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Sparse latent multi-factor models have been used in many exploratory
and predictive problems with high-dimensional multivariate observations.
Because of concerns with identifiability, the latent factors are almost always
assumed to be linearly related to measured feature variables. Here we ex-
plore the analysis of multi-factor models with different structures of inter-
actions between latent factors, including multiplicative effects as well as a
more general framework for nonlinear interactions introduced via the Gaus-
sian Process. We utilize sparsity priors to test whether the factors and interac-
tion terms have significant effect. The performance of the models is evaluated
through simulated and real data applications in genomics. Variation in the
number of copies of regions of the genome is a well-known and important
feature of most cancers. We examine interactions between factors directly
associated with different chromosomal regions detected with copy number
alteration in breast cancer data. In this context, significant interaction effects
for specific genes suggest synergies between duplications and deletions in
different regions of the chromosome.

1. Introduction. In recent years, numerous studies have applied factor mod-
els combined with the Bayesian framework to analyze gene expression data, and
their results often show an improvement in the identification and estimation of
metagene groups and patterns related to the underlying biology; see, for example,
West (2003), Lucas et al. (2006) and Carvalho et al. (2008). The usual formulation
for factor models assumes additive effects of latent factors across the samples. This
assumption leads to very tractable model fitting and computation, but may not rep-
resent the reality in some applications. The structure of dependence between genes
in biological pathways motivates the idea of a model with nonlinear interactions
between latent factors. The presence of interactions can have important implica-
tions for the interpretation of the underlying biology.
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The study of nonlinear interactions between observed variables has been the fo-
cus of many publications in the context of regression problems. In many cases, the
proposed model introduces the nonlinearity through the specification of Gaussian
Process (GP) priors. Henao and Winther (2010) consider sparse and identifiable
linear latent variable (factor) and linear Bayesian network models for parsimo-
nious analysis of multivariate data. The framework consists of a fully Bayesian
hierarchy for sparse models using spike and slab priors, non-Gaussian latent fac-
tors and a stochastic search over the ordering of the variables. The authors argue
that the model is flexible in the sense that it can be extended by only changing
the prior distribution of a set of latent variables to allow for nonlinearities between
observed variables through GP priors.

The nonlinear relationship between a set of observed variables is also the topic
of Hoyer et al. (2009) in the context of Directed Acyclic Graphs (DAG). Each
observed variable (node in a DAG) is obtained as a function of its parents plus in-
dependent additive noise. An arbitrary function is chosen to define linear/nonlinear
relationships between the observed values. The paper evaluates whether a DAG is
consistent with the data by constructing a nonlinear regression of each variable
on its parents, and subsequently testing whether the resulting residuals are mutu-
ally independent. GP regression and kernelized independence tests are used in the
paper.

Associations between observed and latent variables is another interesting topic.
Arminger and Muthen (1998) consider latent variable models including polyno-
mial terms and interactions of latent regressor variables. Two groups of observed
variables are used: the response vector y, and the vector of covariates x. Their
model specifies two equations; the first one expresses y as a linear combination of
polynomial terms and/or interactions of elements in the latent vector ξ . The sec-
ond equation defines a factor model without interaction terms, where ξ is the factor
score and x is the target data. Because the model includes components representing
functions of latent variables in the first equation, the authors denote the formulation
as nonlinear. They use the Bayesian framework with conjugate priors to estimate
the parameters; sparsity priors are not considered in their analysis. In the spirit
of factor analysis, Teh, Seeger and Jordan (2005) model the relationships among
components of a response vector y using linear (or generalized linear) mixing of
underlying latent variables indexed by a covariate vector x (observed values). The
authors assume that each latent variable is conditionally independently distributed
according to a GP, with x being the (common) index set. The mean of the response
y is then a function of a linear combination of the conditionally independent GP.

Most applications of GP models involve learning tasks where both output and
input data are assumed to be given at training time. Lawrence (2004) and Lawrence
(2005) have proposed a multiple-output GP regression model assuming observed
output data and latent variables as inputs. The approach explores nonlinear in-
teractions between the latent factors. The authors introduce a probabilistic inter-
pretation of principal component analysis (PCA) named dual probabilistic PCA
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(DPPCA). The DPPCA model has the advantage that the linear mappings from
the latent-space to the data-space can be easily nonlinearized through Gaussian
processes (DPPCA with a GP introducing nonlinearity is then called GP Latent
Variable Model or GP-LVM). The GP (assumed for latent variables) with an inner
product kernel in the covariance function defines a linear association, and it has an
interpretation as a probabilistic PCA model. GP-LVM can be obtained by replac-
ing this inner product kernel with a nonlinear covariance function. The nonlinear
mappings are designed to address the weaknesses in visualizing data sets that arise
when using statistical tools that rely on linear mappings, such as PCA and standard
factor models. The analyses are based on optimization via maximum likelihood es-
timation; no MCMC algorithm is applied and no sparsity prior is assumed.

In GP models, inference is analytically tractable for regression problems, and
deterministic approximate inference algorithms are widely used for classification
problems. The use of MCMC methods to sample from posterior distributions in a
model assuming GP prior has been explored in the literature only for cases with
observed input data. As an example, Titsias, Lawrence and Rattray (2009) describe
an MCMC algorithm which constructs proposal distributions by utilizing the GP
prior. At each iteration, the algorithm generates control variables and samples the
target function from the conditional GP prior. The control variables are auxiliary
points associated with observed input variables defined in the model. An advantage
of MCMC over deterministic approximate inference is that the sampling scheme
will often not depend on details of the likelihood function, and is therefore very
generally applicable. In addition, the development of deterministic approximations
is difficult since the likelihood can be highly complex. Chen et al. (2010) have con-
sidered inference based on Variational Bayesian (VB) approximation and Gibbs
sampling to examined distinct ways of inferring the number of factors in factor
models applied to gene expression data. The study indicates that while the cost of
each VB iteration is larger than that of MCMC, the total number of VB iterations
is much smaller. However, the CPU cost of MCMC appears to be worthwhile,
as they found that for a large-scale data set the MCMC results were significantly
more reliable than VB; the VB approximation has difficulties with local-optimal
solutions, and the factorized form of the VB posterior may not be as accurate for
large-scale problems.

Different latent class models have been proposed in the literature to analyze the
DNA Copy Number Alteration (CNA) problem. For example, Lucas, Kung and
Chi (2010) use sparse latent factor analysis to identify CNA associated with the
hypoxia and lactic acidosis response in human cancers. Specifically, they fit a la-
tent factor model of the gene signatures in one data set of 251 breast tumors [Miller
et al. (2005)] to generate 56 latent factors. These factors then allow for connections
to be made between a number of different data sets, which can be used to generate
biological hypotheses regarding the basis for the variation in the gene signatures.
They have identified variation in the expression of several factors which are highly
associated with CNAs in similar or distinct chromosomal regions. DeSantis et al.
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(2009) developed a supervised Bayesian latent class approach to evaluate CNA on
array CGH data. The authors assume that tumors arise from subpopulations (latent
classes) sharing similar patterns of alteration across the genome. The methodology
relies on a Hidden Markov Model (HMM) to account for the dependence structure
involving neighboring clones within each latent class. In particular, the approach
provides posterior distributions that are used to make inferences about gains and
losses in copy number. Fridlyand et al. (2004) proposed a discrete-state homo-
geneous HMM where underlying states are considered segments of a common
mean. One of the goals of the procedure is to identify copy number transitions.
Marioni et al. (2006) extended this approach by developing the method BioHMM
for segmenting array CGH data into states with the same underlying copy number.
They use a heterogeneous HMM with probability of transitioning between states
depending on the distance between adjacent clones.

