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Abstract

This final paper aim$o find a suitable Bootstrap Method for the Generalized Autoregressive
Moving Average Model The focus is on the Moving Block BootstréllBB) resampling
scheme with & performance being evaluated through a Monte Carlo study and contrasted to
their asymptotic Gaussian counterpdrttis stablished that the aforementioned resampling
procedure can generate good estimatgsachmeterdias and confidence irgrvals Though,

the results rely heavily on the simulated model parameters and block lengths used in the MBB
procedure.
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1 INTRODUCTION

This monograph is concerned with the implementation and evaluation of bootstrap
parametembias (the difference betweerné parameter true value and its estimator expected
value) and confidence interval estimation in the context of thecadled Generalized
Autoregressive Moving Average modélsnceforttGARMAmModels proposed by Benjamin et
al. (2003) The estimation perfmance is accessed througivonte Carlo simulation scheme.

GARMAmModels can be easily viewedasextension of the lineaegressionrmodel, to
accommodate both tirgeries and noaussiarobservationsTaking into account the time
dependence betweelependent and explanatory variahlese ofthe mostused procedurds
the Gaussiautoregressive Movingwverage(ARMA) model (Box and Jenkins, 197&nd
with regard to the negaussian behavipthe Generalized Linedviodel (GLM) (McCullagh
and Nelder, 189)is often employed|f we combine both previoysroceduresve arrive at the
GARMAmModel, that is, th6ARMAmodel & simply the application of an ARMArocess to
model the conditional mean (through appropriatdink function) of the dependent variable
within the exponential family of distributions

Parameterestimation andnference in theGARMA model are based onmaximum
likelihood asymptotic resultshough, for small length series, those results might not hotd. F
this reason, we employ bootstragetmods to help us access the accuracy of our estimates.
Traditional bootstrap methods rely on the indepehdbgervations assumption, and as such,
additional care must be taken when choosing a suitable resampling scheme that incaigporates
intrinsic temporaldependence. A wide range of bootstrap methoda\aiable however, the
implementationn the GARMAcontextis not easyand their performance is not homogenous

Owing to this, lhe performance of parameter bias and confidence interval estimation is
evaluatedn light of the Moving Block Bootstrap (MBBKunsch, 1989fyesampling scheme
That is, our main goal is to examine whether the MBB can generate good and consistent results,
and as such, if it can be widely appliedhie GARMA framework. Additionally, as the block
length is a relevant input for this class of resampling schéraealgorithms of Hall, Horowitz
and Jing (1995) and Lahiri, Furukawa and Lee (2007)immemented.Furthermore, a
modified version of the foner algorithm is put forth angbme remarks regarding the optimal
block length choice anmade.

A Monte Carlo study with 1000 simulations for each model is used for parameter bias
and confidence interval evaluatidn theformer,we check whether the btstrapbias corrected

distribution is centeredon its true value, whereas in the latter we compute the bootstrap



replicatiorscoverage rate (i.e. the count of intervals containing the parameter true value divided
by the number of simulationand contrasit to the asymptoti€aussiarf{fNormal) interval.

We study a wide variety of models from both the continuous and discrete cases, with
simulations restricted to tt@ammaandPoissonGARMAmModels, respectively.

The outline of tis monograph is as follows Section 2 weprovide some historical
references for both tteARMAmModel and the bdstrap method in the tirseries perspective
The thirdSectionintroduces th&SARMAmMode| Section 4the bootstrap schemes usaedhe
study, Section5 analyze the sinulation resultsSection 6 a real data example &ection7
gives some concluding remarkehe Appendixprovides additional information suppressed in
the text for the sake of concision.

2 LITERATURE REVIEW

This section is divided in two sidectionsthefirst is abouthe GARMAmModel and the

secondhe bootstrap method applied in the time series framework.

2.1 The GARMA model

The GARMAmodelwas introduced and formalized in the paper of Benjamin et al.
(2003); however, many ideas present in the model wreduced before in the time series
literature(see for exampl@eger and Qagqish (19888imilar results applied in the context of
discrete time series can be found at Davis et al. (1999), where the Generalized Linear
Autoregressive Model (GLARMA) is deeloped. For applications of the latter the reader can
refer to Jung et al. (2006).

We wi | | bear i et amR003)notBreai jheGHRMAMNedel as an
extension to the Gaussian ARM®Aodel, whichtraces back tothe work of Cox et al. (1981)n

the text, the author claims that in the fGaussian series perspective:

It would be desirable to have a general exponential family formulation. Such models
could be formulated as 'observation driven', or as 'patemnariven’, the latter being
instance of latent structure modef&ox et al., 1981 p.101)

If we make use of Cox et al. (198tErminology,the GARMAmModelsuits theclass of

observation drivemodels, as opposed parametedriven (statespacepne.
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Some ofthe advantages of the stagace approaclareits flexibility and ability to
model the behavior of different components of the series separately and then aggregate the
submodels to form an overall model for the time sdiilrgbin and Koopman2000).0On the
other hand, the improvedeftibility comes at the expense of complicate estimation process and
crude approximation@Benjamin et al., 2003)lhe study of statspace models is beyond the
scope of this monograph and the reader is encouraged to r&uwnbia and Koopmar§2000)
for further details.

The paper of Benjamin et al. (2003) extends the work of Zeger and Qagqish (1988) and
Li (1994). The former implementa QuasiLikelihood Markov model in the conditional
moments, in the same sense of McCullagh and Nelde®) ¥@&re the maigal moments are
employed Neverthelesstheir focus is on autoregressive modglsuch as autoregressive
conditionally heteroscedastic (ARCH) models for examplee latter emphasizes the moving
average perspective into the GLM context; their formulas@eneral enough to accommodate
both autoregressive and moving average psaEgeshough no general formal treatment is
provided in this case.

With respect to noiGaussian autoregressin@dels,we can also highlight the work of
Grunwaldet al. (2000),n which the authors dew@ the class otonditional liner AR(1)
models(CLAR(1) models) This is a firstorder conditional linear autoregressive stuuet that
subsumes a wide variety of models previously proposed in the literature, regardless of the
generatingmethod innovation, conditional distribution, random coefficient, thinning and
random coefficient thinning. For instance, consider the mofi@deger and Qagish (1988),
which is included in the conditional distribution method. The authors stageassumptions
under which the CLAR(1) stationary mean can be derived andsdsationary variance (given
a quadratic variance functiopremise).They also provide the conditions for a stationary
(ergodic) distribution.

A detailed analysis othe GARVIA model can be found at the book of Kedem and
Fokianos (2002), where the authors explain in details the model, estimation process, residual
analysis, many applications to discrete process and an exposition of the main models in the
literature.

Some furthe developments have been proposed regar@iARMAmModels Woodard
et al. (2011) have shown their strict stationg(tityg distribution of the process@onot depend
on time)from two perspectives. In the first approach they postulate under which cosdition
GARMAmModels have a unigutationarydistributionand in the second they show stationarity

and ergodicity of a perturbed version of the mo8absequentlythey relate the original to the
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perturbed processes and conclude that the latter has parastietates arbitrarily close to the
former.

Afterwards, Briet et al. (2013) extended BARMAclass into th&eneralized Seasonal
Autoregressive Integrated Moving Average mod€SARIMAclasg, in an analogy to the
Seasonal Autoregressive Integrated MgvAverage modelsSARIMA) extension of ARMA
models, thus including a multiplicative seasonal autoregressive integrated moving average
model. Their estimate is carried out through a full Bayesian inference procedure, on the grounds
of a weakly stationary odel assumption and consequently constraining oatib@egressive
and moving average parameters. The outcome assumes a Negative Binomial distribution,
whereaghe parameters$ollow Beta, Gaussian and Gamma pridree model is subsequently
applied to a Mlaria time series analyses.

Andrade, Leslow and Andraq2016) proposga TransformedsARMAmModelto cope
with non-additivity, nonnormality and heteroscedasticity in time series; the transformation
ensures that the transformed series fulfill @8®RMAmodel assumptionsAndrade, Andrade
and Ehlers (2016) alsestimatethis model under the Bayesiilmameworkanda simulation
study is carriedutfollowed by an analysis dértility rates in Sweden.

Additionally, Andrade, Ehlersand Andrade (2016) develapea BayesianrGARMA
model for count data and applied itttoeeBrazilian datasets, one for automobile production,
other fordengue éverhospitalizations and anothir number of deathisy dengueTheyused
a Poisson, Binomial and Negative Binon@ARMAmModek, with multivariate Gaussian priors,
though norAinformative (large variances resulting in flat densities), for each model parameter

Zheng, Hiao and Chen (2015) propose an extension ofGHBMA model, the
martingalizedGARMAmModel(M-GARMA), in which the resulting transformed ARMA model
(through an appropriatelink functior) has a martingale difference sequence as its error
sequence. This property is only achieved in the original m@#aijamin et al., 2003n the
case of the identity link funan. The improvement of this new model is striking, as maximum
likelihood asymptotic distribution can be establish&imulations for aLog-GammaM-
GARMAandLogit-BetaM-GARMAmModels are performed, followed by an application to High
frequency realized valdity making usage of th&ammaM-GARMAmModel with logarithmic
link functionand another application studying the US personal saving rate througbgite
BetaM-GARMA

It is worth noting that th&ARMAapplications in the literatuggenerallyfocused o the
discrete type of distributions,ahefore we try to fill this gap applying the modeatmontinuous

financial timeseries From the empirical finance point of view, time series such as assets returns
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(difference of log prices) usually exhibit sontgliged facts that result in a departure from the
Gaussian distribution assumption. Some of those facts are returns low serial correlation and
volatility (i.e. squared returns, as usually returns are centered at zero) clustering and asymmetry.

In this lineof thought, Engle (1982) in his pioneer wodeveloped the autoregressive
conditional heteroscedasticity model, where returns are normally distributed but the volatility
process is from an autoregressive nature. Thus, he created a simple model tbpée aaithc
variance changing over time as a function of past errors, whilst the unconditional variance
remains constant through ti me. Remar kabl vy,
and introduces the class of Generalized Autoregressive ConditldetEroscedasticity
(GARCH) modelqBollerslev, 1986)in the same sense that an ARMA process extends an AR
one. Small adaptations or simplifications to this model also took place; take the-MRCH
(Engle et al., 19870r TARCH (Glosten et al., 1993pr instance.

In this work we will take advantage tfe relation between the Gamy@RARMAand
GARCHmodels, as presented in the paper of Benjamin et al. (2003), to aaéhgecial time
seriesOur real data examplégara closeresemblance to one of the applications present in the
work of Zheng, Hiao and Chen (2015), the difference being that we will not attempt to model

intraday highfrequency volatility, only daily prices keeping in mind the GARCH equivalence.

