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Abstract
Reference intervals are an essential part of
laboratory medicine, and accreditation
standards require that every laboratory result is
accompanied by an appropriate reference
interval to provide guidance in the

interpretation of the test. Furthermore, the
Clinical Laboratory Improvement Act of 1988
(CLIA ’88) requires laboratories to verify that
the reference interval accompanying a
laboratory result is appropriate for the patient
population the laboratory serves. These 2 tasks

are fundamental to providing quality laboratory
services. In this review, we will consider the
statistical methods that can be applied to
establish and validate reference intervals.

After reading this article, the reader should understand the statistical
components behind establishing reference intervals.

GGeenneerraalliisstt  eexxaamm  9900660011 questions and corresponding answer form are
located after the CE Update section on p. 311.
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Reference intervals delimit the expected results of various
laboratory tests in healthy individuals, and provide some guid-
ance in the interpretation of patient results. It can be difficult,
however, to define the appropriate reference interval for any par-
ticular laboratory test. Many factors, including age, gender, race,
posture during specimen collection, geographical location, diur-
nal variations, and even seasonal changes may influence the re-
sults of laboratory tests.1 These factors are partially responsible
for the intra- and inter-individual variations observed in the re-
sults of laboratory tests, and reference intervals should reflect
these variations. Reference populations that are selectively en-
riched with individuals predisposed to higher or lower values will
result in a significantly biased reference range. A reference popu-
lation should be composed of healthy individuals who are demo-
graphically matched to the patient population the laboratory
serves, but this type of ideal reference population may not be
accessible. For example, pediatric reference intervals are difficult
to establish because of ethical concerns over performing unnec-
essary venipuncture on children, who cannot legally provide
consent. Similarly, it may be difficult to recruit healthy elderly
subjects to donate specimens for a reference interval study due to
the high incidence of chronic disease in this group. For these
and other reasons, ideal reference populations are often unavail-
able, and some compromises may be necessary in the selection
of a suitable population on which to base reference intervals.

Manufacturers of in vitro diagnostic reagents are required to
establish reference intervals as part of the application for
approval by the Food and Drug Administration,2 and this re-
quirement is ordinarily met by collecting data from several sites
at which the product is tested prior to market. The population
used for these studies is usually larger and more diverse than the
reference population available to any particular laboratory, but

may not faithfully represent the patients in specific geographical
and demographic areas. For this reason, laboratory practice stan-
dards included in the 1988 revision of the Clinical Laboratory
Improvement Act (CLIA), originally passed by Congress in
1967, required clinical laboratories to verify that reference inter-
vals were appropriate for their specific patient populations.3

Statistical methods can be applied to the task of establish-
ing reference intervals, as well as their validation in individual
laboratories.

Establishing Reference Intervals

Reference intervals customarily represent the central 95% of
values obtained from the reference population. Consequently,
2.5% of “normal” individuals will exceed the reference range,
and 2.5% will be below it. It is tempting to assume that normal
values for clinical laboratory measurements conform to a Gauss-
ian distribution, in which the central 95% of the area under the
probability distribution curve corresponds to the population
mean (µ) ± 1.96 standard deviations (usually rounded to 2 SD,
or 2σ). However, this approach is often misguided, since the
concentrations of various biochemicals in the body rarely follow
a Gaussian distribution, due to physiological factors that influ-
ence the concentration in a unidirectional manner; intra-individ-
ual variations are not strictly random. Statistical approaches that
are based on a predictable distribution of data, such as the
Gaussian (or “Normal”) distribution, are called “parametric,”
since they make certain assumptions about the data derived
from the population. Non-parametric methods make no
assumptions about how the data are distributed, and provide
ways to analyze and compare data sets that have unknown or
unpredictable distributions.
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The Gaussian Distribution