We are interested in the study of multi-factor models developed for the analysis
of matrices representing gene expression patterns. Our goal is to investigate the
existence of interaction effects involving latent factors. In order to test the signif-
icance of the interaction terms, the mixture prior with a point mass at zero and a
Gaussian component (sometimes referred to as the “spike and slab” prior) is as-
sumed. This type of prior has been used effectively to define the sparse structure in
West (2003), Lucas et al. (2006), Carvalho et al. (2008) and others. The outline of
this paper is as follows. In Section 2 we propose a factor model with multiplicative
interactions between latent factors. Our approach for this problem has not yet been
considered in the literature. Two strategies are used to introduce the interactions.
Section 3 explores nonlinear structure of interactions between factors; the formula-
tion is more general. In short, we introduce nonlinearities through the specification
of a GP prior for a set of latent variables. Five different versions of the model are
investigated; they differ in terms of prior formulations for probability parameters
and the assumption regarding the similarity of the interaction effects for distinct
features. In Section 4 a simulated study is developed to evaluate and compare the
models from Sections 2 and 3. Additional synthetic data analyses to assess the
performance of the models are presented in Mayrink and Lucas (2013). Sections 5
and 6 show real data applications where we examine interaction effects related to
chromosomal regions detected with CNA in breast cancer data. Finally, Section 7
indicates the main conclusions and future work.

The algorithms required to fit the proposed models are implemented using the
MATLAB programming language (http://www.mathworks.com).

2. Factor model with multiplicative interactions. Assume X is an (m × n)
matrix with Xij representing gene i and sample j . We propose the model

X = αλ + θη + ε,(1)

where α is an (m × L) matrix of loadings, λ is an (L × n) matrix of factor scores,
θ is an (m × T ) matrix of loadings, η is a (T × n) matrix of interaction effects,

http://www.mathworks.com
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and ε is an (m×n) noise matrix with εij ∼ N(0, σ 2
i ); let σ 2 = (σ 2

1 , . . . , σ 2
m)′. With

this formulation, we are separating the linear and nonlinear effects. One could add
the term μ1n in this model to estimate the mean expression of the genes; μ is an
m-dimensional column vector and 1n is an n-dimensional row vector of ones. We
prefer the parsimonious version where the rows of X are standardized and μ = 0
is assumed.

The multiplicative interactions are defined in η with the following assump-
tion: η1j = λ1jλ2j , η2j = λ1jλ3j , . . . , ηTj = λ(L−1)j λLj . Note that T = L!/[(L −
2)!2!].

In terms of prior distributions, we consider the conjugate specifications λlj ∼
N(0,1) and σ 2

i ∼ IG(a, b). In our study, the bimodal sparsity promoting priors are
key elements in the structure of the model. This form of prior originated in the
context of Bayesian variable selection, and it has been the subject of substantial
research; see George and McCulloch (1993, 1997) and Geweke (1996). The spike
and slab mixture prior is defined for the factor loadings to allow for sparsity and to
test whether the factors/interactions have significant effect on each gene. Assume

αil ∼ (1 − hil)δ0(αil) + hilN(0,ωα),
(2)

hil ∼ Bernoulli(qil) and qil ∼ Beta(γ1, γ2),

θit ∼ (1 − zit )δ0(θit ) + zitN(0,ωθ ),
(3)

zit ∼ Bernoulli(ρit ) and ρit ∼ Beta(β1, β2).

We consider two approaches to introduce the corresponding multiplicative inter-
action term; they are enumerated below:

(1) Introduce the interaction via Gaussian prior: ηtj ∼ N(λl1jλl2j , ν).
(2) Assume the product with probability 1: ηtj = λl1jλl2j .

In the cases above, let l1 < l2 ∈ {1, . . . ,L} be the indices of factors involved in the
product term related to ηtj where t ∈ {1, . . . , T }.

In the first version, we specify the product λl1jλl2j as the mean parameter of
the Gaussian distribution. This approach can be generalized with the specification
of any function f (λl1j , λl2j ), which makes it possible to investigate other types of
relationships between factors. The variance ν must have a small value; otherwise,
we are indicating a weak association between ηtj and λl1jλl2j . In this case, the
multiplicative effect is lost and the interaction factor is just another factor in the
model. If the number of genes is large, the variability in the posterior distribution
can be very small due to the large amount of data. In this case, ν is difficult to set
and only extremely small values will ensure that ηtj is associated with λl1jλl2j .
The target posterior in approach 1 is p(α,λ, θ, η, σ 2|X).

In the second approach, we force the perfect association between the interaction
factor and the corresponding product term; this strategy is convenient to deal with
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large data sets. Here, p(α,λ, θ, σ 2|X) is the target posterior distribution. Note that
ηtj is regarded as fixed variables; ηtj = λl1jλl2j .

A Gibbs Sampler algorithm is implemented to generate observations from the
target posterior distributions; see Section A in Mayrink and Lucas (2013) to iden-
tify the full conditional distributions. A simulated study has been developed to
investigate the performance of the proposed model; Section B in Mayrink and Lu-
cas (2013) shows the results and the associated discussion.

3. Factor model with general nonlinear interactions. Assume the model

X = αλ + F + ε,(4)

where α is an (m × L) matrix of loadings, λ is an (L × n) matrix of factor scores,
and ε is an (m×n) matrix with idiosyncratic noise terms εij ∼ N(0, σ 2

i ). Here, we
replace the term θη with F , which is an (m× n) matrix of interaction effects. This
model is defined with L factors, m features and n samples. Again, we chose to
work without the genes’ mean expression parameter μ. This parsimonious config-
uration reduces the computational cost to fit large real data sets. In all applications,
the rows of X are standardized to define μ = 0.

If no constraint is imposed to αλ and F , the model will experience identi-
fiability issues. As an example, consider the ith row of αλ + F and note that
αi·λ+Fi· = Cαi·λ+F ∗

i· , where F ∗
i· = (1−C)αi·λ+Fi· and C is any real number.

This paper is focused on the analysis of gene expression data; however, one should
not restrict the application to this context only. The methodology can be applied to
any data set satisfying the following aspects: (i) the data matrix X can be specified
with rows = features/variables and columns = samples, (ii) at least two factors
can be well defined, (iii) for each factor “l” there is a subset of features Gl in X

which are linearly related to that factor with no interaction effects. Our goal is to
identify interactions between factors and identify the features in the data that are
affected by such interactions. We take advantage of the known feature–factor rela-
tionship involving the elements in Gl to impose, via prior distributions, a specific
configuration for α and F in (4); see Section D in Mayrink and Lucas (2013). In
particular, we assume that most features are not affected by interactions; therefore,
prior distributions favoring Fi· = 0 can be applied. According to this assumption,
Fi· = 0 for most rows i.