2.2 BOOTSTRAP methods

The term bootstrapvas coined by Bradley Efron in his seminal pafBootstrap
Methods: Another Look at the Jackfeo , E(L979), where the authantroduces the
bootstrap methodology and shows that the nonparametric jackknife can be vealatbar
approximation method for the bootstrap. In this wéifkon focused on estimating the sampling
distribution of agiven statisicby its bootstrap distributionThis new tool is more widely
applicable than the jackknifasefulto estimate parametelsas, variance and also to construct
confidence intervals.

The problem of calculating the bootstrap distribution can be tatiléoree methods:
direct theoretical calculation, Monte Carlo approximation and Taylor series expans®n.
second approach @ften employed as it easier to implemenihe author alsadiscusseshe
problem of error rate estimationtime case afliscriminant analysis arghowsthat the bootstrap

method outperforms the leae@eout crossvalidation(a method for estimating e rates by
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leaving one observation out of the estimation process tahe and afterwards using it as
independent for estimating the error measapgroach.

In theory, the bootstrap scheme is really simple, that is, in possession of the bootstrap
resampes what one really has to do is to approximate the sampling distribution of the statistic
of interest by its bootstrap one. Therefore, the tough part of this algorithm is how to compute
the secalled bootstrap distribution. Due to its popularity and sicitg| the Monte Carlo
approximation method is the one followed here.

Efron (1980) gives a thorougttcount of the relation between the Jafkknife, Bootstrap,
crossvalidation, balanced repeated replications and random subsampling. Additionally, some
nonpaametric confidence intervals asmployed namely the percentile method, the bias
corrected percentile method and tHeobtstrap.

The matter of error rate estimation is developed further in Efron (198%re the
relation between the bootstrap and srealidation estimation is analyzed. Some interesting
ideas are proposed such as the double bootstrap and6B2 estimatorSubsequently,

estimates of the downward bias of the apparent error rate are provided in Efron (1986), in which

atheoryintheGM fr amewor k i s stated.0, Etessvalidattom, com
generalizedcrosg al i dati on, bootstrap and Akai kebs i
Moving beyond Efrondéds work, we cannot ul

not only provigks a systematic review of bootstrap methods but also a rigorous mathematical
evaluation of the bootstrap performance through the usage of Edgeworth expansions.

Despite its simple nature, when it comes to the Monte Carlo approximation to the
bootstrap distbution in the time series framework some difficulties or specificities arise. This
happens because the original bootstrap was conceived to deal with independent datasets and
from the time series point of view this is an overly simplistic assumption (aslat@n is
frequently induced).

From the timeseries point of view, our work relies heavily on the work of Chernick
(2008) and Chernick and LaBudde (2011). Both books give a description of the bootstrap and
its relation to parameter bias, location andpdrsion estimation. They also handle with
confidence intervals and hypothesis testing. Also, and perhaps more important to our analysis,
a survey of bootstrap methods in the time series framework is given. The content of the books
concerning this topicsiquite similar, with both covering the basics of mdaeted and block
resampling bootstrap, the main difference between them being some additional bootstrap
schemes in the newer book, namely the Dependent Wild Bootstrap.
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Additionally, the book Resamplingethods for Dependent Data, from Lahiri (2003), is
a keen source of information, where the author reviews some Block Bootstrap Methods,
establishing their consistency, secamrder properties, contrast their performance, he also
approaches the problemmfisampling methods for spatial ddtennethelessfor this work,we
highlight the importance of the chaptarthe Empirical Choice of Block Size

The resampling methods the timeseriescontext usually fittwo main categories:
modetbased or the blockesampling For completeness this chapter has two subsections
dedicated tohe aforementioned resampling schemes, followed by a third subsection with some

methods that do not fall in these categories.

2.2.1 Model-Based Bootstrap

Modelbased bootstrapped tirseries consists of assuming a model, isolating its
residuals in the model equation and bootstrapping the residuals. Adbsik ofmodetbased
methods is the resample of the model residuals and, because of this, an explicit form of residual
in the modéequation is require@Chernickand LaBudde®011 p. 118)Consequently, this is a
model dependent method, in which its validity depends on the correctness of the specified
model. The prime example in the literature is the first order autoregression,amhesémate
of the autoregressive coefficient (usually throagklaximum Likelihood Estimatignis used
in computing the model residualdowever, this is an overly simplified structure and more
complex models are hard to handle in a similar fashi&eefor example Efron and Tibshirani
(1986),Shao and Tu (1995Chernick (2008) or Chernick and LaBudde (2011).

A review of bootstrap ideas and applications can be found in Efron and Tibshirani
(1986) From all examples present in itheext, the more relevat to our work is the firsorder
autoregressivene, introducinghe notion of bootstrap residuatsthe times series conteXthe
authors also introduce several approaches to calculate confidence intervals, such as the
standard, percentile, bi@®rreced percentile antl # methods.

Any of the methods described in the previously stated referemties case of model
based bootstrapan be adapted into t@ARMAcontext, the difference being that this is a dual
stage process. In the first step the residuals are comeugeddfiginal scale, Pearson, predictor
scale) and sampled with replacement entering the linear prediccstep twoa random sample

is drawn from therespectiveaGARMAdistribution with mean given by the inversion of thmk
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functionevaluated at step. This process is repeated sequentially until the original series length
IS recovered.

However, it is worth noting that this kind of bootstrap procedure is hard to develop in a
general GARMA settingas it will be seen in Section Wnlike ARMA models hat can have
an infinite autoregressive or moving average representation and consequently are prone to
bootstrap residuals, GARMA models do not have this type of representation and cannot be
directly bootstrapped in a general maetebtstrap perspectiv®ue to these aforementioned
restrictiors, in this work we will restrain ourselves to another class of bootstrap péegrm

time series, known as &wing Block Bootstrap (MBB).

2.2.2 Block-resampling Bootstrap

Block-resamplingoootstraphasbeendesigned to eal with the model misspecification
pitfall. Chernick and LaBudde (2011) pointed out that the moving block bootstrap has been the
most successful attempt in the time domain approach. It was introduced by Carlstein (1986)
and further developed by Kunsch §%). Some block resampling methods described in the
book and documented by Lahiri (2003) are:

The various types of block bootstrap approaches covered by Lahiri include(1) MBB,
(2) nonoverlapping block bootstrap ( NBB ), (3) circular block bootg{€#B), (4)
stationary block bootstrap ( SBB ), and (5) tapered block bootstrap (TBB)(very
briefly) (Chernickand LaBudde2011 p.124).

A theoretical comparison of the MBB, NBB, CBB and SBB can be found in Lahiri
(1999). The simulation results show that fomaderate sample size the MBB and CBB are
preferable over the NBB and SBB.

Lahiri (2003, p. 206) simulated tvomnfidence intervals for the autoregressive bootstrap
(ARB), that is ap-order autoregression, and the moving block bootstrap (MBB) with four
different block lengths. Theoretically, this is a situation where ARB should perform better than
the MBB; however, for some block lengths the MBB gets close to the ARB. Thus, even though
the MBB is expected to have a poor performance when contrasted to Ehi i8fh fact more
robust to model misspecification and might be better suited in cases where there is uncertainty
about the model correctness.

It is evident that there are many bldodotstrappingchemesthough we focus mainly

on the MBB owing tats history of success and consistency propertihexspecific case of
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GARMAmModels. Remarkabjylespite the low number of papers based oGthieMA Andrade
(2016) esthlished the assumptions guarameethe consistencygf the MBB for this specific
model Here, consistency means that for an increasing sasiggdehe quantiles produced by
the MBB converge to the quantiles of the respective asymptotic distribGiendisadvantage
of the MBB is the heuristic nature of the block length selection process.

To tacklethe block length issysome estimators have been proposedh as the one
by Hall, Horowitz and Jing (1995) (HHJ) abg Lahiri, Furukawa and LeQ07)(generalized
plug-in rule or nonparametric plugn method. The latter is based on a JacKkrhfter-
Bootstrap (JAB) method whilm the formerthe lengthdepends on the context and canabe
simplefunction of the sample sizEor a comparison adhem,pleaseefer to the original paper
of Lahiri, Furukawa and Le@007)

2.2.3 Other resampling procedures

Aside from modebased and block resampling schemes other procedures have been
proposed though, a thorough literature reviewing those topics is beyond the scope of this
monograph and the reader might refe€teernick (2008) or Chernick and LaBud@©11) for
instance. Only a brief description of two methods is provided below.

One alternative to the model based and block resampling bootstrap is the Dependent
Wild Bootstrap (DWB), proposed by Shao (2010), that extends the wild bootstrap to the case
of stationary, weakly dependent, time series. No partitioning of the data into blocks is required
and it is applicable in the case of irregular time series. The method relies on the DWB pseudo
observations, which are simply a function of sample statistics.

Moving onto theGARMAI GARCH relation we might have to keep in mind the intrinsic
properties of assets returns, and as such, some bootstrap resampling methods might be
unsuitable. Vinod (2004) had put forth three properties that might render theotralditi
bootstrap inappropriate and developed the Maximum entropy bootstrap (MEB) that can cope
with those drawbacks simultaneously. The latter is also simplified and extended into-a panel
data setting in Vinod (2006). The MEBmMes as an alternative to tHedk resampling methods
and does not demand the block subsetting of the itladanore general than the MBB, since it
does not require the stationarity assumption and does not need differencing (in an ARMA

context).
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3 THE GARMA MODEL

Let ¢ be astochastic process, i.ecallection ofrandomvariablesy @®71 M~ Jh
1 ~ m,defined intheprobabilityspace mh. ) , wheremis the set of all possible states,
is a/-field of all subsets of U is a probability measure ued. and> an arbitrary setWe
have for a fixed ¥ D and for each fixed value pf N mthatw 7 is a realization or path
of the processAlso, w1 is a random variable for eadtand a fixed and for simplicity the
index] will be subsumed.

The former definition ofdis too general for thEARMAmodel(Benjamin et al., 2003)
and some simplifications can be adopthdis a discretetime process s is a finite or
enumerable set and is taken as the set of inteagers N d . Additionally,the process can be
redefined in the filtered probability spacejh h _ ) , where _ is a filtration.Here,
filtration is defined as an increasing sequence offsfiélds on the measurable spaceh |,
thatis, ~ andforo o P _ . Leaving mathematical technicalities aside, one
can think of  as the information setvailableat timeoincluding alltheprevious information
until o.

In terms ofthe GARMAmodelwe have that e realization ofohd  pF8 FE, has a

conditional distribution belonging to the same exponential family. The conditioning is with

respect to. , and in this case oMl MM N MHhH . Thus, the
conditional density ofos, is of the form:

. . T W v

Qg ws Qw ﬁ3— w w3 (2)

wherec O and b D are specific functions defining the particular member of exponential family,
with7 as the canonical angl as the scale parametetsjs ar dimensional vector of
explanatory variableandt is the mean vectoFrom standard GLM resul{#1cCullagh and
Nelder, 1989) it can be shown that the term a3 O0; ws
andw @iy  ®s 30l , hereamnd a2denote the first and second derivatives
of & O, respectively.