Probability distributions are powerful statistical tools that
allow predictions to be made about population data. A statis-
tical distribution is a mathematical probability function that
describes the relationship between the value of a particular
measurement and the probability that randomly selected data
in the population will have that value. The familiar Gaussian
distribution is simply a mathematical probability function
that expresses the relationship between the mean (µ) and stan-
dard deviation (σ) of a set of data, and the probability that a
randomly selected data point will have a particular value, x.
Gaussian distributions are characteristic of data that are influ-
enced by multiple, random, independent errors in measure-
ment. The first property that is noticeable when P(x)
(probability) is plotted against (x-µ)/σ (Figure 1), is the sym-
metry of the resulting bell-shaped curve; in a Gaussian distri-
bution, P(x-µ) = P-(x-µ). This property follows directly from
the way in which the Gaussian probability function is derived,
requiring that factors influencing individual measurements are
random and independent. In a Gaussian distribution, the cen-
tral 95% of data are bounded by the approximate limits µ ±
2σ, where µ is the population mean and σ is the population
standard deviation. Therefore, if a reference range study for
plasma glucose concentrations in healthy, non-diabetic indi-
viduals generated a mean of 91 mg/dL and a standard devia-
tion of 8 mg/L, and a Gaussian distribution of the data was
assumed, then the reference interval would be 91 ± 2(8), or
75 – 107 mg/dL.

Is it a valid assumption that plasma glucose in healthy
individuals would be distributed in a Gaussian fashion? Proba-
bly not, because the factors that influence plasma glucose con-
centration are neither strictly random, nor entirely
independent. Age and obesity, for example, are factors associ-
ated with impaired glucose tolerance even in non-diabetic in-
dividuals, and these factors do not have a random influence
on plasma glucose (nor are they completely independent,
since older patients are more likely to be overweight). Both of
these factors increase glucose levels, so any distribution of
plasma glucose concentrations in non-diabetic individuals
would almost certainly be skewed toward higher values, rather
than symmetrically distributed around the mean. Glucose is
not an atypical example. The concentrations of most clinically
relevant analytes in healthy individuals have distributions that
are skewed toward higher or lower values, owing to physiolog-
ical factors that have a strictly unidirectional influence on
their concentration.

Log Transformation
In cases where the distribution of normal values is heavily

skewed toward higher results, a plot of the log concentration
vs. frequency may produce a curve that is more symmetrical
and similar to a Gaussian distribution (Figure 2). If the result-
ing log-transformed distribution appears Gaussian, then some
of the useful properties of Gaussian distributions, such as the
± 2σ = 95% rule, may be applied. In 1972, Harris and
DeMets4 proposed log transformation as a means for generat-
ing a symmetrical distribution of reference values. It is impor-
tant to remember, however, that whether or not data conform
to a Gaussian distribution is determined by the randomness
and independent nature of the influences that cause variation
in the data points, and mathematical transformation of the
data does not change those fundamental influences. 

Non-Parametric Reference Ranges

If a distribution is not Gaussian, the central 95% of the
data can be determined by ordering the array from the lowest to
the highest values, and eliminating the highest 2.5% and lowest
2.5% of values; the remaining highest and lowest values delimit
the reference interval. Non-parametric methods do not make
any assumptions about the distribution of values in the data set,
such as whether it is symmetric about the mean and whether the
distribution is skewed toward higher or lower values. Although
non-parametric determination of reference intervals is a simple
and straightforward procedure that does not rely on any assump-
tions about the distribution, the method has some limitations.

One limitation is that non-parametric methods ignore any
errors associated with individual measurements. Using the exam-
ple of plasma glucose measured in 40 healthy volunteers, if the
data are arranged from lowest to highest glucose concentrations,
the non-parametric reference interval would be defined by the
2nd and 39th values in the ordered array, since 2.5% of 40 = 1.

Figure 1_The Gaussian probability distribution curve (also called the
“normal” or “bell-shaped” curve). The population mean (µ) is at the
center of the symmetrical distribution, and 67% of the area under the
curve falls within one standard deviation (σ) on either side of the
mean. Approximately 95% of the area under the curve is between 
µ - 2σ and µ + 2σ. Gaussian probability distributions predict the vari-
ability in measurements that are affected by multiple, independent,
random errors. Laboratory quality control is a good example of a
process to which a Gaussian distribution should apply. Inter-individual
variations in clinical analytes do not ordinarily follow this distribution.

Figure 2_Log-transformation of data skewed toward higher values. In
some cases, skewed data can be made more symmetrical by log
transformation, usually for the purpose of applying Gaussian statistics
to the data.
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But there is some variance associated with each of those data
points. The 2nd and 39th values in the ordered array will only
be approximations, within the limits of the precision of the
assay, of the 2.5th and 97.5th percentiles; the non-parametric
statistical method does not account for those variations. In con-
trast, the Gaussian distribution takes into account all random
influences in determining the upper and lower limits of the cen-
tral 95% of values.

