides Sections 3 and 5, which deal respectively with the many realizations setting and
with the inference for the optimal periodicity for the power transformers data set, the rest
of the paper is organized as follows. In Section 2 we make some additional considerations re-
garding inference for a single realization of the PLP. It also includes a discussion of reference
and informative priors and some computational aspects when the interest is centered in a
function of the parameters whose posterior expectation cannot be computed explicitly. Sec-
tion 4 shows some Monte Carlo simulations that help to understand the frequentist behavior
of the Bayes estimates under different prior specifications and to compare them to the MLE
estimates in the case of several realizations. The simulation scenarios and prior distributions
are motivated from the real case discussed in Section 5. Finally, some concluding remarks
end the paper in Section 6.

2 A single PLP realization

Suppose a time truncated process observed in (0, T ), and let `(β, η) = logL(β, η) = log c +
n log β − nβ/β̂ + n log η − η be the log-likelihood in the (β, η) parametrization. Since ∇` =
(∂`/∂β, ∂`/∂η)′ = (n/β−n/β̂, n/η−1)′, the maximum likelihood estimates (MLE) of β and

η are β̂ and n respectively. Hence, the MLE of θ = T η−1/β is θ̂ = T η̂−1/β̂ = T n−1/β̂. From
the Fisher information matrix

I(β, η) = −

 E ∂2 `
∂β2 E ∂2 `

∂β ∂η

E ∂2 `
∂β ∂η

E ∂2 `
∂η2

 = n

(
1
β2 0

0 1
η2

)
, (9)

it follows that the asymptotic covariance matrix of (β̂, η̂) is Var(β̂, η̂) ≈ n−1 Diag(β2, η2).
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2.1 Posterior Analysis

Let aβ > −n, bβ > −n/β̂, aη > −n and bη > −1 in (5) so that the posterior density (6)
is proper. Suppose that the interest is centered in a function φ(β, η) such as θ = T/η1/β

or, perhaps, as in Sen (2002), the current intensity λ(T ) = βT β−1/θβ = β η/T . Under
squared error loss, the Bayes estimate of φ is E[φ(β, η)|t1, . . . , tn]. For instance, the posterior
expectation of the current intensity is

E[λ(T )|t1, . . . , tn] = E[
βη

T
|t1, . . . , tn] =

1

T
E[β|t1, . . . , tn]E[η|t1, . . . , tn] =

1

T

aβ + n

bβ + n/β̂

aη + n

bη + 1
.

Credible intervals can be obtained from the posterior quantiles of φ. An alternative that we
consider in Section 5 is to use Maximum a Posteriori estimates. In this case the mode of the
posterior density (6) is attained for β̃ = (aβ +n−1)/(bβ +n/β̂) and η̃ = (aη+n−1)/(bη+1).
Hence, an alternative estimate for λ(T ) = β η/T is

λ̃(T ) =
1

T
β̃ η̃ =

1

T

aβ + n− 1

bβ + n/β̂

aη + n− 1

bη + 1
.

When integration of moments or quantiles of φ with respect to the posterior distribution
(6) is difficult, one can easily generate Monte Carlo samples (β1, η1), . . . , (βm, ηm) from the
posterior and approximate, for instance, E[φ(β, η)|t1, . . . , tn] by m−1∑m

h=1 φ(βh, ηh).

2.2 Prior Elicitation

It follows from (9) that the noninformative Jeffrey’s prior is

π(β, η) ∝ [det I(β, η)]
1
2 ∝ (βη)−1. (10)

In the original (β, θ) parametrization this is equivalent to π(β, θ) ∝ θ−1 (see (11) below).
The improper reference priors π(β, θ) ∝ (θ βδ)−1 (δ < n), considered by Bar-Lev et

al. (1992) and Sen (2002), which generalize the noninformative priors π(β, θ) ∝ θ−1 and
π(β, θ) ∝ (θ β)−1 (Lingham and Sivaganesan, 1997; Guida et al., 1989; Box and Tiao, 1973),
are special cases of (5) when aη = bη = bβ = 0 and aβ = −δ. To see this, note that

π(β, η) = π(β, θ)| θ=T/η1/β × |J |

∝ (θ βδ)−1
∣∣∣
θ=T/η1/β

× T β−1 η−1−1/β ∝ β−δ−1 η−1 , (11)

where J = −T β β−1 η−1−1/β is the Jacobian of the transformation (β, θ) 7→ (β, η).
To finish this section we note that the elicitation of proper informative priors in the

(β, η) parametrization may be facilitated in view that both β and η have clear operational
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interpretations. In this sense, since

dΛ(t)/Λ(t)

d t/t
= t

Λ′(t)

Λ(t)
= t

λ(t)

Λ(t)
= t

(β/θ)(t/θ)β−1

(t/θ)β
= β ,

β is the elasticity of the mean number of events Λ(t) with respect to time, i.e. the relative
change in Λ due to relative change in t. Indeed, the PLP is characterized by the fact that
this elasticity is constant over time. On the other hand, η = (T/θ)β = Λ(T ) = EN(T ) is
the expected number of events during the period that the process has been observed.