Moreover, the predicter is such that "Q' and"Qs the linkfunction (a onéo-
one monotonic function), in resemblance to the GLM terminold®grameter can be
generally defined but the following flexible and parsimonious submodel is more appropriate

(than the generally defined one)
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~ 6 %o " o —Qn - )
where I B MH hs the vector of parameters of the linear predidtorof — ,
%o 6o B P60 the vector & autoregressive parameters, —h—B h— the vector of

moving average parameteEgjuationg1) and (2) together define tliARMAmModel.
In the following twosubsections the Poisson and Gamnm@ARMAmModels are défed.
Note however, hat theGARMACcIass is not limited to these models and can be applied to any

member of the exponential family.

3.1.1 The POISSONi GARMA model

If s follows a Poisson distribution with mean parameétethen its p.m.fis:

- , _
. “3 wA 3)

w TipltiB 8
It is evidentthatds,  belongs to the exponential family of distributions and also that

11 1'C,o7 Q,0 0ip I T @A and3 p. The canonicalink functionin

this case i$ 1 kG £Hence- is such that:

- 11'¢c o % | T d o —1T& 7 h (4)

wherew i A@ R ,mt | p. Herg is taken as 0.1As previously, thePoisson

GARMAmModel is defined by equations (3) and (4).
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3.1.2 The GAMMA i GARMA model

Likewise, if®s.  follows a Gamma distribution with shape paramgtand scale

parameter (so a3 1hr distribution), thus, its p.d.f. is given by:

0, 08— —8 (5)

with O ¢ 1 rand ® @ g 1r . However, there is a more usefulparametrization
of the Gamma density that makes it better suited to be applied @AR8AmModel. Let)
pj, andr , * , so thatO ¢ L, 0Rig . - and the transformed p.d.f. is

equivalent to:

- : Qi P w P Lo e P o P
s ws WR— — O¢ aE ' — aeE® — p 8 (6)

Thus, @S, belongs to the exponential family of distributiomsth 7 —,

@7 aéQ,0 0l Oand3 , . The canonicalink functionin this case ighe
reciprocal function, though, for simplicityQ* is taken a$ 1 ‘C . Hence- is the same
for the Gamma and Poisson nebdso that equations (6) ard) define theGammaGARMA

mode| while herewy %)

3.1.3 Maximum likelihood estimation of model parameters

In the GARMA model, after observing a sample with 8 o MO B o, one can
estimate the given model parameters and through the method of maximum likelihood.
The likelihood of the moddl h h and the logikelihood& h h 1 TIC hh can
be defined as:

0 hh Qg WS (7)
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As log is a ondgo-one monotora function the value thahaximizes) Jis the same
that maximizest O, and for computation simplicity the ldidkelihood (LLH) estimates of the
parameters are computebhe maximum likelihood estimates (MLEre such thath 0 O

& hh ,where h h AOGIiaA®@h . This task is carried out through a numerical
A h

optimization routine.

3.1.4 Some simulated models

For illustration purpose, in this section, some models were simulated and estimated
through maximum likelihoodrirst, consider 1000 simulations of a series of length 1000 of a
Poissoni GARMAmodel, with an autoregressive term of valusb@%. 1@ ) and constant
intercept equals to Eigurel depicts the Monte Carlo MLEmpiricaldistribuion of the model
parametersThe mean o%. estimates i9.14,while the true alue is 0.151f we compute an
empirical 95% symmetrical confidence interval we have%aat 18t i « agoodresult,
as we should expect the true vabfehe paameter to be included in this interval. Fqorthe
simulations show a fairly accurate estimate, where the mean of the simulatib®99§

contrasted to the true value of ®hich belong to the 95% empirical confidence interval
(P80 X8t .
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Simulated PO-Garma(1,0): Coefficients Distribution

parameters

D beta.intercept
[ Joni

true value

density

beta.intercept

1 .
I phi

05 1.0 1.
value

n
=]
[=]

Figure 1: Poisson- GARMA(1, 0),% T b0 0 k ¢, 1000 simulationdVILE parameterempirical
distribution

Second we shall examine a model with more parameters and check whether this
additional complexity can beell captured by the estimation process. As in the last example
take into consideration 1000 simulations of a series of length 100@Poisaoni GARMA
model, with an autoregressive term of valuB0Q%. T® It moving average term of 0.1
(— ™ and constant intercept equals tad~Ryure 2 shows the parameter$/LE empirical
distribution. The mearestimateof %o is 048 with anempirical 95% symmetrical confidence
interval T® @ . Likewise, in the case of—, the mearof the MonteCarlo MLE estimates

is 0.07with the respective 95% confidence intervaBt ¢ri® ¢@. The same reasoning follows
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for 1, with mean value 02.0001 and interval with inferior and superior limits of 1.94 and 2.05,

respectively.

Simulated PO-Garma(1,1). Coefficients Distribution

10-
parameters

D beta.intercept
[ Joni
[ Jineta

true_ value

density

beta.intercept
phi
theta

(5]
1

1.0 1,
value

&=
=
=)
(8]
(8]
[
=)

Figure2: Poisson- GARMA(1, 1),% 1@ fi— 1M o k ¢, 1000 simulationdVLE parameters
empiricaldistribution

Third, we consider a similar ordeGamma’i GARMA model with simulation
characterists similar to the last example, the difference being the additional pargmeter
¢. This model is exhibited iRigure3. Again, we see that the parameter estimates behave well,
in the sense that atfue valus belong to theirempirical 95% confidence intervalVhen
contrasted to the previous models, the absolute difference between the mean values and true

values are highefThis is a family specific phenomena, that is, Bwssonfamily GARMA
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models are easier to estimate &hihelikelihood function of theGammais more complex
making the numerical optimization problem harder and thus more prone to failure and/or
numerical instability. Consequently, this familyehavior seems to worsen the overall
estimation results of th&ammai GARMA models when contrasted tineir Poisson

counterpart.

Simulated GA-Garma(1,1): Coefficients Distribution

true value

phi
sigma
theta

density

parameters

|:| beta.intercept
[ Joni

|:| sigma

N [ Jineta

0oy

] 1 2 3

value

1
1
1
1
1
|
|
|
|
|
|
I beta.intercept
|
|
|
|
|
|
|
1
|
|
|

Figure 3: Gamma- GARMA(1, 1), % 1@ t— 1@h, ¢ho o k ¢, 1000 simulationsVLE
parametergmpiricaldistribution

Lastly, in Figure4, we examine theffectof increasing the coefficient absolute value in
thefirst example, adoptinge 1@ 1IN this case, thenean of%e estimates is 02 while the

true value is 0.8The empirical 95% symmtrical confidence intervas T& Xre ¢, a poor
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result, as we should expect that the true value of the parameter to be included in this interval.
Additionally, the maximum of the distribution is 0.79, a value smaller than the true parameter
value. Thigelative poor performance might be explained due to the high value of the simulated
model parameter, leading to netationarity of thesimulatedGARMA process. For, the
simulations show a fairly accurate estimate, where the mean of the simulations is 2.02,
contrasted to the true value of 2, with thesvalue belonging to the 95% empirical confidence

interval

Simulated PO-Garma(1,0). Coefficients Distribution

—
m
1

parameters

[ ]vetaintercept
[ Joni

true value

10-

density

beta.intercept

1 .
| phi

m
1

07 08 0.9 1.0 1.1
value

Figure 4: Poisson- GARMA(1,0),% 1@ fO o} k ¢, 1000 simulationdMLE parameterempirical
distribution
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The last example raises an important issue regarding the adequacy of the maximum
likelihood estimates in the case GARMAmModels whers se pors se p. For this reason,
all subsequent estimated models avoid this problem by restricting the simulated parameter to

values smaller than or equal to 0.5 in absolute value.

3.1.5 Additional Properties

In this section, some properties regarding the stationamglittons for the marginal
mean and variance and the stationary mean and variadzearef supplied for the case where
the link function"Qis the identity function.These properties are provided in the work of

Benjamin et al. (2003). The marginal meat @ is given by:

conditional orthe invertibilityof 5 6 p %06 E %6 .Thus, themarginal meais

stationaryprovided also thap f for all 6. The marginal variance is:

(}LX;L)‘I(J'L) O ¢ 6" (10)

mh

where¢ 6 p [ 6 [ 6 EandC 6 BS&6 goé p [ 6 [ 6
under the assumption thgt 6 is invertibleandy 6 p —8 E —6 .
In the specific case of tHeoissoni GARMAmodel we have that:

where p p B T
Whilst, for theGamma GARMAmModel:

P
wagw <CCpp 3 3¢°p T- (12)

provided thatp 3 3¢ p is invertible.All the proofs for the previously stated results
can be found at Benjamin et al. (2003).
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Despite being readily available, stationarity results for identity link function are not
general enough. As pointed out by Waddlet al. (2011), the latter case exchm@ny popular
countvalued models, thus, a more general approach must be follévaetitionally, Woodard
et al. (2011) provide strict stationarity conditions f8ARMA models in the absence of

covariates (the ter o

4 MOVING BLOCK BOOTSTR AP IN GARMA MODELS

In the specific case of th@ARMAmModel, Equation (2)shed some light into what is
needed to construct a MoelBased bootstrap scheme. The only possible way to do it is when
the moving average term jgesent, because only on it there is a residual temg b@med.

Thus, this restriction significantly reduces the range applicability of the modebased
bootstrap tahe GARMAmModel, as pure autoregressive models are no longer feasible (if the
purposes to use this bootstrap method).

In contrast to the ModeBased scheme, thdoving Blodk Bootstrap(MBB) method
for stationary processdsiilds on the idea that while successive observations are correlated,
observations separated far enough in timebelapproximately uncorrelated and can be treated
as exchangeabl€hernick, 2008 p. 104)

For instance consider thesampled B hw , a seriesof lengthé and suppose
thatt @ () wherecdenotes the numbef overlappingblocks and) the respective block
length and both are positive integers, thata®, ¥ andd ™ ¥ . The MBB(Kunsch, 1989)
consists of samplingo blockswith replacementfromthe¢ 0 p blocksto generate the
sequenced’ Wy s of bootstrap resample, this process being repeated times.