The variability associated with individual data points can be
minimized, to a degree, if the dataset is very large. Therefore, in
order to produce reliable limits for the 2.5th and 97.5th
percentiles, non-parametric distributions require fairly large ref-
erence populations. The Clinical and Laboratory Standards Insti-
tute (CLSI; formerly the National Committee on Clinical
Laboratory Standards, NCCLS) recommends that reference in-
tervals be determined by a non-parametric method, with data
from at least 120 appropriately selected subjects. The 3 highest
and 3 lowest values are eliminated, and the 4th and 117th num-
bers in the ordered array define the reference interval.

Validation of Reference Ranges

Part of the data supplied to the Food and Drug Administra-
tion (FDA) in a 510(k) application for approval of an in vitro
diagnostic method is a reference interval determined with the
proposed method. These reference interval studies may be con-
ducted in the hospital laboratories where the reagents are evalu-
ated, and may use patient specimens or healthy volunteers.
Manufacturer-determined reference intervals are typically based
on a large number of specimens (often a thousand or more), and
the proposed normal range is included in the product literature.
Current CLIA guidelines require that laboratories using a manu-
facturer’s reference interval—or, for that matter, any reference
interval that is transferred from an external source—verify that it
is appropriate for the population served by the laboratory. Labo-
ratories must determine whether a reference interval based on
data from the manufacturer’s “healthy” population is the same as
the reference interval for the population that the laboratory
serves. Although it is possible to meet this requirement without
gathering reference data from a local population, validation of a
reference interval ordinarily involves collection of specimens
from healthy volunteers, and comparison of the results to the
proposed reference interval. Alternatively, a laboratory may es-
tablish its own reference interval by collecting 120 specimens, as
recommended by CLSI, but this may be an impractical alterna-
tive for many laboratories.

If the concentrations of various analytes in healthy indi-
viduals followed Gaussian probability distributions, then the
reference intervals could be compared by several parametric
statistical methods. The Student’s t test, for example,
estimates the degree to which a small sample selected from a
population predicts the properties of the entire population
(specifically, the µ and σ). With regard to reference intervals,
the question is whether the statistical characteristics (µ and
σ) of a small sample of healthy individuals selected locally
match the population statistics on which the manufacturer’s
(or other laboratory’s) reference interval is based. Parametric
methods provide ways to make those comparisons, based on
the variability in the mean and standard deviation that is pre-
dicted when a subset is randomly selected from population
data. But parametric methods assume that the data have a
predictable distribution, and as mentioned before, this is not
usually the case for laboratory tests.

Non-Parametric Methods for Comparing Data
Just as there are both parametric and non-parametric sta-

tistical methods for determining the reference interval, both
approaches exist for comparing data sets, as well. Non-para-
metric methods can be applied to determine whether 2 data
sets have essentially the same, or significantly different proper-
ties. In the case of validating a reference interval, the 2 data
sets may be the manufacturer’s data, used to determine the
suggested reference interval, and a sample of healthy individu-
als recruited locally by the laboratory.

The Mann-Whitney Test
An example of a non-parametric statistical method to

compare data sets is the Mann-Whitney test. In this method,
the 2 data sets to be compared—x1, x2 . . . xN and y1, y2 . . .
yN—are ordered, together, from the lowest to highest values.
The array might look something like:

x1, y1, x2, x3, y2, x4, y3, y4, y5, x5 . . . etc.

For the Mann-Whitney test, the total number of y values
that follow each x value are summed, and likewise for the x
values that follow each y. If these sums, Ux and Uy, are similar,
then the 2 samples appear to be equivalent. Large differences
between Ux and Uy indicate that the 2 data sets are not equiv-
alent. The Mann-Whitney test is also called the U-test, Rank
Sum test, or Wilcoxen’s test.

The Run Test
Another non-parametric approach to comparing data sets

is the Run test. As with the Mann-Whitney test, data from
both arrays are ordered from lowest to highest, and the num-
bers of “runs,” or sequential data elements from one or the
other array, are counted. Two data sets selected randomly from
a common population will produce few runs, whereas a signif-
icant bias between the 2 data sets will be reflected in the mag-
nitude and inequality when the 2 run sums are compared.

