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Abstract

The Lagrangean Relaxation is a well-know technique that has been applied success-
fully to many combinatorial optimization problems which is normally used to provide the
bounds that are needed by the branch-and-bound algorithms. In this paper, we present
another use for the Lagrangean Relaxation developing a reduction test for the uncapac-
itated fixed-charge network flow (UFNF) problem. Computational results are provided
and they show that the technique is an effective way of solving the problem.

Keywords: Graphs and Network Flows, Combinatorial Optimization, Mixed-integer Pro-
gramming.

1 Introduction

The uncapacitated fixed-charge network flow (UFNF) problem represents an important class
of mixed-integer programming problems. The problems are defined on a digraph D = (N,A),
where N is the set of nodes and A is the set of arcs. One of the costs involved is the fixed
cost of using an arc to send flow and the other is a variable cost dependent on the amount
of flow sent through the arc. The objective is to determine a minimum cost arc combination
that provides flows from certain supply nodes to a collection of demand nodes, possibly using
intermediate Steiner or transshipment nodes.

This is clearly an NP-hard optimization problem since it generalizes the Steiner problem
in graphs, NP-hard [9], among others. This generic model has applications for problems of
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distribution, transportation and communication. It is also useful for certain routing problems
where the network is already in existence. Besides being an important model by itself, several
special cases of the UFNF problem are of substantial interest. A simple way to obtain special
cases is to restrict the network structure, e.g. as in the transportation problem.

Some experimental work concerning exact and approximate solutions for the UFNF prob-
lems and their special cases have been done previously. The special case without Steiner nodes
was treated by [10] and by [12]. In the former, an exact branch-and-bound algorithm combined
with Benders cuts was studied, and in the latter, a set of heuristic procedures based on La-
grangean relaxation techniques was developed. In [2, 4], some special cases were solved using a
branch-and-bound algorithm with fractional cutting-planes. Previously, we have studied ADD

and DROP heuristic approaches [13] as well as simplified branch-and-bound algorithms [6] to
solve the general UFNF problems and these algorithms have performed well in practice.

A natural generalization of the UFNF problem is the capacitated fixed-charge network
flow (CFNF) problem. Although the CFNF problem is very difficult to be solved, it can be
represented by a surprisingly compact mathematical programming formulation [14]:

(M):
min

∑

(i,j)∈A

(cijxij + fijyij) , (1)

s.t.:

∑

j∈δ+(i)

xij −
∑

j∈δ−(i)

xji = bi, ∀i ∈ N, (2)

xij ≤ uijyij, ∀(i, j) ∈ A, (3)

xij ≥ 0, ∀(i, j) ∈ A, (4)

yij ∈ {0, 1}, ∀(i, j) ∈ A, (5)

where D = (N,A) is a digraph, N is the set of nodes, A is the set of arcs, δ+(i) = {j|(i, j) ∈ A},
δ−(i) = {j|(j, i) ∈ A}, bi > 0 (< 0) is the supply (demand) at node i, fij is the fixed cost of
having flow on arc (i, j), cij is the variable cost per unit of flow on arc (i, j), and uij is the
capacity of arc (i, j). It is noticeable that the only difference between the CFNF problem and
the linear minimum-cost network flow (MCNF) problem is that, in the former, if the flow is
positive, i.e. xij > 0, then its cost is cijxij + fij. The capacity constraints (3) ensure that
characteristic. That simple difference transforms the polynomially solvable MCNF problem
into the NP-hard CFNF problem.

As pointed out by [14], a necessary condition for feasibility, assumed throughout this work,
is that

∑
i∈N bi = 0. Additionally, it is assumed that all problems are single-supply-node. The

fixed cost fij must be non-negative for all arcs (i, j), since otherwise one could set yij to 1 and
eliminate it from the problem. On the other hand, the variable cost cij is unrestricted. However,
to ensure that the objective function is bounded from below, it is assumed that there are no
negative-cost directed cycles with respect to cij. An important simplification we are considering
here concerns the capacity constraints. If the uij is sufficiently large, say uij ≥

1
2

∑
i∈N |bi|, the

capacity constraints only force the inclusion of the fixed cost in the objective function when
the flow is positive. The problems under such assumption are called uncapacitated and these
are the only problems treated in this work.