Some care must be taken with the MBB as observed by Chernick:

Some of the drawbacks of block methods in general are as follows: (AnRles!
blocks do not quite mimic the behavior of the time series, and (2) they have a tendency
to weaken the dependency in the seli€sernick, 2008 p. 105)

Those downsides are directly related to the selection obphienal block length. A
higher value of0 is associated with a reduction in the bias of the bootstrap parameter
estimation, when contrasted to a smaller value, as the replicates will more closely resemble the

original series. So, the stronger the dependerniiés the highe should be. Coversely, a
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smaller value ob translates into a variance reduction in the estimation as more replicates are
available (Carlstein, 1986 p. 1176)

This Section igdivided in two SubSections, the first approaches the wyati block
length issue and the second the bootstrap dma®ctionand confidence interval estimation

process.

4.1  On the optimal block length choice

In this section, some remarks concerning the optimal block length choice in the context
of MBB and GARMAmodels are made. Here, optimality is assessed in terms of closeness of

the MBB resamples mean to the parameters true values. That is, the optimal bength

for a given parameteris defined as:
0 — i Edoi- -B _nn R~ A, (13)

where? is the set of block lengths on which optimality is being evaluated., bbefes the
alsolute value function andrepresents any estimated parameter &fosssonor Gamma
GARMAmodel. It is worth noting that the optimal block length for a model is parameter
specific, that is, the optimal value might be different for each parameter irotted.@ne could

also derive a global measure of optimality { ) by simply computing the mean absolute

deviation for all parameters and allv 1 and choose thone with the smallest average, that is
0 t [ EdiB.; — -B =M fm~AR
Vg I'E v h (14)

wheret is the vector of model parameters dnds the set of all parameter values in the
specified modeld ; is a reasonable metric if eadh  int is close to one another, in

other wordsp 4 is good if the variance of the optimal block lengths fatheparameter in
themodel is smaland around the same value.

In the case of a small series, with length 30 for instathcan be taken as the set of the
integers from one to thirty, where optimality for a specific model parameter can be precisely

computed(if we are working with a simulated series or knewantethe true data generating
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process and thus the parameters walaeg. On the other hand, imlargeseries, say with

p 1 iraomputing all possible block lengths might be a cumbersome task. It is feasible, though
it might take too much time. In this case, a smaller number of possible block lengths might be
evaluaed and optimality assessed heuristically.—zﬁan is a monotone function af, an
equally spaced grid of possible valuesiof 1 might give a firsgglobal measure of optimality

and in a second step the grid might be evalugi¢le region of better predictions in the first
step, thus narrowing the search for

Some of the approaches proposed in the literature employ a squared loss function, and
the optimal search is measured with respect to . In those instanceshé heuristic provided
in the previous paragraph might be helpful.

As previously stated, optimality can be locally or globally defined, which might lead to
nonuniqueness in the chosen optimal block length. Additionally, the optimal I#ocjth
might not be the same for bias and distribution function estimaliois, in turn, makes our
task more difficult, as parameter bias and confidence interval estimatibhrequire different
optimal block lengths. For conciseness, optirgaig only evaluated with regardo bias
estimation, but the reasoning is easily extended todh&dence intervatase.

Hall, Horowitz and Jing (1995) proposed some rules for identifying the optimal block
length in the bootstrap with dependent dathey point out that the optimal block length
depends on the context, beiafjorderequal tot 7 for bias and variance estimatian’ in
the case of onsided distribution function and 7 for the twoesided caseThese results
following a squared loss functioithey also propose an empirical method for choosing the
block length.This procedure is reviewed in Lahiri (2003) and explained below.

Let0 denote the estimate for the optimal block size for the entire qgjiiesn the
statistic’'Yo of interestiandd hi &, the optimal value for a series of smaller lenttn
the original one. Ther) gja T 0 h"Qé D oftfwhwhere™Qis determined by the
context (bias/ variance, orséded or twesided distribution functionsPDenote by the set of
all subseries of length from 0. Apply the MBB to each elemenf \, with 0a¢ d , wheredee
is the block length value ard is the set of all positive integers urdil (we might take all
values ind  or a smaller subset, the choice might rely on the computational buleding
to"Y ("Y' is the value of the statistic of interest computed with all the elementsiof).

Compute’Y (the statistic evaluated at the entire data set) and then the estimate of the mean
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squarecerror U "YOgiven by 0 YO B4y Y Y —— Taked A OCIOEYQ

with 0a2 ¥ andobtainb . This process cape (and in this monograph is) iterated.

Building on the work of Hiy Horowitz and Jing (1995), Lahiri, Furukawa and Lee
(2007) developed a nonparametric plagule (NPPI), based on the Jackknifgter-Bootstrap
(Lahiri, 2002) whichis consistenhot onlyfor bias varianceand distribution estimation but
also for bootstrap quantile estimation. In their approach, the authors employ the Jackknife
After-Bootstrap for estimating the variance and an analytical formula for the bias of the
parameter in focus. Those estimates are used as inplgsfirstorder expansion of the optimal
block length expression. The details of this method would require a different approach than the
one followed here and for this reason the reader can refehid, Furukawa and Lee (2007)
or Lahiri (2003). TheNPPI is given by

. co -
UVeeEE: T € (15)
1O
o} el ¢ 61 2 (16)
0 0.¢")!3 (17)

wherei p@é& Q Tmfor bias and variance estimatian, ¢ & @Q pf¢q in the case of
distribution function™ ) !a®d6 ! 2re the parameter bias and variance consistent (as defined
in Lahiri, Furukawa and Lee (2007)) estimatésis a initial block size.For a more
comprehensive explanation in the estimatiof ¢f ghe reader might refer to the origirpaper
of Lahiri (2002).

In this monograph, the empirical method for block choice of Hall, Horowitz and Jing
(1995), and nonparametric phirg rule of Lahiri, Furukawa and Lee (2007) are implemented
and contrasted.

4.1.1 Algorithms for MBB applied to GARMA models

As usual, consider the random variatdle &7 N J2h] N m , defined in the

filtered probability spacemh h f , where all variables are as previously defined in
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section3. Let®h phB Rt denote the realizationf the GARMA process defined in the
filtered probability space wheits conditional distributioriQg  belongsto the same member
of the exponential familwith linear predictor as a function of its mean "Q‘ , as given
by equation 2.

Once more, considér « B fo as a sample from this process. FurtBappose that
¢ o Dwhereddenotes the number of blocks dnthe respective block lengthisakeB as
the number otlesiredbootstrap reptates to perfornthe Monte Carlo approximation method.
Algorithm 1 describes the steps required to perform the Moving Block Bootstrap for the
GARMAprocess. It can be breendown into six main steps from the creation of dit@locks

to the application of the static of interest.

Algorithm 1: GARMAmodel MBB

1. Samplewelements, with replacement, from the collectignwhere! o g
shE & 0 p ,toformthe set OB han
2. Forkin' :

Compute the blocks of lengthstarting at theridexk;

3. Concatenate the elements obtained in std@@&ping their indexing ordé® , to form
the serieso® U8 AJ . This isthe firstmovingblock bootstrap replicate.

4. Compute the maximum likelihood estimatethe GARMAmModel paameters evaluated
at o’n

5. Repeat 4 Btimes;

6. Compute the desired statistic, as #stimate of thgparametebias standard errors,

confidence intervals, etc.

In light of the high reliance of tHdBB procedure into the correct selection of the block
length0, a brief adaptation of the algorithm of Hall, Horowitz and Jing (1995) is proposed in
order to make it faster and applicable on a rpdtiameter setting, resulting Algorithm 2.

Speed is relevant whenis large so that we have | o having b repeat th&1BB at least

times. To address this issue a sampling scheme is designed to restrict the niviidi2rohs

to 3 on each iteration while trying to cleverly search the parameter space (the possible values
of 0 given ¥ . Another drawhck of the Hall, Horowitz and Jing (1995) rule is that it is

applied to a single parameter, and all the msguared error estimates are minimized with
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respect to one quantity. To overcome this problem a simple solution of a mean optimal block
length estimate is adopted.

Algorithm 2: modifiedHall, Horowitz and Jing (1995), far ¥ ¥ 4 o©:

1. Choose a value @f ¢, letd be the estimate of the optimal block length for the
subseries of length . For each elemenh \ apply the MBB with the value afaas
defined in the next step.

2. Takebaas:0 APAPA | where a is a sample from the quantile 1/3of b from 1/3
2/3 and c 2/3/3.

3. Obtain the valuéY of the statistic of interest and complite andd "Y'@s defined in
Sectiord.1

4. Forthestep0 0 5 AOCIOEYQ choosed B 0 j 70, where u is the

number of parameters in the modgis is useful in a mukparametesetting asfor

each parameter we have a spedificvalue).

o

Repeat steps-4 Qimes for'Qterations.

If the Hall, Horowitz and Jing (199%yles and its modified versioAlgorithm 2 can
generate accurate estimatesiof  for the MBB case,we can safely combine them with

Algorithm 1 and remove arbiary choices ofb in theMBB estimation process.

4.2  Bootstrap biascorrection and confidence interval estimation

In this section,the parameter bias and confidence interval estimates are defined. Each

topic is approached in its designatdbsectioror the sake of clarity.

4.2.1 Parameter bias and bias corrected estimates

Leto® whoM hy be a bootstrapped sample from the original sampde. df we
haved of those samples, and we wish to estimate for example theftites parameter (any
of the parameters mGARMAMode), we should simplgompute its value fof2 ph8 hH and

subtract the value of from the mean of the bootstrap estimates, that is:
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& QO n

(18)

where—  denotes the MLE estimate efin the original sample and” in thei-th
bootstrapped samplelere,d> ‘Qéxi  is the bootstrap bias estimatethe MLE estimate of

—. This procedure is the same for all the parametérsh in the respectiv6ARMAmModel.
2l

Thus, we have thatB - "' is the bootstrap estimate -eind we could also have
the bias corrected estimate of the parametee. — 8 that would be:
- B _ ® Qe qC — -8 N, (19)

4.2.2 Confidence Intervals

With regards to confidence interval estimation for a givemamater(—for instance),
besides the standard Gaussian asymptotic one, there are some useful bootstrap confidence
intervals, such ashe percentile method, thebias corrected percentilenethod,the basic
method,among others.

Let= be the cumulative dtribution function of the parametric bootstrap distribution of
—*, so that

= | 01 6 1. (20)

Thepeacentilemethod:

This is the simplest method to construct a bootstrapped confidence interval for a given

parameter and as thedvite Carlo approximation is employed, i is approximated by:
= i enN-= i ¥h (21)

whereB denotes the number of bootstrap resamples.
Taking— N = T ke p 1 gives an approximat® ¢T confidence interval

for — , bang this thepercentilemethod confidence interval.

Chernick and LaBudde&Q11 p. 73 provide some remarks regarding this method :



33

But asymptotically, the bootstrap samples behave more and more like the subsamples,
and the percentile interval estimateedaapproach the 90% level. Unfortunatety,
small to moderate samples for asymmetric or heawgiled distributions, the
percentile methods not very good and so modiéitions are required to improve it.