Different versions of the factor model will be explored in our analysis. These
versions differ in terms of prior formulations for αil and Fi·. In all cases, we
set the specifications σ 2

i ∼ IG(a, b) and λ·j ∼ NL(0, IL). Consider αil ∼ (1 −
hil)δ0(αil) + hilN(0,ω) where hil is a binary indicator variable. We explore two
different forms of expressing our prior uncertainty for the probability that hil = 1:

(1) hil ∼ Bernoulli(qil) and qil ∼ Beta(γ1, γ2);
(2) hil ∼ Bernoulli(qR), R ∈ {R1,R2,R3}, and qR ∼ Beta(γ1,R, γ2,R). Let R =

R1 if we suspect that feature i and factor l are associated, R = R2 if no association
is expected, and R = R3 if the relationship is unknown.
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According to specification (1), qil is updated using a single observation hil , and
this strategy can be useful in applications involving large data sets. In specifica-
tion (2), qR is updated based on the group of hil such that (i, l) ∈ R. If the group
of indices R3 contains a large number of elements and αil �= 0 for most (i, l) ∈ R3,
the probability qR3 tends to be large which favors hil = 1. As a result, very few
or none of the αil related to R3 will be zero, that is, the level of sparsity is lower
than it should be. If m is small, the model performs well with both specifications
for hil ; see Section D in Mayrink and Lucas (2013) which presents a simulated
study to evaluate the performance of the models proposed in this section.

Assume a mixture prior with two components for the interaction effect vec-
tor Fi·. One of the components is the degenerated distribution at 0, which allows
for the possibility of having Fi· = 0, that is, no interaction effect for feature i. We
will explore two versions of this mixture distribution. The first one assumes that Fi·
can be different comparing affected features, whereas the second version assumes
that Fi· is the same for all affected features. In the context of gene expression
analysis (feature = gene), version 2 would be less realistic:

(1) (F ′
i·|λ) ∼ (1 − zi)δ0(F

′
i·) + ziNn[0,K(λ)],

(2) (F ′
i·|F ∗) ∼ (1 − zi)δ0(F

′
i·) + ziδF ∗(F ′

i·) and (F ∗|λ) ∼ Nn[0,K(λ)],
where zi is an indicator variable and K(λ) is the covariance matrix obtained from
the Squared Exponential covariance function depending on λ,

K(λ)j1,j2 = exp
{
− 1

2l2
s

‖λ·j1 − λ·j2‖2
}
,(5)

where (j1, j2) ∈ {1,2, . . . , n}, ls is the characteristic length-scale and ‖y‖ repre-
sents the Euclidean norm of the vector y. The covariance function is a crucial
ingredient in the model, as it encodes our assumptions about the function we wish
to learn. The Squared Exponential is stationary, isotropic and probably the most
widely-used kernel in the literature. Furthermore, it is infinitely differentiable,
which means that a Gaussian Process with this choice has mean square deriva-
tives of all orders, and is thus smooth; see Rasmussen and Williams (2006). Note
that if the points λ·j1 and λ·j2 are very close in the R

L space, then the samples j1
and j2 are similar and K(λ)j1,j2 ≈ 1. Conversely, the larger the distance between
these points, the higher is the dissimilarity between the samples and the closer to 0
is K(λ)j1,j2 . The length-scale ls is an adjustable parameter that controls how close
the points λ·j1 and λ·j2 should be in order to be considered associated with each
other.

We explore different strategies to express our prior knowledge about the indica-
tor zi . Assume the following possibilities:

(1) zi ∼ Bernoulli(ρi) and ρi ∼ Beta(β1, β2);
(2) zi ∼ Bernoulli(ρ) and ρ ∼ Beta(β1, β2);
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TABLE 1
Prior specifications defining different models

Prior distributions

Model hil Fi· zi

1 1 1 1
2 1 2 1
3 1 1 2
4 1 2 2
5 2 1 3

(3) zi ∼ Bernoulli(ρR), R ∈ {R1,R2} and ρR ∼ Beta(β1,R, β2,R). Here, R =
R1 if we believe that feature i is associated with some factor and is not affected
by interactions. Let R = R2 if the association between feature i and any factor is
unknown (interaction effect may exist).

Strategy (1) can be more convenient for applications involving large m, because
it is less influenced by other observations. Strategy (2) assumes a global proba-
bility ρ representing the level of features affected by interactions. The updating
distribution of ρ takes into account all observations zi . We expect few rows of F

indicating nonzero effects, therefore, ρ tends to be very small if m is large. This
situation favors zi = 0 and, thus, the sparsity level in F can be higher than ex-
pected. This same problem can occur with ρR2 in specification (3); ρR is updated
with zi ∀i ∈ R.

We use the structure of the Gibbs Sampling algorithm to sample from the tar-
get distribution p(α,λ,F,σ 2|X); the complete conditional posterior distributions
are presented in Section C of Mayrink and Lucas (2013). In particular, the full
conditional of λ·j depends on which specification we use for p(Fi·|λ). An indi-
rect sampling method is required in this case; we apply the Metropolis–Hastings
algorithm with a random walk proposal distribution.

Table 1 provides an identification number for each configuration of prior distri-
butions defining a factor model. As can be seen, we choose to investigate 5 dif-
ferent configurations. In models 1, 3 and 5, we assume that the interaction effect
can differ from row to row in F . On the other hand, the same interaction effect
is considered for all affected features in models 2 and 4. Note that model 5 is the
only one using the specifications hil ∼ Bernoulli(qR) and zi ∼ Bernoulli(ρR). In
addition, models 3 and 4 apply the global Bernoulli probability ρ.

4. Comparison between factor models with interactions. Here, we com-
pare the results from the factor models proposed in Sections 2 and 3. Consider
the same data sets simulated for the analysis in Section D of Mayrink and Lucas
(2013). In that case, we define Fij = λ1jλ2j as the true interaction term affecting
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FIG. 1. Panel (a): true interaction effect in all simulations. Panel (b): statistic AAD, (D.1) in Sec-
tion D of Mayrink and Lucas (2013), and the comparison of models 1 and 2 with different choices
of ls (simulation 1).

some features in GE = (G1 ∪ G2)
C . Figure 1(a) shows the surface plot represent-

ing the saddle shape of the true interaction effect. Since we use the same λ in all
simulations, this is our target interaction effect for all cases.