It may be helpful to think about the Mann-Whitney and
Run tests as statistical methods not so much for determining
whether 2 data sets have the same mean and standard devia-
tion, but rather a reflection of the degree to which the 2 data
sets have the same distribution of values, which for non-para-
metric distributions is the more important question.

The Monte Carlo Method
Monte Carlo simulations make use of random selection

to generate a representative statistical distribution that can be
applied to solve a quantitative statistical problem. Although
random sampling, as a method to generate statistical distribu-
tions, had been used by mathematicians since the 19th Cen-
tury, credit for refining (and naming) this technique is usually
given to Stanislaw Ulam, a Polish born mathematician who
worked for John von Neumann on the Manhattan Project
during World War II, and his collaborator Nicholas Metropo-
lis, who published their description of Monte Carlo simula-
tions in 1949.5 The Monte Carlo method is an elegant
approach to validating reference intervals, and an application
to this problem was described by Holmes and colleagues in
1994.6

In the Monte Carlo approach, a limited normal range
study is performed, perhaps involving 20 healthy volunteers
selected from the local population served by the laboratory.
The mean and standard deviation is calculated based on the
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in-house study. Then, using the larger data set on which the
manufacturer’s reference interval is based, 20 individual data
points are randomly selected and the mean and standard devia-
tion of this random sample is calculated. This procedure is
repeated many times using computer algorithms for randomly
selecting data points and calculating the mean and standard
deviation based on those data subsets. When a sufficient num-
ber of samples have been selected from the parent (or popula-
tion) data set, then the variance associated with the mean and
standard deviation of a randomly selected 20 data point subset
can be calculated. If the results for the local sample are truly
representative of the population on which the manufacturer’s
reference interval is based, then the mean and standard devia-
tion of the in-house study sample will fall within limits pre-
dicted by the Monte Carlo simulation. In other words, the
statistical properties—mean and standard deviation—of the
local population will appear equivalent to a randomly selected
subset of the larger population on which the manufacturer
based its reference interval. The power of this method is that
it is entirely non-parametric, but requires only a small set of
in-house data.

CLSI-Recommended Methods for Validation of
Reference Intervals

Guidelines are available for the validation of reference
intervals from the CLSI document C28-A, which describes 3
methods for meeting the CLIA-specified requirement.7 Some
of these recommendations have a basis in statistical theory,
whereas others do not. Berry and Westgard reviewed exten-
sively the CLSI recommendations for reference interval valida-
tion on the Westgard QC Web site.8

Inspection method. The demographic and geographic fac-
tors associated with the reference population are examined to
determine whether they are consistent with the population
served by the laboratory. If there are no credible reasons to
suspect that the population served by the laboratory differs
from the reference population in any manner that would af-
fect the predicted results of a particular test, then use of the
reference range may be justified. The CLIA guidelines allow
the medical director of a laboratory to make that assessment.

The inspection method is not a statistical approach, and
transference of a reference interval from one laboratory to an-
other should not be done without a firm basis on which to
conclude that the reference populations are similar. This
method should only be used when reference data from local
volunteers are unavailable. This may be the case, for example,
with age-specific reference ranges for pediatric populations.

Limited validation. In a limited validation study, approxi-
mately 20 reference samples are collected from healthy volun-
teers selected from the population served by the laboratory. If
no more than 2 measurements fall outside the reference inter-
val, the range is validated. If 3 or more reference specimens
are outside of the reference range, 20 additional reference
samples can be obtained, and if 3 or more of the second refer-
ence sample are out of the reference interval, the laboratory
should consider establishing its own reference range.

The limited validation is based on the statistical predic-
tion that 19 of 20 randomly-selected data points should fall
within the central 95% of values in a population. This predic-
tion is regardless of whether the reference interval was
obtained by parametric or non-parametric methods. The
probability that fewer than 3 out of 20 randomly selected data

points will fall outside of the central 95% limits is more than
90%. The probability of randomly selecting 3 or more values
outside of the central 95% of the array on 2 consecutive trials
of 20 is only about 1%, so failure of the second trial would
lead one to conclude that the populations are sufficiently dif-
ferent to warrant a local reference interval.