The bias correctegercentile method:

In the bas corrected case, také ¥ = B ca a h B cd & ,where

z

a kB = - andg B T.Similarly,= i isassessedby&L More specifically,

through the Monte Carlo approximation t@ thootstrap distribution, what is performed is the
selection of the BDpercentile of the bootstrap distribution, namely, and the bias correction
istaken aso"Qad — — (Chernick, 200®. 60)

Thebasicmethod:

The basic bootstrap method is similar to pleecentilemethod, the difference between
then being that in the latter the hypothesis is that the distributieh abproximates the
sampling distribution of-, while in the former the distribution off - k —
approximates the true sampling distribution-of ~ —. This methodis expected to perform
better than thepercentilewhen the distribution symmetry condition is not satafi&he

confidence interval construction is analogous togbesentilewith the replacement of by

Efron and Tibshirani (1986, p. 68) provitauseful table specifying the conditions for
eachof the previously statethethod to be accurate. For further information regarding those
methods, the reader can refer to Efron (1980), Hall (1992), Chernick (2008) and DiCiccio and
Efron (1996), just to name a few.

Even though the Gaussian method does not belong to the class of bootsfidgnce

intervals we briefly describe it for completeness, as it will be our benchmark for comparison.

The Gaussiammethod

The Normal case is straightforward and a confidence interval f6is — N
-~ B th® ,B p Tt , whereB t denotes the inverse cumulative
distribution function of the Gaussian distributiontdfor a twosided 95% onfidencenterval

with =2.5% ,5 T p&o pand, is the MLE estimate of the standard deviatior-of
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The reader acquainted with the theorypobtstrapconfidence interval estimation might
also acknowledge the use of the bias corrected and acceleration, the bo@tstte ABC
(approximate botstrap confidence interval, which is an analytical version of the bias corrected
and acceleration methodjtervals The first requires the estimation of the acceleration
parameter, which amounts to evaluate the skewness of the score function arsdréastbn is
not employed. The second requires an estimate of the standard deviation of the parameter of
interest in each bootstrapplication, whichcould be carried out through the delta method or a
double bootstrap schenfiecreasing the computationadst) The third relies on an analytical
approximation as opposed to the Monte Carlo approximalibarefore, theGaussian the
basig the percentileand the bias correctgubrcentilemethodsare chosen given their easiness
of computation and widespreacdage.

Usually, for parameter estimat@s=100 works fine, as there is little improvement past
it, however, for bootstrap confidence interval, a minimal valug 91000 is required (Efron
and Tibshirani1986 p. 72).

5 SIMULATION RESULTS

After a previousexaminatiorof severalinitial GARMAmModels (half from thé&oisson
and the other half from theamma the final simulation and results were constraineth&

scenario®xhibited in

Tablel. As all the proposd models are at most of order ptigerespective subscrijig
omitted (for example—is referred simply as}. This choice of order is made regarditing
scope of this work, trying to keep the model structure simpler and easier to interpret.
Nevertheless, models with higher order are important and further research is of paramount
importance to shed more light into their behavidoreover, the initial mean value to generate

all models was set to p tand in thePoissoncase the offset parametet P .

Tablel: Modek and Parameters
Parameters
Model Family % d b a
1  Poisso 0.15 0.00 2
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2 Poissonn 0.50 0.00 2
3  Poissort 0.00 0.50 2
4  Poisson 0.00 0.15 2
5 Poissorr 0.50 0.10 2
6 Gammg 0.15 0.00 2 1.41
7 Gammg 0.50 0.00 2 1.41
8 Gammg 0.00 0.50 2 1.41
9 Gammg 0.00 0.15 2 1.41
10 Gammg 0.50 0.10 2 1.41

As formerly anticipated, this study is concerned \ewialuating the performance of the
MBB, through aMonte Carlostudy, applied toGARMA models with respect to bias and
confidence interval estimatioin addition,for the models with a movingverage term there
was an attempt to implement the Mod@sased bootstrap, although, due ttee restrict
applicability of themethodologyand its poor performance no results will be displayed.

Here, a heuristic approh is followed in the selection of thBB block length where
three different values are evaluated for each simulated series length (1000 and 30).

In the case oparametelbias estimation, a graphical evaluation is done, that is, the
empirical density (Hitogram) of theestimates obtained in the MBB contrasted to the ones
with thebias correctionin this fashion we wish to access whether their empirical distributions
look alike and if the introduction of the bias correction teémprovesthe performane of the
estimates.

For confidence intervals, the empirical coverage rate of the bootstrap and asymptotic
intervals are compared considering a nominal level of, 6% significance level is chosen
regarding its widespread usage in the literatWfe understand that thbootstrap performance
might be related to the chosen significance level and consider this a fruitful field for future
researchin the simulation study a total of 1000 Monte Carlo repetitions and 1000 bootstrap
replications will be performd. All the codes are built in R and are presentespipendix|lil:

R CODE.

As the discussion of all the scenarios described in Table 1 would be a little cumbersome,
only the results of some models are presenteel Bt the performance for all models can be
found at theAppendixI: TablesandAppendixIl: Figures.

We will takeModel 1 as exampleFigure5 presents the resulter n=1000 There are
three plots in the same figure and their interpretation is the same, the difference is their block

length, being the first for the length of 20, the second 50 and the last for 100. For instance,
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consider the secdrgraphin this figure thered area depicts the histogram of the density of the
original 1000 MLE estimates for the paramétan Model 1, while the blue areahowsthe

density of the respective bias corrected estimates. In this caseigha@most a complete
overlapping between then, meaning that the distributiong@peoximatelythe sameThis
distinction is made clear bagse in some cases provided in #ppendix there is no
overlapping at allFor this reason, three vertical lines are added to the plot in order to assist the
visual diagnosis. The black line represents the parameter true value (on which the estimates
distributions are expected to be centered), and the red and blue the respragitia¢ and bias
corrected mean MLE parameter estimabeshe case in analysisicreasing the block length
improves the point estimates %§ but does not affect the estimatesboBesidesthe bias

corrected estimates present the same performance as the case without the correction.
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Histogram 1000 Monte Carlo Simulations
for $ =0.15 of the PO-GARMA (1,0)
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Figure5: Model11 %coriginal and bias corrected empirich$tributionfor 1000 simulationsseries of length 1000

Small sample properties of the estimates are also evaluated, with a Monte Carlo
simulation performed for a series of length(88eFigure6). Results for the smaller series are
worse than tb larger oneas expectedwith both original and bias correcteesmpirical
distribution showing a larger variabilityMoreover, we see that the mean bias corrected
estimates are closer (in Euclidian distance) tdrilne valueof %.compared taheir counterpart
without the correctiopand it improves as the block length increases.

An example with a larger value of the parameter is presentéigume 7 for Model 3.

We have perceived that the results\wogse when we increase the parameter values, and this
is probably due to the fact that the MBB was built for stationary sdiess,a slight departure

from this assumption can imply in estimates fartmemfthe real values. Nevertheless, there
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are someases when the bias correction can improve the results, as shows the graphs in Figure
7. We see that the bias correction brings the estimatdsclofser to the real one when we
decrease the block length.

Histogram 1000 Monte Carlo Simulations
for § =0.15 of the PO-GARMA (1,0)
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Figure6: Model 1- %.original and bias corrected empiricistributionfor 1000 simulationsseries of lengtB80

In general, increasing the block length improvies performance of the estimates,
except for MA models in Poisson GARMA.

In spite of the superiority of the bias corrected parameter estimate detected in Model 3,
in some models this might not be the case. For example, in Modeb&,tfee original estirates
are better than the corrected ones. Likewise, in Model?9,foo clear distinction can be made
between them (sd&gure23 andFigure27in the AppendixIl: Figures.
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Histogram 1000 Monte Carlo Simulations
for 8=0.5 of the PO-GARMA (0,1)
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Figure7: Model 37 —original and bias corrected empirichstributionfor 1000 simulationsseries of length 30

With respect to coverage rates, some selected models are araigzadlassification
is proposed to simplify the exposition and understandingghe tables with the data for @tle

models can be found &able5 to 8 at theAppendixI: Tables.
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Table2: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 1000
Model 3: PoissonGARMA (0,1)
b=2; d=0, 5

length parameter  norm biasc. perc. basic
20 b 93.7%  93.3% 93.9%* 93.2%
d 79.6% 93.3%* 30.1% 92.8% *

50 b 93.7% 92.7% 93.3% 92.9%
d 79.6% 85.7%* 72.0% 86.3% *

100 b 93.7% 91.2% 92.6% 91.7%
d 79.6%  75.6% 79.1% 75.8%

Legend:fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)
than the respective asymptotic normal

Table 2, displays the coverage rate for the confidence interval®@® Mmte Carlo
simulations from #0issoAGARMA(0,1) model, witi ¢ and— T1®. The column labels
have the following meanindength denotes de block length from the moving block bootstrap
norm is the Gaussian confidence interval and it reads normal confidence interval without bias
correction;bias.cindicates the nonal confidence interval with the bias correction teperc.
stands for the percentile confidence interval laasicdesignates the basic confidence interval.
All previous intervals are as defined ie@@ion4.2.

For thismodel,the asymptotic interval had an erratic behavior, as display€adhle2.
In fact, we see that the asymptotic interval fails for the parameigith a79.8% coverage
rate, indeed a poor performance. On the other hand, the bias corrected normal interval and the
percentile method do a gogab for some block lengths, where the coverage rate isrctose
95%. Moreover, for some values of blockdgh the percentile method had a better performance
regarding .

However, the results from Mod@gldo not tell the whole picturén somenstancesthe
MBB failed at allfor some parameteesd for other# worked better for a specific block length
For models 2, 6 and there is a complete failure, that is, no single block length and confidence
interval had a higher coverage rate than the asymptoticThe@utcomefor modelsl, 4, 5,8,
9 and 10 are analogous to the case of model three. That ithe case because there is no
failure in the asymptotic interval; it only has a poorer performance than the octhdidece

intervalsin terms of coverage rates do.
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It is worth mentioning that this is a partial failure, as for models with coefficients of
0.15 (models: 14, 6 and9) their performancesi superi or t o (nodels:2,0oneo:
3,5,7,8 and 10). Actuallytheir coverage rates are above 9(08%cept one case in model 9,
89.5%)for all block lengths and confidence intervals and for spectfiobinations, this value
gets arbitrarily closer to the target of 95%. Thus, this is a strong evidence in favor of the
hypothesis of using the MBB for parameter bias and confidence interval estimation. The poor
performance of the other models was alreagyeeted, as a value #bor —of 0.5 (closer tol)
is usuallyassociated with nestationarity and noinvertibility of the seriesHowever, even in
the latter cases, we do observe some models where there is a combination of block length and
confidence interval that leads talues close to the 95% threshold (for instance, consider model
5 with block length o060 for the percentile ci).