The model with multiplicative interactions (1) can be compared with model
(4) in Section 3. The interaction effect θi·η corresponds to Fi·. Note that θi· = 0
represents Fi· = 0. In terms of prior specifications, initial values and MCMC con-
figuration, consider the same choices defined in the simulated studies developed in
Sections B and D of Mayrink and Lucas (2013). In this section, we concentrate on
the comparison of surface plots to see how well the saddle shape in Figure 1 is esti-
mated.3 Figure 2 shows the surfaces indicating the estimated interaction effect; we
can identify the saddle shape in all cases. As one might expect, the multiplicative
model [panels (c) and (d)] produces a smoother surface than the nonlinear model
[panels (a) and (b)]. The multiplicative model is in advantage, because it assumes
the true saddle shape as the target effect. The parameter ls can be used to control
the smoothness of the surface in the nonlinear model (current choice ls = 0.2). If
this value is increased, the number of neighbors influencing each point increases;
the covariance matrix is then more populated. Figure 3 presents the surfaces re-
lated to models 1 and 2 assuming bigger choices of ls . As can be seen, the level
of irregularities in the middle of the graph seems reduced with respect to ls = 0.2;
this conclusion is more evident for model 1 with ls = 0.5.

The smooth surfaces, for ls = 0.5 in Figure 3, seem to be flatter and wider than
the other cases. This characteristic can be interpreted as an indication of worse
approximation between posterior estimates and true values. The bar plots in Fig-
ure 1(b) compare the AAD statistic, (D.1) in Section D of Mayrink and Lucas
(2013), for parameters in models 1 and 2 with different choices of ls . Note that the

3In order to test whether gene i is affected by interactions, we consider the conditional probability
p(zi = 1| . . .) related to the mixture posterior distribution of θi or Fi·, depending on the model. If
p(zi = 1| . . .) > 0.5, we will assume a significant interaction effect.
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FIG. 2. 3-D surface plot representing the estimated interaction effect.

FIG. 3. 3-D surface plot representing the estimated interaction effect (ls = 0.3 or 0.5).
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approximation is indeed worse when ls = 0.5; the biggest AAD value is observed
for ls = 0.5 in all cases.

Applications involving other data sets (simulations 2 and 3) and other models
(models 3, 4 and 5) provide the same conclusions above.

5. Real application: CNA and multiplicative interactions. The number of
copies of a gene in a chromosome can be modified as a consequence of problems
during cell division and these alterations are known to play an important role in
human cancer. We wish to examine the possibility that there are genes that are
synergistically affected by copy number alteration in multiple genomic locations.
In order to assess this, we will build factor models in which we seed each latent
factor with a set of genes that is known to be in a single region of copy number
alteration (CNA). We accomplish the seeding with the prior assumption that they
have nonzero factor loadings on the factor with very high probability. We then
utilize our interaction model to assess all genes for interaction effects between
two copy number alteration factors. Positive results will indicate genes that are
synergistically differentially expressed in the presence of multiple CNAs and may
lead to insights about the mechanism of action of the CNAs.

Many studies have detected CNA in breast cancer data, for example, Pollack
et al. (2002), Przybytkowski, Ferrario and Basik (2011) and Lucas, Kung and Chi
(2010). In our analyses, different regions of CNA are drawn from Lucas, Kung
and Chi (2010). Each region is an interval, involving a collection of genes, located
in the human genome sequence. The locations suggesting CNA are known, and
an annotation file identifying the chromosome position for each probe set can be
obtained from the Affymetrix website. In order to identify our seed genes, we
consider a range (2,000,000 to the left and right) around the central position4 where
the CNA seems to occur. We explore four different breast cancer data sets: Chin
et al. (2006), Miller et al. (2005), Sotiriou et al. (2006) and Wang et al. (2005).

We investigate the results for two groups of over-expressed genes. The first one
has central position 35,152,961 in chromosome 22; we denote this group as G1.
The second collection of genes is located around the central point 68,771,985 in
chromosome 16; let G2 represent this group. We will fit a factor model with L = 2
latent factors describing the expression pattern of the genes in G1 and G2. The
model includes a third factor representing the multiplicative interaction between
the first two. Our goal is to identify the genes affected by the interaction factor.

4In Lucas, Kung and Chi (2010) the expression scores of 56 latent factors were assessed on both the
breast cancer data set as well as breast tumor cell lines. These scores were then compared with CGH
clones in the corresponding tumor and cell line samples using Pearson correlation. Approximately,
1/3 of the factors show a significant degree of association with the CGH clones in small chromosomal
regions in both tumor and cell line. The mentioned “central position” represents the central point
of the chromosomal region where the indicated correlations are significant. The analyst is free to
apply the factor model to evaluate interactions together with any method for identification of genome
regions with CNA.
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The group G1 has 50 genes, and G2 contains 42 elements. As described above,
the selection of these genes is based on an interval specified around a position
in the genome. This strategy can lead to the inclusion of cases unrelated to the
CNA detected for the studied region. In order to remove the unrelated cases from
the current gene lists, we fit a two-factor model (without interaction terms) to
the (92 × n) matrix X. The following configuration is expected for the estimated
α : {αi1 : i ∈ G1} with the same sign, {αi2 : i ∈ G2} with the same sign, and αil = 0
for all other cases. The genes in (G1 ∪ G2) violating this assumption are consid-
ered problematic, and thus removed from the analysis. This cleaning procedure
involving G1 and G2 is described with more details in Section E of Mayrink and
Lucas (2013). The procedure defines 22 genes in G1 and 18 in G2.

Let GE represent a group of extra genes to be included in the analysis; G1, G2
and GE are disjoint sets. The microarrays selected for this application have 22,283
genes, and each breast cancer data set has more than 100 samples available for
analysis. As a result, the MCMC algorithm can be rather slow to handle this large
amount of data. As an alternative to reduce the computational cost, we implement
a gene selection procedure to eliminate the cases which might not be affected by
interactions. The full description of the selection process is given in Section E of
Mayrink and Lucas (2013). In short, we fit a two-factor model (without interaction
terms) to the (22,283 × n) matrix X assuming 22 genes in G1, 18 genes in G2 and
22,243 genes in GE . The distribution of the conditional probability p(hil = 1| · · ·)
is evaluated to accept or reject αil �= 0. It seems reasonable to assume that the genes
affected by both factors are more likely to be affected by interactions, therefore,
the final result includes only the cases satisfying this requirement. This selection
process yields 3704 genes in the updated GE .

Consider the prior specifications: ωα = ωθ = 10 in (2) and (3), σ 2
i ∼ IG(2.1,

1.1). Our goal is to fit the factor model with multiplicative interaction effects (using
approach 1 = Gaussian prior) to the real data having 22 genes in G1, 18 genes in
G2 and 3704 genes in GE . Given the large amount of genes, we need to set strong
priors for qil to impose our assumptions related to G1 and G2 and assure the
identification of the model. We use the configuration indicated as “option 2” in
Table B.1. Degenerated priors are assumed to impose our assumptions regarding
the gene–factor relationship for the cases in G1 and G2. This strategy is important
to retain the CNA interpretation of factors 1 and 2; otherwise, the target association
can be overwhelmed by the large amount of information in GE . Note that we
assume no interaction affecting the genes in (G1 ∪G2). The Beta(1,10) is specified
to induce sparsity in the loadings (i ∈ GE) related to the interaction factor. Finally,
the U(0,1) is indicated for all other cases.