During this paper, we shall consider an alternative formulation of model (M), more conve-
nient for our purposes in developing the reduction test. Let us define K0 ⊆ A, the set of arcs
that have been positively identified as not-present in an optimal solution by some reduction
method, K1 ⊆ A, the set of arcs that have been positively identified as present in an optimal
solution, and K = A \ K0 \ K1, the set of free or undefined arcs. So, the model (M) can be
alternatively represented by the following formulation:



(M ′):
min

∑

(i,j)∈A

(cijxij + fijyij) , (6)

s.t.:

∑

j∈δ+(i)

xij −
∑

j∈δ−(i)

xji = bi, ∀i ∈ N, (7)

xij ≤ uijyij, ∀(i, j) ∈ K, (8)

xij ≥ 0, ∀(i, j) ∈ K, (9)

yij ∈ {0, 1}, ∀(i, j) ∈ K, (10)

xij ≤ uij, ∀(i, j) ∈ K1, (11)

xij ≥ 0, ∀(i, j) ∈ K1, (12)

yij = 1, ∀(i, j) ∈ K1, (13)

xij = 0, ∀(i, j) ∈ K0, (14)

yij = 0, ∀(i, j) ∈ K0. (15)

In a previous work [6], we developed a branch-and-bound algorithm to solve the UFNF
problem. This is a well-known procedure to solve NP-hard problems, computationally ineffi-
cient because of its exponential worst-case time complexity, O(2|K|), but acceptable in practice
for small sized problem instances (K < 124) [6]. The Lagrangean relaxation technique was
applied to provide the lower bounds. Dropping the constraints (8) by means of the dual vari-
ables wij ≥ 0, the Lagrangean dual problem L(w, K,K0, K1) results. In this work, we plan to
enlarge the size of manageable instances proposing a reduction test based on the Lagrangean
relaxation for the UFNF problem.

The remaining of this work will be as follows. In Section 2, we shall present our reduction
algorithm. The algorithm was implemented and our experimental results are reported in Sec-
tion 3. Section 4 closes the paper with final remarks, open questions and the presentation of
some possible extensions.

2 Reduction Technique

The new lower bound that would result from forcing the arcs in or out of the solution can be
easily estimated from the Lagrangean relaxation. If the lower bound resulting from imposing
some condition to the Lagrangean relaxation is above the best upper bound, then the condition
in consideration cannot be satisfied in the optimum. This idea is inspired by the reduction
procedures developed in [5] to solve the p-median problem, with very good results in practice.
In [5], some terms of the corresponding Lagrangean function have been used to estimate the
increment in the lower bound under the imposed condition. We propose the following reduction
procedure that uses estimated lower bounds computed by means of a complete resolution of
the Lagrangean dual problem, L(w, K,K0, K1), but without subgradient optimizations. The
reduction algorithm is depicted in Figure 1.

The reduction procedure stops after the examination of each arc exactly once, O(|A|). Some
variations are immediate, e.g. passing through each arc twice, etc. Each iteration involves at
most two lower bound calculations which are O(|N ||A|) each. Recall that no subgradient
optimization is performed here. Additionally, at most four set insertions and deletions are
involved which are O(|A|), but the computation of function L(w, K,K0, K1) dominates. Then,
the procedure will run with worst-case time complexity O(|N ||A|2).



procedure Reduce(M ′)
/* initialize set of arcs recently fixed */

F ← ∅
/* proceed with reduction */

for all (i, j) ∈ A do

if (i, j) ∈ K then

K ← K \ (i, j); K1 ← K1 ∪ (i, j)
if L(w, K,K0, K1) > UBEST then

K1 ← K1 \ (i, j); K0 ← K0 ∪ (i, j)
F ← F ∪ (i, j)

else

K1 ← K1 \ (i, j); K0 ← K0 ∪ (i, j)
if L(w, K,K0, K1) > UBEST then

K0 ← K0 \ (i, j); K1 ← K1 ∪ (i, j)
F ← F ∪ (i, j)

else

K0 ← K0 \ (i, j); K ← K ∪ (i, j)
end if

end if

end if

end for

end procedure

Figure 1: Reduction Algorithm

3 Experimental Results

A preliminary version of the algorithm coded in the C programming language was developed and
is available upon request. All tests presented were performed using a DECstation 3100 running
the operating system ULTRIX V4.2A (Rev. 47). All test problems came from Euclidean graphs
randomly generated using a procedure similar to one presented in [1] that has been extensively
applied for creating testing instances [15, 3].

Table 1 presents the results of all computational experiments. The results presented for
the first node of the branch-and-bound search tree are the best upper bound, the gap, and the
CPU time spent in seconds. The total number of branch-and-bound nodes explored and the
CPU time in seconds spent after the first node are presented using and not using the reduction.
All CPU times reported are the clock time excluding all I/O operations and considering only

a single process running on the machine. For each graph, three instances with different fij
cij

ratios were considered. The problems with ratio 1 : 10 (fij = Ωij and cij = 10Ωij) form a
class approaching the MCNF problem which is polynomially solvable. On the other hand, the
problems with ratio 10 : 1 (fij = 10Ωij and cij = Ωij) form a class of almost Steiner problems
which is NP-hard. However, both cases are still NP-hard.