Additionally, the relative better performance of the MBB confidence interval estimation
over the asymptotic one is associated with the presefinie moving average term in the model.
The only pure autoregressive model that had higher coverage rates than the Gaussian was model
1, though, the asymptotic interval clearly is better, as it is closer to the desired 95% coverage
ratefor a majority ofblock lengthsPure moving average model 3 &whd the ARMA models
5 and 10 do exhibit higher coveragéesathan the reference, whereas in some instances the

asymptotic one is favored.

Table3: Bootstrapped confidence intergaloverage, 1000 sim., 1000 boot. resamples, series of @hgth
Model 3: PoissonGARMA (0,1)
b=2; d=0,5
length parameter norm bias.c perc. basic

4 b 85.1%  83.9% 89.1% * 85.3% *
d 11.4% 485%* 6,0% 54.5% *
7 b 85.1% 81.6% 86%* 82.9%
d 11.4% 40.9% * 12.4%* 47.7% *
10 b 85.1%  76.9% 82.4% 77,0%
d 11.4% 36.6% * 14.6% * 42.1% *

Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)
than the respective asymptotic normal

This behavior is observable in small samplesble 7 and Table 8 at the Appendix|:
Tablesexhibit the coverage rate for the same models with a series of length 30 and block length
of 4,7 and 10Similarly, model 3 seems to fail for the asymptotic case and the bootstrapped

resultscan improve the estimation of the paramgteas we can sda Table3. However, for
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the parameter—the bootstrapped confidence intervals show little improvement over the
Gaussian, with low coveragetes.In general, for models with a moving average term, there
might be a benefit from using the bootstrap ci for some models and parameters.
Notwithstanding for other models (e.g. mode) the asymptotic ctoverage ratés close to

the expected and sujar to the bootstrapped onés.contrast to the large sample case, in small
samples, models, & and9 do exhibit a combination of block length and confidence intervals
that are superior to the Gaussian counterpart.

Generally, theesults support the this that the moving block bootstrap, with a given
block length, can improve the results for confidence interval estimation, when contrasted to the
Gaussian asymptotic ones, in the specific caskilire of the asymptotién the simulated
GARMAmModelsIn small samples, the benefit from ushigck-resamplingnethods is superior
to the asymptotic Gaussian, as an increased number of models display higher coverage rates
than the reference.Again, models with parameters with values ctose unit do exhibit
coverage rates inferior to the ones with lower values (0.15 for instance), reinforcing that non
stationarity and noinvertibility is one of the main concerns when dealing with bootstrap
procedures ilGARMAmModels.Neverthelesscare must be taken in chawog the appropriate
block length ensuring the desiregkults.Perhaps a plugn estimate of it might lead to a less
heuristicand empiricalvork and even betteesults

The general guideline regarding confidence intertradir coverage rates artdARMA
models can be divided in two categories: large and small saniplthe case of a large time
series €.9.n=100Q the reader should favor the asymptotic approximate confidence interval.
On the other hand, for small time serjegg.n=30) the reader is athed against the usage of
the basic confidence interval and should focus on using the percentile or bias corrected
percentile ci0s

5.1 Optimal block length

In this section,the optimal block length is evaluated amd the examples provided
bellow show0 ; might not beaplausible measur€irst, optimality for the model with
o Tis assessedvith 100 replications for e block length from 1 t@0, anda summary of the
0 values for all model parameters is presentedlable 4. The results support the
hypothesis thatd 4 is not a good measyras each parameter optimal values djffer

instance, consider moda| whered I p tand0 % PUL
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Another ineresting perspective can be seeRigure8 where the boxplatfor 100 MBB
simulationsof Model 2for every block lengttare computed, alongside with the mean values
(blue dots) and optimal block length (orangesglot I p mTand 0 % P V.

Small block lengths leads to higher dispersion and higher block lengths to a smaller dispersion
of bootstrap resample estimatEsr%, the mean MBB resample parameter values can roughly

be seen as a monotone ingiegfunction of .

Table4: Optimal block length for all models and parameters

Parameter
Model| b %o d G
1 8 8 - -
2 10 15 - -
3 1 - 1 -
4 1 - 1 -
5 19 15 20 -
6 15 5 - 1
7 18 9 - 1
8 15 - 15 1
9 15 - 11 1
10 16 12 13 5

Overall, theestimation ob seems more stab{&ith respect ta@) than the othemodel
parametes. This means that one might eventually neglect the effect of the chosen block length
on estimating , and consequently focus only on the remainggmeters. Thus$, 5 , might
be redefined ifi . . In this fashion, one coullsoput in second place the block length effect

for the estimation ofi. For this reason, it is safe to restrict the attention tand
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Boxplot 100 MBB resamples
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For a simulated series, it is possible to know the optimal block length for a given
parameter (though for long series it mighke too long to compute it), however, with real
datasets, some heuristic or algorithm must be employed. In this fashtogure9 the method
proposed by Hall, Horowitz and Jing (199BenceforttHHJ) is iterated (as suggestby the
authors) 100 times and the frequencies of the opfinoal each step are tabulatied models
with an AR componeni he optimization is taken with respectoThe results of the algorithm
do not always agree with the optimal behavior depictéchble4. The resuts can be grouped
into two cases: oscillatory behavior and convergetiee former indicates that the algorithm
oscillates between a group of values, while the in the latter after a number of iterations we have

a convergence of the algorithm to a uniqukitsan. It was established that % 8,

but the algorithm oscillates betwe2and 3, though no stemints to the true valudhe same
reasoningf oscillatorycan be applied for Model 6 and 10. Still in the first case we have that
0 % p wand theHHJ steps have high frequencyiat xffw 8n the second case,
theHHJ converges fast (though not to the true optimal value) as in Model 5 that converged to
anoptimal block length 019 andin Model 7 tol7.
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L optimal of Hall, Horowitz and Jing (1995), 100 iterations for ¢
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The previous results show that tHelJ did not havea satisfactory resulOverall, this
algorithm does not seem appropriate f@esting the optimal block length for the MBB in the
Poisson and Gamma GARM#odels contextt is worth noting that the implementation here
was with respect t@.and to bias and variance estimation, thus there could be a different value
of 0 for estimding other model parameters and confidence intenatilitionally, the results
of theHHJ algorithm rely on the initial value and random seed, so there might be no unicity
on the chosen block length valu&is multiplicity of block length possible vasis increase
the parameter space and favor the heuristic apprédsd, this hypothesis is corroboratefd
wetake into account the approximate monotone behavior dfitioi length distribution (as in

Figure8).
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L optimal of Lahir, Furukawa and Lee (2007), 100 terations for ¢
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Figure1Q: « optimal block length under Lahiri, Furukawa and Lee (2007) algorild® simulations block length
frequencies

Repeating the same analysis floe NPPI algorithm, after 100 iterations we have that
0 ¢ inall instancesAll modelshad a constant optimal block length estimate (with respect to

the iteration span)t is clear that th&lPPI algorithm does not work properly in these models,

as we know fromTable 4, above that the tue optimal block length i$® %o

~ v~
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6 REAL DATA ANALYSIS

In this Section two examples are provided, one for Bwssonand the other for the
Gamma GARMAmodels

6.1 The Poissoni GARMA case

A dataset with the number afonthly bankruptcy filings in the USfkom the UCLA-
LoPucki Bankruptcy Research Databases used as an example of modellaigoissontime
series.lt encompasses public companies with Annual Report reporting assets worthlidd0 mil
of U$ dollars or more and can be downloade&ederal Reserve Bank of St. Lowebsite

(https://www.stlouisfed.ord/ The analysis is restricted tbe period of January of 1980 to

December of 1998nd a ot of the series is provided Figurell

The UCLA-LoPucki Bankruptcy Research Database
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Figure11l: Bankruptcy Serieplot

This topic is relevant as the numberbainkruptcy filingsis a key economic outlook
variable, helping to diagnosis thermnt status of the economy and also working as a lagging
indicator in the business cycleigure 11 displays the number of bankruptcy filings by month

over the years, there is an upward increasing tréadhe intention is onlyo demonstrate the


https://www.stlouisfed.org/
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application of th&sGARMAmodel, no more economic digressions will be made. Thus, a plot of
the autocorrelation function (ACF) and the partial autocorrelation function (PACF) is required
to assist in the ARMA order detection. This isanslard procedure in the Gaussian framework,
the interest reader might refer to Pend, Tiao and Tsay (2001).

Figurel2shows the ACF and PACF of thankruptcyfilings time series. The high first
order autocorrelation value with ggwly decaying pattern, associated with the high first order
partial autocorrelation and zero autocorrelation from higher order lags indicates aokR(1)
even an AR(2) model.

After identifying the models angroceeding with the estimation of th@oisson
GARMA1,0) model, the parameter estimates &re: @ p caqd %0 T O  @both
statistically significant at the level sfgnificance ofl%. Moreover, the AIC statistic for this
model is758.323.

Series banKruptcy
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I

. bbb
Series banKkruptcy
el HN R AN R R

Figure12: ACF and PACHlotsof theBankruptcy FilingsSeries

In Figure13there are some plots for the residual diagnoshe Residual X Index plot
shows no discernible patteraf the residualsin addition, the Normal €Q Plot highlights the
approximatelyGaussian behavior of the residuals, exceptthe distribution tailsThose facts

support the hypothesis 0b model misspecification.
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Figure13: Residual Analysis of the Poiss@ARMA(1,0) model

Alternatively, we can also attempt to estimateoesssonGARMA?2,0) model Here we
have that T Lg% T @ pand% TP X wll the parameters are statically
different from zero at the significance level of 1¥he AIC off the model is 735.597, which
indicates that model 2 is preferable over model 1, as itm#es the information criteriaAs
usual, inFigure14, the residual analysis shows that the data fits the model accurately, with no
severe deviation from the Gaussian hypothesis in the Norrgap@t and alsthere isno clear

pattern in the residual X index plot.
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Figure14: Residual Analysis of the Poiss@ARMA(2,0) model

In terms of confidence intervalEjgure 15 exhibit the mean value of 1000 bootstrap
resamples for mael 2 alongside with the error bars for the 95% confidence interval. Both the
Normal asymptotic anthe onewith the bias correction term are displayed. Note that the MBB
has been computed fargridof 16 possible block lengthsvith values ranging from & 160,
with a constant difference of 10 | n addi ti on, the ci 6s with
wider than the Gaussian ones, though, the mean of the bootstrap resamples belongs to all of
them in the former, whilst in the latter, in some instanitesnean of the bootstrap resamples

does nobelong to the interval.
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1000 MBB resamples:
Parameter mean values and 85% Gaussian Cl estimates
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Figure 15: MBB 95% Confidence Intervals: Normal and Normal with bias correction tEnmthe Poisson
GARMA2,0) model, from 1000 resamples