The MCMC algorithm performs 600 iterations (burn-in period = 400). In terms
of initial values of the chains, consider the same choices defined in Section B of
Mayrink and Lucas (2013) for α

(0)
il , λ

(0)
lj , θ

(0)
i , η

(0)
j and (σ 2

i )(0). The probabili-
ties qil and ρi are initialized with the values presented in Table B.1 (option 2);
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FIG. 4. Scatter plots comparing the posterior estimates of ηj and λ1j λ2j (approach 1 = Gaussian
prior). Each panel represents a different breast cancer data set.

h
(0)
il ∼ Bernoulli(q(0)

il ) and z
(0)
i ∼ Bernoulli(ρ(0)

i ). The chains seem to converge in
all applications of the MCMC algorithm.

The model assuming the prior ηj ∼ N(λ1jλ2j , ν) (approach 1) is the focus of
the first application in the current section. As previously discussed, the variance
parameter ν must be small to guarantee the target multiplicative effect. The real
data set contains a large number of genes and, thus, the posterior variance is ex-
pected to be small. In this case, only extremely small values for ν will ensure that
ηj and λ1jλ2j are correlated. Figure 4 shows scatter plots comparing the poste-
rior estimates of ηj and the product λ1jλ2j . Here, the factor model is fitted with
ν = 10−5. Note that the model fit for the data set “Sotiriou” is the only one indi-
cating correlated results. In the other applications, the multiplicative effect is lost
and the interaction factor is just another factor.

Given the difficulty to set ν, no further real data analysis is developed for the
factor model with approach 1. Our next step is to investigate the model defined
as approach 2, where we force the perfect association ηj = λ1jλ2j . Consider the
same breast cancer data sets, configuration of prior distributions, initial values and
MCMC setup defined in the previous application. Because we impose the equality
between ηj and λ1jλ2j , the scatter plots comparing their values indicate correla-
tion 1. Figure 5 shows the 95% credible interval and the posterior mean for αil and
θi such that i ∈ (G1 ∪ G2). Note that most nonzero loadings, related to the same
factor, indicate posterior estimates with the same sign. This fact is observed for all
data sets, and it supports the CNA interpretation for factors 1 and 2. Recall that
the zero estimates are imposed via prior distribution to satisfy our assumptions for
this group of genes.

Table 2 indicates (main diagonal) the number of genes affected by multiplicative
interactions in each real data application. Note that the majority of features are free
from interaction effects. The elements off diagonal are the number of common
genes belonging to the intersection between the groups of affected genes. As can
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FIG. 5. Posterior mean (x mark) and the 95% credible interval (bar) for the loadings with
i ∈ (G1 ∪ G2) (approach 2 = perfect product). Intervals are computed for the component with high-
est posterior probability weight. Dashed lines separate the factors.

be seen, at least 14 genes can be found in the intersections involving different data
sets. This result may be used as an argument against the idea that the model might
be identifying interactions for a random set of genes. The intersections involving
three data sets have 2–6 elements. Only 1 gene belongs to the intersection of all
four data sets; its official full name is “GTP binding protein 4,” and it is located in
chromosome 10.

We apply a hypothesis test to investigate whether the configuration in Table 2
can be considered a result of an independent random sample of genes, from the

TABLE 2
Pairwise intersections between data sets; number of

common genes affected by the multiplicative interaction

Chin Miller Sotiriou Wang

Chin 314 30 24 20
Miller 30 170 14 24
Sotiriou 24 14 244 24
Wang 20 24 24 255
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FIG. 6. 3-D surface plots representing the multiplicative interaction effect θiηj (approach
2 = perfect product). In each panel, left = the smallest negative loading, and right = the largest
positive loading.

population of 3704 cases in GE , for each breast cancer data set. First, we select
genes, uniformly at random, using the numbers in the main diagonal of Table 2 as
the sample sizes. In the next step, we consider the pairwise intersections between
the random selections and obtain the sum of elements in all intersections; this
number nk represents the level of overlaps. We repeat this procedure 100,000 times
to generate {nk :k = 1,2, . . . ,100,000}. Finally, we calculate the number of cases
such that nk ≥ no, where no is the overlap level observed in Table 2. This result is
then divided by 100,000 to provide the p-value 0.00003. In conclusion, we reject
the hypothesis that the genes are independently selected for each data set.

Figure 6 shows the three-dimensional surface plot representing the multiplica-
tive effect associated with the genes with the highest interaction effects. As can be
seen, this type of interaction has a saddle shape. Each point in the surface corre-
sponds to a different sample j . In the x and y axes we have λ1j and λ2j ; the z axis
represents θiηj . The loading θi controls how strong the interaction effect is; values
close to zero define flatter surfaces. The sign of θi determines the orientation of
the saddle. In each panel, the graph on the left is related to the smallest negative θi ,
while the graph on the right represents the largest positive θi .

6. Real application: CNA and nonlinear interactions. Consider again the
CNA problem investigated in the previous section using the four breast cancer data
sets: Chin et al. (2006), Miller et al. (2005), Sotiriou et al. (2006) and Wang et al.
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TABLE 3
Regions detected with CNA. We apply a procedure to remove genes

unrelated to the CNA factors. The number of genes before and after this
removal is presented

Number of genes

Region Chr. Position Before After

1 11 117,844,879 38 13
2 22 35,152,961 50 22
3 7 101,400,207 45 24
4 16 68,771,985 42 18

(2005). Two latent factors are defined in our model for this type of application.
In other words, λ has two rows of factor scores, and each row describes the ex-
pression pattern across samples for the genes associated with a region where the
CNA was detected. We will evaluate the model fit assuming three different pairs of
chromosome locations. Table 3 identifies the position and chromosome number for
each region. Denote by G1 the group of genes around the first location in the pair;
G2 represents the collection of features around the second location. The cleaning
procedure, described in Section E of Mayrink and Lucas (2013), is applied to re-
move problematic genes from G1 and G2. Table 3 indicates the number of genes
before and after the removal procedure.

The microarrays have 22,283 genes and each data set contains at least 118 sam-
ples. In order to reduce the computational cost, consider again the gene selection
procedure described in Section E of Mayrink and Lucas (2013). The method is
based on the data set in Chin et al. (2006), and we evaluate the pairs of regions
(1,4), (2,4) and (3,4); see Table 3. The selection indicates 3717, 3704 and 3708
elements in GE for the pairs (1,4), (2,4) and (3,4). For the purpose of compari-
son, this configuration of GE is used to study all data sets. Our goal is to identify
features in GE affected by interactions.