3 Several overlapping realizations

The methods established in Section 2 can be easily extended to the case that K independent
realizations of the same PLP, say N1(t), . . . , NK(t), are observed all up to the same time
T . This follows from the well known fact that the superposition of NHPPs is also a NHPP
whose intensity function is the sum of the individual intensities (Thompson, 1998). In other
words, N+(t) =

∑K
i=1Ni(t) has intensity λ+(t) = Kλ(t) = K β tβ−1/θβ and hence is also

a PLP with parameters β+ = β and θ+ = θ/K1/β. Therefore, one can use the ideas in
Section 2 to draw inferences about β+ and θ+ and these are equivalent to inferences about
the original parameters β = β+ and θ = θ+K

1/β. However, it is not clear how to proceed
when the K realizations have been observed along different time intervals.

3.1 Overlapping realizations of a PLP

Suppose that N1(t), . . . , NK(t) are independent realizations of the same PLP observed re-
spectively up to times T1, . . . , TK . Let tij be the j-th event time for the i-th realization,
i = 1, · · · , K; j = 1, · · · , ni. According to equation (2), the likelihood in the original (β, θ)
parametrization is

L(β, θ) =
K∏
i=1

e−(Ti/θ)
β βni

θniβ

ni∏
j=1

tβ−1
ij

 =
βn

θnβ
[
K∏
i=1

ni∏
j=1

tij]
β−1 exp{−

K∑
i=1

(Ti/θ)
β} , (12)

where n =
∑K
i=1 ni is the total number of events. If for some of the realizations no event

has been observed, take the corresponding ni = 0 and set in equation (12) empty sums and

products equal to 0 and 1, respectively. Hence, the MLE satisfies that θ̂ = [
∑K
i=1 T

β̂
i /n]1/β̂

and
1

n

K∑
i=1

ni∑
j=1

log tij =

∑K
i=1 T

β̂
i log Ti∑K

i=1 T
β̂
i

− 1

β̂
, (13)

and must be obtained numerically (Rigdon and Basu, 2000).
If we reparametrize the problem in terms of β and η =

∑K
i=1(Ti/θ)

β, it follows after some
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algebra that the likelihood (12) becomes

L(β, η) = c× ηne−η × βne−nβ/β̂ × enF (β) ∝ γ(η|n+ 1, 1) γ(β|n+ 1, n/β̂) enF (β) (14)

where now c =
∏K
i=1

∏ni
j=1 t

−1
ij , β̂ satisfies (13) and

F (β) =

∑K
i=1 T

β̂
i log Ti∑K

i=1 T
β̂
i

β − log
K∑
i=1

T βi .

Note that β and η are still orthogonal. The log-likelihood is `(β, η) = log c + n log η − η +
n log β − nβ/β̂ + nF (β). Therefore, the MLE are obtained solving ∂`/∂β = n/β − n/β̂ +
nF ′(β) = 0 and ∂`/∂η = n/η − 1 = 0, which gives η̂ = n and, of course, β̂ given by (13).
In order to compute asymptotic variances note that ∂2`

∂β2 = −n/β2 + nF ′′(β), ∂2`
∂η2 = −n/η2

and ∂2`
∂β ∂η

= 0. Hence, the Fisher information matrix is I(β, η) = n Diag(β−2 − F ′′(β), η−2),
where

F ′′(β) = −
K∑
i=1

T βi∑K
h=1 T

β
h

[log Ti]
2 +

(
K∑
i=1

T βi∑K
h=1 T

β
h

log Ti

)2

is formally the same as minus the variance of a random variable taking values log Ti with
probabilities proportional to T βi (i = 1 , . . . , K). The asymptotic covariance matrix of (β̂, η̂)
is then [I(β, η)]−1 = n−1 Diag([1/β2 − F ′′(β)]−1, η2). Asymptotic variances for functions of
the parameters can be obtained using the Delta Method.