Extended validation. Sixty reference specimens are
obtained from healthy volunteers within the laboratory’s
catchment area, and the reference interval for the local popu-
lation is calculated. If the reference interval is calculated para-
metrically with the assumption that the population data have
a Gaussian distribution (95% limits = µ ± 2σ), then a sample
of 60 data points randomly selected from the population
should produce essentially the same reference interval. This is
because, as a general rule, samples of greater than 30 data
points randomly selected from a Gaussian population will
have statistical properties that are representative of the entire
population (this is predicted by the Student’s t distribution).
In other words, the mean and standard deviation of a subset
of 30 or more data points are very close to the mean and stan-
dard deviation of the population. The Student’s t distribution
takes into account deviations from Gaussian behavior when
the number of sample data is fewer than 30.

Non-parametric statistical methods, such as those
described above, also can be used to compare the locally gen-
erated reference interval with the manufacturer’s proposed in-
terval. In either the limited or extended validation methods,
outliers may be removed from the dataset by application of
the “Reed rule”: If the difference between the extreme value
and the next closest value in the array is D, and the range be-
tween the lowest and highest values in the entire array is R,
Reed’s rule is violated when the ratio D/R exceeds one-third,
and data points that violate this criteria can be eliminated.

Summary

Statistical analysis is helpful for characterizing, and in
some instances predicting, the behavior of data sets. Establish-
ing and validating reference intervals are tasks to which statis-
tical analysis can be applied, since the fundamental purpose of
a reference interval is to predict the results of laboratory tests
in healthy patients. The “central 95% of healthy individuals”
that customarily defines reference intervals is a compromise
between the sensitivity (ability to detect disease) and
specificity (ability to rule out disease) of a laboratory test.
Adopting this definition of reference intervals ensures at least
5% of results will be falsely positive, but allows for some over-
lap between the distributions of positive and negative (“nor-
mal”) results in order to improve the clinical sensitivity of the
test. Because the limits of the reference interval ultimately de-
fine the sensitivity and specificity of a laboratory test, it is very
important to apply the appropriate statistical method when
determining these limits.

The distributions of most clinically relevant analytes in
blood, urine, or other body fluids, do not have mathemati-
cally predictable properties. As a result, parametric statistical
methods, which are based on mathematical probability func-
tions that assume a predictable distribution of data, are not
ordinarily applicable to the determination of reference inter-
vals. Non-parametric statistical methods, which are applicable
to any distribution of data, are preferable for determining ref-
erence intervals, but have limitations of their own, including
the large number of data points necessary for generating a
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valid range. CLSI recommends that non-parametric reference
intervals are based on 120 specimens from healthy volunteers
representing a broad demographic profile.

Many laboratories use manufacturer-specified reference
intervals, since these are based on large data sets. However,
CLIA requires clinical laboratories to verify that their refer-
ence ranges are appropriate for the patient population they
serve. Non-parametric statistical methods exist for comparing
data sets, and these can be applied to validation of reference
intervals when reference data are obtained from the local
healthy population. Monte Carlo simulation is another non-
parametric method for validating reference intervals when a
small sampling is obtained locally. The CLSI provides some
guidance on validating reference intervals, including simple
inspection, limited validation, and extended validation. LM

1. Fraser CG. Inherent biological variation and reference values. Clin Chem Lab
Med. 2004;42:758-764.

2. FDA 510(k) requirements. Available at: http://www.fda.gov/cdrh/manual/
ivdmanul.html. Accessed on March 10, 2006.

3. CLIA ‘88. Available at: http://www.fda.gov/cdrh/CLIA. Accessed on March
10, 2006.

4. Harris EK, DeMets DL. Estimation of normal ranges and cumulative
proportions by transforming observed distributions to gaussian form. Clin
Chem. 1972;18:605-612.

5. Metropolis N, Ulam S. The Monte Carlo method. J Am Stat Assoc.
1949;44:335-341.

6. Holmes EW, Kahn SE, Molnar PA, et al. Verification of reference ranges by
using a Monte Carlo sampling technique. Clin Chem. 1994;40:2216-2222.

7. CLSI Document C28-A: How to define, determine, and utilize reference
intervals in the clinical laboratory; Approved guideline. 1995. 

8. Barry PL, Westgard JO. Method validation: Reference interval transference.
Available at: http://www.westgard.com/lesson30.htm. Accessed on March 10,
2006.

D
ow

nloaded from
 https://academ

ic.oup.com
/labm

ed/article-abstract/37/5/306/2504484 by U
niversidade Federal de M

inas G
erais user on 06 February 2019