Model 1 in Table 1 is more convenient for applications with large m. In this
case, we assume a particular Bernoulli probability for each indicator hil and zi ,
which makes these variables less dependent on other observations. If a large num-
ber of hil share the same Bernoulli probability qR , the level of sparsity in α can
be incorrectly determined. If most loadings are nonzero values, qR tend to be large
which favors hil = 1 for all (i, l) related to qR . Similarly, if a large number of zi

share the same probability ρ (models 3, 4) or ρR (model 5), and if Fi· = 0 for most
genes, then ρ or ρR tend to be small which favors zi = 0 for all involved features.
Here, the level of sparsity is too high and some interaction effects are neglected.
In a real application, it seems more realistic to assume different interaction effects
for different affected genes; for this reason, model 1 is preferred to model 2.
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Assume ω = 10 in the mixture prior for αil , σ 2
i ∼ IG(2.1,1.1), and set ls = 0.2

in (5). The specifications in Table D.1 (option 2) are defined for qil and ρi to
impose our assumptions regarding the gene–factor relationship and provide the
identification of the model. We do not expect interaction effects related to the genes
in G1 and G2; these groups have a strong relationship with one latent factor and
no association with the other. In addition, recall that most rows of F should be
null-vectors to ensure the identification between αλ and F . It is reasonable to
expect few genes affected by interactions; as a result, one might choose a Beta
distribution with higher probability mass below 0.5 for ρi with i ∈ GE . The choice
ρi ∼ Beta(1,1) works well in the applications of this section.

In terms of initial values of the chains, let F
(0)
ij = 0 for all (i, j), and consider

the usual choices α
(0)
il = 0, (σ 2

i )(0) = 1, and λ
(0)
lj ∼ N(0,1). We initialize h

(0)
il ∼

Bernoulli(q(0)
il ) and z

(0)
i ∼ Bernoulli(ρ(0)

i ), where q
(0)
il and ρ

(0)
i are indicated in

Table D.1 (option 2). The MCMC algorithm is set to perform 600 iterations (burn-
in period = 300); the chains seem to converge in all applications. The Metropolis–
Hastings algorithm, used to sample from the full conditional posterior distribution
of λ·j , has acceptance rate around 31–40%, 15–65%, 26–53% and 67–84% in the
applications related to the data sets [Chin et al. (2006), Miller et al. (2005), Sotiriou
et al. (2006) and Wang et al. (2005)].

The 5th panel in Figure 7 shows images of interaction effects in F . The image on
the left represents the full matrix with 3744 rows and 118 columns; the color bar is
constrained between (−1,1) for higher contrast. The second heat map exhibits the
cases Fi· �= 0. Note that we identify 275 genes affected by nonlinear interactions
involving the factors. Further, the second image suggests a coherent pattern for
groups of features; several rows have similar decreasing or increasing effect, as
we move across samples. This result supports the idea of Fi· as a representation
of interactions; on the contrary, a random pattern would be observed for most
rows. Figure 7 also presents the posterior estimates and 95% credible interval for
the loadings related to genes in G1 and G2. These results are computed for the
component in the posterior mixture with the highest probability weight. As can be
seen, most intervals in Gl , l = 1 or 2, suggest loadings with the same sign. This
result supports the association between factors 1–2 and the CNA detected for G1
and G2. In other words, the estimated interactions seem to be a result of the CNA
in regions 2 and 4.

Figure 8 shows, in panels (a) and (c), the three-dimensional surface plot repre-
senting the shape of the estimated interaction effect for two genes. The x and y
axes contain the estimated λ1j and λ2j , therefore, each point in the x–y plane is
related to a sample (microarray). These shapes are different, suggesting distinct in-
teraction effects for those genes. Panels (b) and (d) present the posterior mean used
in the z axis of the graph and the corresponding 95% credible interval indicating
our posterior uncertainty related to the estimated surface.
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FIG. 7. Results related to the pair of locations (2,4). First four panels: posterior mean (x mark)
and 95% credible interval (bar) for αil with i ∈ (G1 ∪G2); the dashed line separates the two factors.
Fifth panel: left-hand side = full matrix F (3744 genes), right-hand side = cases Fi· �= 0 (rows and
columns are sorted so that the 1st principal components are monotone).

Table 4 compares the list of affected genes related to different breast cancer data
sets. The table is divided in three sections representing the pair of regions with
CNA. The main diagonal in each section indicates the number of affected genes.
Note that all intersections are nonempty sets, that is, different data sets indicate the
same group of genes as affected by interactions. Given the large number of genes
in GE and the relatively small list of affected cases determined in each application,
the identification of elements in the intersections is an important result suggesting



SPARSE LATENT FACTOR MODELS WITH INTERACTIONS 817

FIG. 8. 3-D surface plot of the estimated interaction effect F1524· (a) and F1945· (c). Panels (b) and
(d) contain the posterior mean (x mark) and the 95% credible interval (bar). This result is related to
the data set Chin et al. (2006) and the pair of locations (2,4).

a plausible model. Most intersections involving three data sets have 1 or 2 elements
for any pair of regions.

We evaluate the results of Table 4 to test the hypothesis of independent random
samples of genes for each data set. This same test was used in Section 5 to examine
Table 2. The configuration of Table 4 provides the p-values: 0.00002 for the pair
(1,4), 0.00001 for (2,4) and 0.00044 for (3,4). Assuming a significance level of
0.05, we reject the indicated null hypothesis.

In our final comparison analysis, the frameworks approach 1 (Section 2) and
model 1 (Section 3) have been used to fit the data sets [Chin et al. (2006), Miller
et al. (2005), Sotiriou et al. (2006) and Wang et al. (2005)]; consider the pair of
regions (2,4) in Table 3. Each model provides a list of genes affected by inter-
actions; we have found 22 (Chin), 7 (Miller), 13 (Sotiriou) and 7 (Wang) genes
in the intersection of the lists generated for the same data set. This type of result
reinforces the idea that the proposed models can be valid to study interactions.

7. Conclusions. In an ordinary factor analysis, the involvement of any fea-
ture with the factors is always additive. Biological pathways establishing com-
plex structure of dependencies between genes motivate the idea of a multi-factor
model with interaction terms. We study the expression pattern across samples us-
ing Affymetrix GeneChip©R microarrays. The matrix X contains the preprocessed
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TABLE 4
Intersections between data sets; common genes affected by interactions

Chin Miller Sotiriou Wang

Pair (1,4)

Chin 139 6 8 9
Miller 6 81 6 3
Sotiriou 8 6 121 1
Wang 9 3 1 46

Pair (2,4)

Chin 275 14 13 19
Miller 14 111 7 7
Sotiriou 13 7 143 8
Wang 19 7 8 111

Pair (3,4)

Chin 235 10 11 7
Miller 10 91 4 9
Sotiriou 11 4 115 2
Wang 7 9 2 75

data (RMA outputs) with rows representing genes and columns representing mi-
croarrays. Each column is a different individual, but all samples are related to
the same type of cancer cell. We formulate the factor models with spike and slab
prior distributions to allow for sparsity and then test whether the effect of fac-
tors/interactions on the features is significant or not. Simulated studies have been
developed to verify the performance of the proposed models; the posterior esti-
mates approximate well the real values.