As there are 240 lmservations in the time serjeasomputing the MBB for alpossible
block lengthscan take a considerable amount of tifdaving to this, the analysis will be
restricted toAlgorithm 2. In the case of bidgarianceand confidence intervals (two sided
distributions)estimatesAlgorithm 2, for an initial value ofx 00, in 10 steps, all resulted in
avalue ot p Y p mnBesides, monotone convergence for high values, close to the
number of observations, or in the opposite case, for small values, is no¢gtymssible
outcome The former results in low bias and increased variance, while the latter decreases the
variance and increase the bias of the estimates. What we wish to achieve is an appropriate

balance between bias and variance in the bootstrampéssa
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6.2 The Gammai GARMA / GARCH case

For thefinal GARCH mode| 180 observations from the series of-teturns (difference
of log prices) oBrasil Pharma S.A. (ticker BPHA3.SAgpharmaceuticadompanywere used,
with dates ranging from 20105-30 to 201802-22. In order to check whether there are ARCH
effects or not in the time series two tests were performed, the ARCH test and thdébjung
statistic to the squared lggturns (or volatility if we assume a zero mean). Bath standard
procedures ahcan be found at Tsay (200Both tests were performed using 1, 4, 8, 12 and
24 lags, with the series length equaltie last (chronological ordeB0,60,90,180,360,504
business days. At the level of confidence of 10%, for the ARCH test, only at Bhgidgs
8,12,24, length 60, lag 24 and length 360, lags 4,12,24 we do not reject the null hypothesis of
no ARCH effects. By the same token, for the LjiBax test, only for the length 360 and lags
4,8,24 that the null of no autocorrelatismot rejectedactually the test is faall joint lags, and
that iswhy six different values were used).

Thus, knowing that in the majority of combination of series length and test lags we do
not reject the presence of ARCH effewts can proceed in the estimatiorittd GARCH model
A useful procedure in selecting the process order is a graphical inspectioAofdberrelation

Function and the Partial Autocorrelation Function of the squarecetagns

Series log.return
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Figure16: ACF and PACF of th8PHA3 squared logeturns
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One of the possible modelstlieestimate is aGamma GARMA/GARCH, 0) process,
as we have decreasing behavior the ACF and another one at lag 1 of the PA§#eFigure
16. The significative spike alag 2 might indicate a®\R(2) process, though, due to the
widespread usage of the GARCH(1,0) we will restrict the attention to the aforementioned
model.The parameters estimated valuesiare: p& Y Y% 18t ¢ 1agd, P& wy with

all of themsignificantatthelevel of 1%. After 1000replicationsof theestimation processhe

mean estimates airer PBOY Y e TEIC Tynd, p& w@ Twith no differences in
maximum and minimum with four decimal points.

A first model diagnostic is the residuanalysis, inFigure 17. We see that some
observations in the tail of the distribution in the NormaD@®Iot do not behave like a Gaussian
distribution. From the theory of financial time series, we know that this is a posshagior
that can be generated by abnormal returns. Additionally, returns usually have higher probability
at the tails of its distribution when contrasted to a Normal distribution and even GARCH models
with normal errors might fail to capture the serieetdata generating process. Modern
GARCH processsincorporate other distributions other than the Normiathas the Studerit
distribution, thegeneralized error distribution and theneralized hyperbolidistribution.
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Figurel7: Residual Analysis of the Gamr@ARMA/GARCH (1,0) model
Furthermore, anotherseful estimation diagnostic is the computation of the ARCH and

Ljung-Box tests on the model residsab check if there are a®\RCH effects left. For lags
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1,4,8,12 and 24llests do not reject the null hypothesis of no ARCH effects / autocorrelation
statistically different from zero.This simple procedure is a strong evidence in favor of the
estimated model adequacy (at least in terms of ARCH effects that was the nm@amdon
estimating a conditional volatility model).

For Algorithm 2, bias/varianceand confidence intervastimation, for an initial value
ofd& p Y p m,7in 10 steps, there was a convergenca)forp cafter one iteratio. In
Figure18 are the charts of the Gaussian &k orrected ci estimates usiraggrid of values
for 0. Both mean estimated values are contained t h e r & expeptdhatithe diasc i 0
corrected is wider than tidormal. Wesee that thestimats are relatively stable over the set
of chosen block lengths and chosen confidence interval type.

After examining both real data examples we achieeesdime conclusion, that is,
Algorithm 2 is apowerful tool in assisting in choosing the block length foliB8 algorithm,
yetit is also prone to noanicity. This drawbackreinforcesthe importance of the heuristic
approach, by which we should alwaysireste the MBB over a grid of values to check the

model estimates variability.
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7 CONCLUSION

In conclusion, bootstrap application in tbentext of theGARMAmModel is nonstandard
and asuch,suitable modifications must be employdthe Moving BlockBootstrapseems like
a reasonable solution to tackle this problem, and the bias corrected paranmestessind
confidence intervals might work in cases where the Gaussian counterpart fail. This phenomena
happens even in large samples from seletmdsonandGamma GARMArocess, where the
coverage rates of the MBB surpass the asymptotic ones. Remaiikasityall samplesrom
sizeof 30, these properties hold.

Furthermore, the performance of the MBB is related to the nature of the terms present
in the model, as models containing a moving average term showed improvement over their
references. In the oth hand, pure autoregressive models generally performed poorer than the
benchmark.More importantly, models with coefficients near unit (which leads to- non
stationarity and noinvertibility) considerably decreased the performance of the bootstrap
procedues. Though, MBB applied to models with lower parameter values seems to exhibit
good properties.

In short, the Moving Block Bootstrap bias corrected estimate of confidence intervals
seems to provide similar results than their bias corrected parametatestonnterpart. This
work can be improved by considering shorter block lengths where the Gaussian interval is
expected to fail. However, an improvement might be achieved through the selection of an
appropriate block length. Nevertheless, this is a curnbegask, as the number of models to
test is considerable and the choicesUfarcrease with the length of the series. Thus, qiug
estimates or other formal devices for estimating the optimal valieacd of paramount
importance.

Moreover, other resampling schemes might do a better job than the MBB. Therefore,
research codlfocus not only on the other block resampling methods, but also on the DWB or
MEB for instance. However, the empirical work must be followed by sound theoretical grounds
and for this reason consistency properties of those different approaches mushllshedten
the specific case of the GARMA model. In the case of confidence interval estimation, other
procedures, besides the ones followed here, might me more suited.

Remarkably, the proposeédgorithm 2 seems as a useful tool in selecting the optimal
block length in the context of the MBB and myttirameter estimation settinghe achieved
decrease in computing time seems to outweigh the possible loss in estimatidglthe
algorithm in a restricted parameter spaid@s line of work is useful in areasduas Machine
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Learning, where an automatized selection process is usually desired. In this line of work, the
NPPI estimator oLahiri, Furukawa and Lee (200@an also be applied in nonparametric curve
estimation problems, where there is a widespread wfagessvalidation.

The real data examplesinforce the utility of the MBB resampling scheme, however,
when dealing with time series special care must be taken when estimating model parameters,
as we might have to cope with netationarity and nomvertibility of the underlying stochastic
processes. Moreover, as the second example shows, further research in the field of dependent
bootstrap methods in relation @ARMAmModels have clear spitlver effects over other areas,
for instance take the casefohance/Econometrics with tli@ARCHfamily of models relation.

Notwithstanding, plugn methods for block length selection might enhance the
performance of the MBB confidence intervals and parameter bias estimation. In addition, other
resampling schemesight also achieve this desired result, regarded that they are followed by
theoretical grounds. Further, in terms of coverage rates, different bootstrap confidence interval
procedures might show a clear improvement over the asymptotiénotiés line of work the
sequential Monte Carlo method of Silva (Zpfor interval estimation could be employed and
intervals with guaranteed confidence coefficients stablished.

It is important toacknowledge that the conclusiaoisthis work are limited to the class
of GARMAmModels and more strictlp the low complexity models studied here. Owing to this,
further research could focus on models of higher order shedding lighimiote general
properties of the MBB in the context of tBARMAmModel.Besides the effect ofa varying
linear term could also be studied, regarding the possible correlation between exogenous
regressors and autoregressive or moving average terms.

This work can also be extendedday application of the procedures adopted here to the
other membersf the exponential family. Additionallyjot only Bayesian estimation can be
implemented, buildingn the work of Andrade (201&)ut also a Bayesian Bootstrépubin,

1981) framework In the latter, a simulation of the posterior distributairthe parameer is

computed, being operationally and inferentially similar to the traditional bootstrap.
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APPENDIX I: TABLES

Table5: Bootstrapped confidence intervalsverage 1000 sim., 1000 boot. resamples, series of length 1000.

Model 1: PoissorRGARMA (1,0) Model 2: PoissoRGARMA (1,0)
b=2 Gd=0, 15 b=2,; G4=0,5
length  norm biasc. perc. basic length  norm bias c. perc. basic
20 95.3% 945% 94.8%* 94.3% 20 94.2% 92.3% 935% 92.1%
955% 92.4% 945% 92.6% 93.8% 745%  74.8% 73%
50 95.3% 94.1% 94.3% 93.8% 50 94.2% 92.3%  927% 92.2%
955% 93.1% 93.7% 93.0% 93.8% 88.1% 89.7%  87.5%
100 95.3% 91.8% 91.8% 91.6% 100 94.2% 90.7% 91% 90.9%
955% 91.4% 92.2% 91.3% 93.8% 89.8% 90.5%  88.7%
Model 3: PoissonGARMA (0,1) Model 4: PoissonGARMA (0,1)
b=2; d=0,5 b=2; d=0,15
length  norm biasc. perc. basic length  norm bias c. perc. basic
20! 93.7%  93.3% 93.9%* 93.2% 20| 95.5% 94.79%* 95.3% * 94.59% *
79.6% 93.3%* 30.1% 92.8% * 94.6% 93.4% 93.3% 92.7%
50 93.7%  92.7% 93.3% 92.9% 50 95.5% 93.4% 94.4%  93.6%
79.6% 85.7%* 72.0% 86.3% * 94.6% 92.8% 935% 92.0%
100 93.7%  91.2% 92.6% 91.7% 100 95.5% 92.0% 92.0% 91.6%
79.6%  75.6% 79.1% 75.8% 94.6% 90.9% 92.1%  90.2%
Model 5: PoissorRGARMA (1,1) Model 6: GammaGARMA (1,0)
b=2; Gd=0,5;: d b=2; G4=0,15:;: 0
length  norm biasc. perc. basic length  norm bias c. perc. basic
94.4%  93.3% 93.5% 92.6% 94.1% 93.9% 93.2%  93.4%
20| 94.0% 78.7% 90.7% 76.2% 20| 95.1% 92.6% 94.4%  92.5%
955% 92.5% 98.4% 92.5% 95.2% 94.2%  94.7%  94.3%
94.4%  92.6% 93.2% 92.6% 94.1% 93.4% 92.8% 93.1%
50| 94.0% 87.7% 94.7%* 86.1% 50| 95.1% 93.6%  93.8% 93.4%
955% 92.3% 96.8% 92.2% 95.2% 93.3% 94.0%  93.0%
94.4% 91.8% 91.9% 91.2% 94.1% 91.7% 91.6% 91.2%
100| 94.0% 88.5% 93.9% 86.6% 100, 95.1% 91.9% 91.8% 91.7%
955% 91.6% 95.7% 91.1% 95.2% 91.6% 91.5% 91.9%

Legend: fields markedith * are used to denote a coverage rate higineabsolute difference to the 95% target)
than therespectiveasymptoticnormal (i.e. nom.wbc)
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Table6: Bootstrapped confidence intervalsverage 1000 sim., 1000 boot. resamplssries of length 1000.