It may be seen the remarkable effect on processing time caused by the reduction algorithm.
In sparse instances, the reduction algorithm kept the number of explored branch-and-bound
node surprisingly low. The branch-and-bound algorithm using the reduction technique was
able to solve quickly dense networks if the number of demand nodes was low and the problems
were closer to the MCNF problems. The problems closer to Steiner problems are really harder.



Table 1: Effect of the Reduction Algorithm

Branch-and-Bound
First Node No Reduction Reduction

|N | |A| |D| fij
Ωij

cij
Ωij

SOL1 GAP2 CPU Nodes CPU Nodes CPU

16 30 4 1 10 1.0000 1.50 0.20 29 2.40 3 0.03
1 1 1.0000 12.00 0.20 29 2.40 3 0.03
10 1 1.0000 44.00 0.22 29 2.50 3 0.03

8 1 10 1.0000 2.10 0.21 43 3.70 3 0.03
1 1 1.0000 19.00 0.21 43 3.80 3 0.03
10 1 1.0000 94.00 0.22 43 4.00 3 0.03

60 4 1 10 1.0000 3.40 0.52 189 45.00 5 1.28
1 1 1.0000 24.00 0.53 245 61.00 35 14.90
10 1 1.0000 68.00 0.56 375 110.00 45 20.40

32 62 4 1 10 1.0000 4.20 0.64 1,923 510.00 3 0.14
1 1 1.0000 34.00 0.64 1,923 510.00 3 0.14
10 1 1.0000 120.00 0.68 1,923 540.00 3 0.14

8 1 10 1.0000 3.70 0.65 3,635 960.00 3 0.15
1 1 1.0000 33.00 0.63 3,635 960.00 3 0.15
10 1 1.0000 170.00 0.67 3,635 1,000.00 3 0.15

16 1 10 1.0000 2.70 0.68 2,071 610.00 3 0.16
1 1 1.0000 26.00 0.67 2,071 610.00 3 0.16
10 1 1.0000 170.00 0.71 2,071 640.00 3 0.16

31 1 10 1.0000 2.20 0.74 63 21.00 1 0.18
1 1 1.0000 22.00 0.74 63 21.00 1 0.18
10 1 1.0000 170.00 0.78 63 22.00 1 0.18

124 4 1 10 1.0000 5.40 2.10 379 330.00 5 5.09
1 1 1.0024 44.00 2.00 4,663 4,200.00 195 270.00
10 1 1.0011 120.00 2.20 16,817 17,000.00 1,283 1,720.00

8 1 10 1.0000 4.80 2.00 2,285 1,990.00 7 4.93
1 1 1.0001 38.00 2.00 11,999 11,200.00 1,543 2,050.00

16 1 10 1.0010 6.60 2.00 ** ** 27 47.00
1 1 1.0070 34.00 2.00 ** ** 4,951 6,650.00

248 4 1 10 1.0000 6.60 6.70 ** ** 31 123.00
∗∗ Not available (time overflow).

4 Final Remarks

The UFNF problem is a challenging intractable problem (NP-hard) with many applications for
the real word. The generic model also encompasses many other special cases with remarkable
importance in practice. A mathematical programming formulation for the problem was pre-
sented. A new Lagrangean relaxation based reduction test was introduced. The algorithm was
implemented performing very well in practice as the computational experiments have shown.

An interesting conclusion after reviewing all computational experiments is that in some
cases it may be valuable to increase the complexity of node explorations in branch-and-bound
algorithms. The reduction algorithm increased the computational complexity of each node
exploration but it yielded an overall gain because it made possible an early identification of
dead ends in the branch-and-bound tree, saving unnecessary explorations.

Some open questions remains such as whether or not it would be possible to improve even
more the branch-and-bound algorithm using Lagrangean relaxations that provide tight lower
bound. Future work may include investigation of this question. It may also include the develop-
ment of additional reduction tests that eliminate arcs and/or nodes from the original problem

1SOL =
best upper bound
optimal solution

2GAP =
(best upper bound)−(best lower bound)

best lower bound
∗ 100%



in a preprocessing stage, similar to those tests presented in [11] and [7] for the Steiner problem
in graphs. It is also of interest to investigate how the techniques proposed here can be adapted
for solving some special cases of the UFNF problem (e.g. the fixed-charge transportation prob-
lem [2] and the uncapacitated facility location problem [8]) taking advantage of their particular
network structure.
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