3.2 Posterior analysis

Under the prior specification (5), the posterior density becomes

π(β, η|D) ∝ γ(η| aη + n, bη + 1)× γ(β| aβ + n, bβ + n/β̂)× enF (β) , (15)

where D = {tij : i = 1, . . . , K; j = 1, . . . , ni}. It should be immediate from the comparison
of (15) with (6) that the behavior of F (β) is crucial to understand the difference between
the one and the many realizations settings. Now, if β̂ is the solution of (13), it follows that
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F (β̂)− F (β)

=

∑K
i=1 T

β̂
i log Ti∑K

i=1 T
β̂
i

β̂ − log
K∑
i=1

T β̂i −
∑K
i=1 T

β̂
i log Ti∑K

i=1 T
β̂
i

β + log
K∑
i=1

T βi

=

∑K
i=1 T

β̂
i log(T β̂i /T

β
i )∑K

i=1 T
β̂
i

β + log

∑K
i=1 T

β
i∑K

i=1 T
β̂
i

=
K∑
i=1

T β̂i∑K
h=1 T

β̂
h

log
T β̂i /

∑K
h=1 T

β̂
h

T βi /
∑K
h=1 T

β
h

= KL[(
T β̂1∑K
h=1 T

β̂
h

, · · · , T β̂K∑K
h=1 T

β̂
h

)||( T β1∑K
h=1 T

β
h

, · · · , T βK∑K
h=1 T

β
h

)] ≥ 0 ,

where KL[(p1, . . . , pK)||(q1, . . . , qK)) =
∑K
i=1 pi log pi

qi
is the Kullback-Leibler divergence.

Hence, F (β) attains a maximum when β = β̂. Moreover, F (β) is constant and equal to
F (β̂) if and only if T1 = T2 = · · · = TK .

In order to sample from the posterior distribution (15) we use the independence between

η and β and obtain first η1, . . . , ηm
i.i.d.∼ Gamma(aη + n, bη + 1). Simulation from the pos-

terior distribution of β becomes easy by using, for instance, the rejection or importance
sampling algorithms (see Gelman et al. (2003) or Devroye (1986)). For instance, the re-
jection algorithm produces an observation from the posterior of β by sampling repeatedly
β ∼ γ(β|aβ +n, bβ +n/β̂) and u ∼ Uniform(0,1) until u ≤ exp{n[F (β)−F (β̂)]}. Repeating
the rejection algorithm m times we obtain an i.i.d. sample β1, . . . , βm. Once that an i.i.d.
sample from the posterior π(β, η|D) has been obtained we proceed essentially as in Section
2. In our practice the rejection sampling method has been quite efficient, in the sense that
even for problems with few failures the rejection rate is below 10%.

The rejection algorithm can also be used when the prior for β is a Gamma distribution
truncated to the right of β = 1. In this case, one just changes the proposal distribution
above to be also a truncated Gamma. In other words, to obtain an observation from π(β|D)
one samples repeatedly β ∼ γ(β|aβ + n, bβ + n/β̂) and u ∼ Uniform(0,1) until both β > 1

and u ≤ exp{n[F (β) − F (β̂)]}. However, the rejection algorithm would need some major
adaptation if one wants to consider a prior distribution for β which is restricted to have
support in (1,∞) and which is not a truncated Gamma. For instance, we argue in Sections 4
and 5 that for the power transformers problem it may be better to consider a shifted Gamma
prior, i.e. β − 1 ∼ Gamma(aβ,bβ). In this case one could use the Metropolis algorithm to
obtain an approximate sample from the posterior of β. Briefly, we set a starting value β0

(e.g. β0 = β̂) and proceed iteratively as follows. At step (i+ 1) we generate z ∼ Normal(0,1)
and u ∼ Uniform(0,1) and let βcand = βi +Z. Now if u < min{π(βcand|D)/π(βi|D), 1} we let
βi+1 = βcand, otherwise let βi+1 = βi. In general the Metropolis algorithm produce correlated
observations which may be unduly influenced by the starting value. If one wants to avoid
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this, the algorithm can be run for M = B + ml cycles, the first B observations discarded
(the ”burn-in”) and then every other l of the remaining simulated values can be kept to end
up with a size m approximate i.i.d. sample.

4 Monte Carlo Simulation

In this section we describe some Monte Carlo simulations in order to compare Bayes estimates
under different prior specifications in the case of overlapping realizations of a PLP. The Bayes
estimates were also compared to the ones obtained by maximum likelihood. As described
in Section 1, the optimal preventive maintenance policy that minimizes expected cost per
unit of time is the value τ defined by (8). τ was the quantity of interest in the simulations.
The prior (and hence also the posterior) distribution must satisfy Pr(β > 1) = 1 since the
intensity function of failures must be increasing as discussed in Section 1. This information
has been incorporated in all of the prior specifications in simulations.