In Section 2 we have proposed a model with pairwise multiplicative interac-
tions, but any function defining a relationship between a pair of factors can be
used. Two approaches were considered to introduce the interaction effect: (1) the
product is inserted as the mean of a Gaussian prior, (2) we assume the perfect
product between factors in a deterministic setup. In the real data application we
have studied four breast cancer data sets. Two factors were defined in the model,
and each one is directly associated with the genes located in a particular region
(detected with CNA) of the human genome. The main aim was to identify other
genes affected by the product interaction of the two factors. A selection process
was implemented to choose the most interesting genes for this study, nevertheless,
the matrix X represents a large number of features. In this case, approach 1 re-
quires a Gaussian prior with extremely small variance to ensure the multiplicative
effect. On the other hand, approach 2 does not suffer from the same problem given
its deterministic formulation. Depending on the data set, we have observed 170–
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314 genes affected by interactions, and the pairwise intersections of these groups
have at least 14 elements.

In Section 3 we have developed a multi-factor model with a nonlinear structure
of interactions; this version is more general. The nonlinearities involving the latent
factors were introduced through the Squared Exponential kernel, which defines the
covariance matrix in the Gaussian component of a mixture prior specified for the
parameter representing interaction effects. One version of this prior assumes that
the effect can be different comparing affected genes; the less realistic assumption
“same effect for any pair of affected features” was also studied. In addition, differ-
ent prior formulations were considered for probability parameters in the mixture
prior specified for the interaction effects and for the factor loadings. As a result,
five versions of the model were defined for investigation. Assumptions related to
the intended type of application were used to choose the priors and induce a spe-
cific configuration in the matrices of factors loadings and interaction effects, which
provides the identification of the model. In the real data application, we have revis-
ited the two-factor analysis based on regions with CNA. Four breast cancer data
sets were explored, and interactions can be identified in all evaluations. The in-
tersections of results from the four data sets are nonempty sets which suggest a
plausible model.

The use of a different covariance function can be an alternative to better com-
bine smoothness and good posterior estimation. Of particular interest in this regard
is the Matern class of covariance functions K(r) = [21−υ/�(υ)](r√2υ/ls)

υ ×
Kυ(r

√
2υ/ls) with positive parameters υ and ls , where Kυ is a modified Bessel

function [see Abramowitz and Stegun (1965), Section 9.6] and r is the Euclidean
length. The parameter υ is, in fact, a smoothness parameter. The Squared Expo-
nential covariance function exp{−r2/(2l2

s )} is obtained for υ = ∞ [see Rasmussen
and Williams (2006), page 204]. The process is k-times Mean Squared differen-
tiable if and only if υ > k. In summary, we currently control the range of influence
between points using the parameter ls . In order to improve smoothness and re-
tain good posterior approximation, one could try to balance the choices of ls and
υ < ∞.

In Section 3 we have studied two mixture priors for Fi· specifying extreme
cases, that is, the effects are all different or the same. It would be reasonable
to consider the intermediate situation, where we identify groups of genes such
that the nonlinear interaction is the same within each group, but it differs be-
tween groups. In order to implement this assumption, we can use the clustering
properties of the Dirichlet Process (DP) [Ferguson (1973, 1974)]. The following
result is implied by the Polya urn scheme in Blackwell and MacQueen (1973),
and it leads to the so-called “Chinese Restaurant Process” [see Aldous (1985),
page 92]: (ψi |ψ1, . . . ,ψi−1) ∼ [ζ/(ζ + i − 1)]P0 + ∑i−1

j=1[1/(ζ + i − 1)]δψj
,

where ζ is the concentration parameter and P0 is the base distribution in the DP.
This implies that the ith feature is drawn from a new cluster with probability pro-
portional to ζ or is allocated to an existing cluster with probability proportional
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to the number of features in that cluster. As a result, we can consider the prior
(F ′

i·|λ) ∼ (1 − ρi)δ0(Fi·) + ρiDP (ζ,P0) with P0 = Nn[0,K(λ)], where K(λ) is
the covariance matrix depending on λ.
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SUPPLEMENTARY MATERIAL

Sparse latent factor models with interactions: Posterior computation, sim-
ulated studies and gene selection procedure (DOI: 10.1214/12-AOAS607SUPP;
.pdf). Additional material containing the following: formulations of the complete
conditional posterior distributions for parameters in the proposed models, simu-
lated studies to evaluate the performance of the models, and the description of the
procedure used to select genes for the real applications.

REFERENCES

ABRAMOWITZ, M. and STEGUN, I. A. (1965). Handbook of Mathematical Functions. Dover, New
York.

ALDOUS, D. J. (1985). Exchangeability and related topics. In École D’été de Probabilités de Saint-
Flour, XIII—1983. Lecture Notes in Math. 1117 1–198. Springer, Berlin. MR0883646

ARMINGER, G. and MUTHEN, B. O. (1998). A Bayesian approach to nonlinear latent variable
models using the Gibbs Sampler and the Metropolis–Hastings algorithm. Psychometrika 63 271–
300.

BLACKWELL, D. and MACQUEEN, J. B. (1973). Ferguson distributions via Pólya urn schemes.
Ann. Statist. 1 353–355. MR0362614

CARVALHO, C. M., CHANG, J., LUCAS, J. E., NEVINS, J. R., WANG, Q. and WEST, M. (2008).
High-dimensional sparse factor modeling: Applications in gene expression genomics. J. Amer.
Statist. Assoc. 103 1438–1456. MR2655722

CHEN, B., CHEN, M., PAISLEY, J., ZAAS, A., WOODS, C., GINSBURG, G. S., HERO, A., LU-
CAS, J., DUNSON, D. and CARIN, L. (2010). Bayesian inference of the number of factors in
gene-expression analysis: Application to human virus challenge studies. BMC Bioinformatics 11
552.

CHIN, K., DEVRIES, S., FRIDLYAND, J., SPELLMAN, P. T., ROYDASGUPTA, R., KUO, W.-L.,
LAPUK, A., NEVE, R. M., QIAN, Z., RYDER, T., CHEN, F., FEILER, H., TOKUYASU, T.,
KINGSLEY, C., DAIRKEE, S., MENG, Z., CHEW, K., PINKEL, D., JAIN, A., LJUNG, B. M.,
ESSERMAN, L., ALBERTSON, D. G., WALDMAN, F. M. and GRAY, J. W. (2006). Genomic and
transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10 529–541.

DESANTIS, S. M., HOUSEMAN, E. A., COULL, B. A., LOUIS, D. N., MOHAPATRA, G. and
BETENSKY, R. A. (2009). A latent class model with hidden Markov dependence for array CGH
data. Biometrics 65 1296–1305. MR2756518

FERGUSON, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1
209–230. MR0350949

FERGUSON, T. S. (1974). Prior distributions on spaces of probability measures. Ann. Statist. 2 615–
629. MR0438568

FRIDLYAND, J., SNIJDERS, A. M., PINKEL, D., ALBERTSON, D. G. and JAIN, A. N. (2004).
Hidden Markov models approach to the analysis of array CGH data. J. Multivariate Anal. 90
132–153. MR2064939

http://dx.doi.org/10.1214/12-AOAS607SUPP
http://www.ams.org/mathscinet-getitem?mr=0883646
http://www.ams.org/mathscinet-getitem?mr=0362614
http://www.ams.org/mathscinet-getitem?mr=2655722
http://www.ams.org/mathscinet-getitem?mr=2756518
http://www.ams.org/mathscinet-getitem?mr=0350949
http://www.ams.org/mathscinet-getitem?mr=0438568
http://www.ams.org/mathscinet-getitem?mr=2064939


SPARSE LATENT FACTOR MODELS WITH INTERACTIONS 821

GEORGE, E. I. and MCCULLOCH, E. (1993). Variable selection via Gibbs sampling. J. Amer. Statist.
Assoc. 88 881–889.