Model 7: GammaGARMA (1,0) Model 8: GammaGARMA (0,1)
b=2: G4=0,5; 0 b=2; d=0,5;:
length  norm biasc.  perc. basic length  norm biasc. perc. basic
94.1%  90.8% 89% 91.3% 93.4% 93.5%* 93.8% * 93.9% *
20| 95.1% 82.8% 75.1% 75.8% 20| 944% 87.1% 61.5% 58.0%
95.1% 87.6% 89.8% 86.8% 94.3% 87.0% 87.2% 84.7%
94.1%  92.9% 91.3%%  92.8% 93.4% 94.3%* 93.6% * 93.8% *
50 95.1% 93.0% 90.1% 91.3% 50| 94.4% 97.6% 91.1% 86.2%
95.1%  93.0% 93.8% 92.6% 943%  93.4% 93.3% 92.4%
94.1% 91.7% 90.7% 91.6% 934% 91.6% 91.5% 91.1%
100| 95.1% 94.2% 90.8% 92.6% 100, 94.4%  98.4% 93.9%  90.4%
95.1% 92.4% 92.3% 92.0% 94.3% 93.3% 92.7% 91.1%
Model 9: GammaGARMA (0,1) Model 10: GammaGARMA (1,1)
b=2; d=0, 15; I b=2; @G4=0,5; d=0
length  norm biasc. perc. basic length  norm biasc. perc. basic
91.9% 92.9%* 93.8%* 91.8% 93.8% 90.4% 93.5% 90.6%
20| 93.2% 95.4%* 94.5%* 91.2% 20 92.9% 94.2%* 98.4% 90.9%
95.0% 94.4% 94.5% 94.0% 92.1% 96.6% * 99.9% 95.4% *

95.2% 83.8% 85.4% 81.9%
91.9% 92.6%* 925%* 92%*

50| 93.2% 96.1%* 95.1%* 93.5% * 93.8% 91.0% 93.2% 90.6%
95.0% 93.0% 93.9% 92.5% 50 929% 94.1%* 98.4% 92.3%
92.1% 94.2%* 99.1% 93.3% *
919% 91.0% 91.6% 89.5% 95.2% 92.3% 93.5% 91.6%

100] 93.2% 95.4%* 94.1%* 92.3%
95.0% 92.5% 91.4% 91.9% 93.8% 90.1% 92.4% 90.0%

92.9% 92.3% 97.4% 90.4%

92.1% 92.7%* 97.7%* 90.6%

95.2% 925% 92.9% 91.8%

Legend: fields marked with * are used to denote a coverage rate higher (in absolute differengd%otdrget)
than the respective asymptotic normal (i.e. norm.whc)

100
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Table7: Bootstrapped confidence intervaisverage 1000 sim., 1000 boot. resamplssries of length 30.

Model 1: PoissonRGARMA (1,0)

length
4

10

length

10

length

10

Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)

b=2; G4=0, 15
norm biasc. perc. basic
92.3% 86.1% 88.6% 85.7%
95.6% 82% 93% 81.3%
92.3% 84% 86% 84.5%
95.6% 82.2% 89.5% 79.8%
92.3% 80.8%  82% 79.9%
95.6% 80.9% 86.2% 77.8%

Model 3: PoissoRGARMA (0,1)

b=2; d=0, 5
norm biasc. perc. basic
85.1% 83.9% 89.1%* 85.3% *
11.4% 485%* 6%  54.5%*
85.1% 81.6% 86%* 82.9%
11.4% 40.9% * 12.4%* 47.7%*
85.1% 76.9% 824% T77%
11.4% 36.6%* 14.6%* 42.1%*

Model 5: PoissoRGARMA (1,1)

b=2; 4=0,5; d
norm biasc. perc. basic
90.4% 79.3% 85.1% 78.4%
95.5% 72.4% 97.6% 69.5%
93.7% 86.5% 100% 86.1%
90.4% 79.8% 84.1% 78.4%
95.5% 75.4% 95.9% 69.3%
93.7% 84.9% 100%  85.4%
90.4% 76.3% 80.8% 75.1%
95.5% 74.2% 95%* 67.4%
93.7% 84.3% 100% 84.5%

length
4

10

length
4

10

length

4

10

Model 2: PoissorRGARMA (1,0)

b=2; =0, 5
norm biasc. perc. basic
90.7%  80.9% 83.9% 80.8%
945% 76.4% 65.6% 72.4%
90.7%  80.7% 82.8% 80%
945% 82.4% 69.1% 75.1%
90.7%  77.2% 79.4% 76.9%
945% 81.5% 66.8% 74%

Model 4: PoissorRGARMA (0,1)

b=2; d=0, 15
norm biasc. perc. basic
90.9% 87.1% 89.2% 87.4%
89.2% 81.7% 97.2%* 83.1%
90.9% 84.9%  86% 85%
89.2%  80.9% 95.4%* 82.8%
90.9% 80% 81.9% 80.3%
89.2%  80.1% 93.6%* 81%

Model 6: Gamma-GARMA (1,0)

b=2; G4=0, 15;
norm biasc. perc. basic
90.4% 84.4% 85.6% 84.3%
94.1%  83.4% 94.8%* 80.4%
90.9% 87.3% 84% 882%
90.4% 83.3% 84.3% 82.5%
94.1% 83.4% 92.1% 79.9%
90.9% 85.1% 80.3%  85%
90.4% 79.9% 80.7% 77.4%
94.1% 82.1% 89.5% 77.5%
90.9% 81.2% 77.4% 80.9%

than the respective asymptotic normal (i.e. norm.wbc)
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Table8: Bootstrapped confidence intervaisverage 1000 sim., 1000 boot. resamplssries of length 30.

Model 7: GammaGARMA (1,0) Model 8: GammaGARMA (0,1)
b=2: G4=0,5; 0 b=2; d=0,5:
length  norm biasc. perc. basic length  norm biasc.  perc. basic
84.3% 76.7% 75.1% 73.5% 90.1% 86.3% 83.1% 86.2%
4| 924%  85.7% 78.6% 81.5% 4| 89.9% 849% 96%* 82.5%
90.1% 83.5% 90.3%* 84.1% 91.3% 85.7% 90.2% 86%
84.3%  76.2% 76.1% 75.5% 90.1% 848% 82.8% 84.3%
7| 92.4% 87% 79.4% 82.2% 7| 89.9% 89.4% 95.7%* 87.2%
90.1% 83.1% 87.6%  84% 91.3% 84.8% 86.8% 84.9%
84.3% 723% 742% 71.1% 90.1% 82.4% 80.1% 82.2%
10| 92.4%  85.2% 76.8% 78.7% 10| 89.9% 90.4%* 93.4%* 88.3%
90.1% 81% 84.8% 80.9% 91.3% 82.1% 83.7% 81.5%
Model 9: GammaGARMA (0,1) Model 10: GammaGARMA (1,1)
b=2; d=0, 15; I b=2; @G4=0,5; d=0
length  norm biasc. perc. basic length  norm biasc.  perc. basic
90.1% 86.9% 85.4% 84.3% 82.6% 98.2%* 85.3%* 82%
4| 91.3% 88% 97.4%* 87.8% 4 88.4% 88.5%* 100%* 82.3%
90.9% 88.4% 84.2% 88.5% 84%  87.7%* 100%* 81.7%

88.6% 80.3% 88.4% 81.1%
90.1% 85.9% 83.7% 83.9%

7| 91.3%  89.5% 94.9%* 88.3% 82.6% 954%* 82.5% 81%
90.9% 86% 79.8% 85.2% 7 88.4% 87.1% 100%* 80.3%
84% 86.9% * 100% * 80.4%
90.1% 83% 81.3% 80.2% 88.6%  80.2% 85.1% 80.6%
10| 91.3% 89% 93.1%* 85.8%
90.9% 823% 77.7% 81.1% 82.6% 88.7%* 77.8% 76.8%

88.4% 85.2% 98.9%* T77%
84% 86.8%* 100%* 79.5%
88.6% 78.2% 82.8% 78.2%
Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)
than the respective asymptotic normal (i.e. norm.whc)

10
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Figure19: Model 1 parameters distribution, series of length 1000
Histogram 1000 Monte Carlo Simulations
for p=2 of the PO-GARMA (1,0)
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Figure20: Model 2 parameters distribution, series of length 1000
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density

Figure21: Model 3 parameterdistribution, series of length 1000

Histogram 1000 Monte Carlo Simulations
for p=2 of the PO-GARMA (0,1)
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Figure22: Model 4 parameters distribution, series of length 1000
Histogram 1000 Monte Carlo Simulations
for B=2 of the PO-GARMA (0,1)
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Figure23: Model 5 parameters distribution, series of length 1000

Histogram 1000 Monte Carlo Simulations

for =2 of the PO-GARMA (1,1)
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Figure24: Model 6 parameters distribution, series of length 1000

Histogram 1000 Monte Carlo Simulations
for p =2 of the GA-GARMA (1,0)

Lpgua

0z

Lygua

0g

yiguaT

aok

20 21 22
value
Histogram 1000 Monte Carlo Simulations

for o =1.41 of the GA-GARMA (1,0)

ra
La

yiguaT

0Z =

Lygua

0g

Lpgua

ool

1.40 1.45
value

Mean Bias C. Mean Original

True Value

Histogram 1000 Monte Carlo Simulations
for $=0.15 of the GA-GARMA (1,0)

0.10 0.15 0.20
value

Lpgua

0z

Lygua

0g

yiguaT

aok

71



density

density

Figure25: Model 7 parameters distribution, series of length 1000

Histogram 1000 Monte Carlo Simulations
for p =2 of the GA-GARMA (1,0)
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Figure26: Model 8 parameters distribution, series of length 1000
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