Different prior distributions for β and η were used in the simulations. The following
notations and definitions were used in the simulation runs:

• MLE - Maximum likelihood estimate;

• BayesE1 - Bayes estimator by considering a reference prior distribution (11) for δ = 1
truncated at β = 1;

• BayesE2 - Bayes estimator by considering Jeffrey’s prior distribution (10) truncated at
β = 1;

• BayesE3 - Bayes estimator by considering gamma prior distributions truncated at β =
1. That is π(β, η) ∝ γ(β| aβ, bβ) × γ(η| aη, bη)A(1,∞)(β), where A(1,∞)(β) = 1, if β ∈
(1,∞) and 0, otherwise.

• BayesE4 - Bayes estimator by considering a gamma prior distribution shifted to 1 for
β and gamma for η. That means, β − 1 ∼ γ(aβ, bβ).;

• CP - Interval Coverage Percentage.

Prior hyperparameters for BayesE3 and BayesE4 were set to 10−4 except for aβ in the latter
that must be shifted by 1 and was set to 1 + 10−4.

In the likelihood approach, asymptotic confidence intervals for τ were obtained by us-
ing the delta method (Gilardoni and Colosimo, 2007). In the Bayesian approach, we used
the highest posterior density (HPD) intervals. The Bayesian estimates were the posterior
distribution mode. That is, the value that maximize the posterior distribution of τ .

Throughout the Monte Carlo study we consider β = 2, θ = 24 and CMR/CPM = 16, so
that it follows from (8) that τ = 6. The number of systems K and truncation times Ti’s
were set to study three different situations. The first two achieve a large number of failures
by considering respectively many systems and large truncation times. More precisely, we
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have in situation 1 K = 500 systems all truncated at T = 100, so that the expected number
of failures per system equals 17.361. Situation 2 considers K = 50 systems all truncated
at T = 320, resulting in 178 expected failures per system. Finally, the third situation has
K = 50 systems truncated at T =30 and hence only 1.5625 expected failures per system, so
that this situation is probably closer to the real example considered in the next section.

The results of the Monte Carlo simulations based on 3000 replicas are shown in Table
1. In the first two situations there were no significant differences among methods and prior
distributions. Probably, sample sizes were large enough to overcome differences in the prior
specifications. In the third situation, Bayes estimates have similar results. BayesE4 has the
worst interval covarage. In general, all estimates have a small bias, the MLE being the least
biased.

Table 1: Summary of simulation results
MLE BayesE1 BayesE2 BayesE3 BayesE4

Mean of τ̂ 6.00 6.00 6.00 6.00 6.02
Situation 1 CP 94.9 94.3 94.4 94.4 95.0

Mean length 0.475 0.475 0.474 0.474 0.482

Mean of τ̂ 6.00 6.00 6.00 6.00 6.03
Situation 2 CP 94.7 94.5 94.6 94.6 95.0

Mean length 0.753 0.753 0.752 0.753 0.765

Mean of τ̂ 6.11 6.17 6.12 6.13 6.16
Situation 3 CP 95.4 95.2 95.9 95.1 93.1

Mean length 2.125 2.149 2.125 2.124 1.971

5 Example: Maintenance of electrical power transformers

The data in Figure 1(a) shows the failure history of 40 electrical power transformers (Gi-
lardoni and Colosimo, 2007). The usual nonparametric estimate of Λ (Meeker and Escobar,
1998) is shown in Figure 1(b). The convex form of this plot provides some evidence that the
intensity function is increasing.

The same prior distributions used in Section 4 were considered here. According to the
electrical power company, the ratio between minimal repair and preventive maintenance costs
is CMR/CPM = 15. Table 4 presents the results. The interval based on the ML estimates is
the shortest one. Point estimates are in agreement among Bayesian methods taking a value
around 6400 hours, although the ML estimate is 6290 hours. Among the Bayesian intervals,
those considering the Jeffrey’s and the translated gamma prior are shorter. Posterior density
function of τ appears to be slightly skewed to the right (see Figure 2 for the Jeffrey’s prior
case).

In addition to point and interval estimates for the optimal maintenance time τ , it is
useful to gain an idea of the size of the difference between estimated and true expected costs
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Figure 1: (a) Power transformer data. Each horizontal line represents a transformer and
dots are observed failure times; (b) Mean Cumulative Failure (MCF) type estimate for Λ.