GEORGE, E. I. and MCCULLOCH, E. (1997). Approaches for Bayesian variable selection. Statist.
Sinica 7 339–373.

GEWEKE, J. (1996). Variable selection and model comparison in regression. In Bayesian Statistics,
5 (Alicante, 1994) 609–620. Oxford Univ. Press, New York. MR1425430

HENAO, R. and WINTHER, O. (2010). Sparse linear identifiable multivariate modeling. Preprint,
Cornell Univ, Ithaca, NY. Available at http://arxiv.org/abs/1004.5265.

HOYER, P. O., JANZING, D., MOOIJ, J. M., PETERS, J. and SCHOLKOPF, B. (2009). Nonlinear
causal discovery with additive noise models. Adv. Neural Inf. Process. Syst. 21 689–696.

LAWRENCE, N. D. (2004). Gaussian process models for visualisation of high dimensional data. In
Advances in Neural Information Processing Systems (S. Thrun, L. Saul and B. Scholkopf, eds.)
16 329–336. MIT Press, Cambridge, MA.

LAWRENCE, N. (2005). Probabilistic non-linear principal component analysis with Gaussian process
latent variable models. J. Mach. Learn. Res. 6 1783–1816. MR2249872

LUCAS, J. E., KUNG, H.-N. and CHI, J.-T. A. (2010). Latent factor analysis to discover pathway-
associated putative segmental aneuploidies in human cancers. PLoS Comput. Biol. 6 e1000920.

LUCAS, J. E., CARVALHO, C., WANG, Q., BILD, A., NEVINS, J. R. and WEST, M. (2006). Sparse
statistical modelling in gene expression genomics. In Bayesian Inference for Gene Expression
and Proteomics (P. Muller, K. Do and M. Vannucci, eds.) 155–176. Cambridge Univ. Press, Cam-
bridge.

MARIONI, J. C., THORNE, N. P., TAVARE, S. and RADVANYI, F. (2006). BioHMM: A heteroge-
neous hidden Markov model for segmenting array CGH data. Bioinformatics 22 1144–1146.

MAYRINK, V. D. and LUCAS, J. E. (2013). Supplement to “Sparse latent factor models with inter-
actions: Analysis of gene expression data.” DOI:10.1214/12-AOAS607SUPP.

MILLER, L. D., SMEDS, J., GEORGE, J., VEGA, V. B., VERGARA, L., PLONER, A., PAWITAN, Y.,
HALL, P., KLAAR, S., LIU, E. T. and BERGH, J. (2005). An expression signature for p53 status
in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc.
Natl. Acad. Sci. USA 102 13550–13555.

POLLACK, J. R., SORLIE, T., PEROU, C. M., REES, C. A., JEFFREY, S. S., LONNING, P. E.,
TIBSHIRANI, R., BOTSTEIN, D., DALE, A. L. B. and BROWN, P. O. (2002). Microarray anal-
ysis reveals a major direct role of DNA copy number alteration in the transcriptional program of
human breast tumors. Proc. Natl. Acad. Sci. USA 99 12963–12968.

PRZYBYTKOWSKI, E., FERRARIO, C. and BASIK, M. (2011). The use of ultra-dense array CGH
analysis for the discovery of micro-copy number alterations and gene fusions in the cancer
genome. BMC Med. Genomics 4 16.

RASMUSSEN, C. E. and WILLIAMS, C. K. I. (2006). Gaussian Processes for Machine Learning.
MIT Press, Cambridge, MA. MR2514435

SOTIRIOU, C., WIRAPATI, P., LOI, S., HARRIS, A., FOX, S., SMEDS, J., NORDGREN, H.,
FARMER, P., PRAZ, V., KAINS, B. H., DESMEDT, C., LARSIMONT, D., CARDOSO, F., PE-
TERSE, H., NUYTEN, D., BUYSE, M., VIJVER, M. J. V. D., BERGH, J., PICCART, M. and
DELORENZI, M. (2006). Gene expression profiling in breast cancer: Understanding the molec-
ular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute 98
262–272.

TEH, Y. W., SEEGER, M. and JORDAN, M. I. (2005). Semiparametric latent factor models. In Pro-
ceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (Z. Ghahra-
mani and R. Cowell, eds.) 333–340. The Society for Artificial Intelligence and Statistics.

TITSIAS, M., LAWRENCE, N. D. and RATTRAY, M. (2009). Efficient sampling for Gaussian pro-
cess inference using control variables. In Advances in Neural Information Processing Systems 21
(D. Koller, Y. Bengio, D. Schuurmans and L. Bottou, eds.) 689–696. MIT Press, Cambridge, MA.

http://www.ams.org/mathscinet-getitem?mr=1425430
http://arxiv.org/abs/1004.5265
http://www.ams.org/mathscinet-getitem?mr=2249872
http://dx.doi.org/10.1214/12-AOAS607SUPP
http://www.ams.org/mathscinet-getitem?mr=2514435


822 V. D. MAYRINK AND J. E. LUCAS

WANG, Y., KLIJN, J. G. M., ZHANG, Y., SIEUWERTS, A. M., LOOK, M. P., YANG, F., TALAN-
TOV, D., TIMMERMANS, M., GELDER, M. E. M. V., YU, J., JATKOE, T., BERNS, E. M. J. J.,
ATKINS, D. and FOEKENS, J. A. (2005). Gene expression profiles to predict distant metastasis
of lymph-node-negative primary breast cancer. Lancet 365 671–679.

WEST, M. (2003). Bayesian factor regression models in the large p, small n paradigm. In Bayesian
Statistics 7 (J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith and M. West,
eds.) 723–732. Oxford Univ. Press, Oxford.

DEPARTAMENTO DE ESTATISTICA, ICEX

UNIVERSIDADE FEDERAL DE MINAS GERAIS

AV ANTONIO CARLOS, 6627, PAMPULHA

BELO HORIZONTE, MG, 31270-901
BRAZIL

E-MAIL: vdm@est.ufmg.br

INSTITUTE FOR GENOME SCIENCES

AND POLICY

DUKE UNIVERSITY

CIEMAS, BOX 3382
DURHAM, NORTH CAROLINA 27708
USA
E-MAIL: joseph.lucas@duke.edu

mailto:vdm@est.ufmg.br
mailto:joseph.lucas@duke.edu

	Introduction
	Factor model with multiplicative interactions
	Factor model with general nonlinear interactions
	Comparison between factor models with interactions
	Real application: CNA and multiplicative interactions
	Real application: CNA and nonlinear interactions
	Conclusions
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