Table 2: τ estimates for the power transformers data (in 1000 hours).
MLE BayesE1 BayesE2 BayesE3 BayesE4

Estimate 6.29 6.44 6.41 6.41 6.56
Interval [4.87;7.70] [5.06;8.48] [5.00;8.72] [5.02;8.74] [5.04;8.44]
Length 2.83 3.42 3.72 3.72 3.40

(Gilardoni and Colosimo, 2007). This difference can be obtained from (7) as

H(τ̂)−H(τ) =
1

τ̂

CPM + CMR

(
τ̂

θ

)β− 1

τ

[
CPM + CMR

(
τ

θ

)β]

= CPM

[
1

τ̂

(
1 +

CMR

CPM

τ̂β∑K
i=1 T

β
i

η

)
− 1

τ

(
1 +

CMR

CPM

τβ∑K
i=1 T

β
i

η

)]
.

H(τ̂) − H(τ) measures the difference in the cost attained for the present state of information
and that which could be attained if one had perfect information (i.e. if sampling could be
continued forever). Observe that because of the definition of the optimal τ one must have
that H(τ̂)−H(τ) ≥ 0. Hence, we usually compute a credible upper limit for the difference.

To compute a rao-blackwellized (Gelfand and Smith , 1990) approximation to the poste-
rior density of the optimal τ , note that

π(τ |D) =
∫
π(τ |β,D)π(β|D) dβ ≈ 1

m

m∑
j=1

π(τ |βj, D) ,
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Figure 2: Approximate (a) posterior density of τ , (b) cost per unit of time and (c) posterior
density of the difference between costs, all for the Jeffrey’s prior.

where we use that ψ = CMR

CPM

(β−1)τβ∑K

i=1
Tβi

to obtain that

π(τ |β,D) = π(ψ|β,D)

∣∣∣∣∣∂ψ∂τ
∣∣∣∣∣ = γ

(
CMR

CPM

(β − 1)τβ∑K
i=1 T

β
i

∣∣∣∣∣ aψ + n, bψ + 1

)
CMR

CPM

β(β − 1)τβ−1∑K
i=1 T

β
i

.

Figure 2(c) presents the posterior density of the difference between costs.

6 Final Remarks

In this paper a conjugate prior distribution was derived for the PLP model in the one system
case. The proposed conjugate prior is a product of gamma distributions for the parameters
of the PLP in an alternative parametrization. The results are extended for overlapping
realizations of the same PLP. Although in the many realization case the product of gamma
prior is no longer conjugate, it was showed that posterior sampling is easy to implement.

Monte Carlo simulations are used in order to compare some proposed prior distributions
in the context of a real application. Three different situations and four prior distributions
are considered in the simulations. It can be observed no significant differences among prior
distributions in the considered scenarios. They are also very close to the MLE results. Some
Monte Carlo simulations were carried out for small sample sizes. They are not shown in
the paper. It was difficult to summarize the results since, by chance, a small number of
samples were obtained such that MLE of β was smaller than one. Under this condition, τ
is not defined since there is no optimal time when the intensity function is decreasing. This
situation is easily handled in the Bayesian approach by making prior distributions truncated
for β > 1.

In the real case analysis in Section 5, point estimates are similar among the methods.
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Bayesian intervals considering Jeffreys and gamma prior distributions are shorter than the
one using prior of reference. Maximum likelihood confidence interval is the shortest one.

We considered just the time truncation situation in this paper. That is T is fixed by
design. This is basically the way that most of the practical situations collect data from
repairable systems. Another possible situation is the case in which data collection is ceased
after a fixed number of failures. This sampling scheme is said to be failure truncated. Since
the likelihood is essentially the same as for the time truncated case, the Bayesian analysis
takes the same form irrespective of the experimental design. However, a cautionary note
regarding the transformation η = (T/θ)β or η =

∑K
i=1(Ti/θ)

β is in order when one or more
of the realizations are failure truncated. In this case, one or more of the Ti’s are random and
η would depend on data. Hence, the prior density (5) depends indirectly on the observed
data, which is not allowed from a strict Bayesian viewpoint. In our opinion this fact has
little, if any, practical importance. Moreover, we stress that the problem appears only in
the case of failure truncation and even then, disappears if one uses a non-informative prior
π(η) ∝ η−1 (i.e. aη = bη = 0), because such a prior would be equivalent to π(θ) ∝ θ−1 (see
equation (11)), which of course does not depend on data.
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