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SUMMARY & CONCL USIONS 

In reliability engineering, it is known that electrical and 
mechanical equipment usually have more than one failure 
mode or cause. It has been recognized for more than three 
decades that the mixed Weibull distribution is an appropriate 
distribution to use in modeling the lifetimes of the units that 
have more than one failure cause. However, due to the lack of 
a systematic statistical procedure for fitting an appropriate 
distribution to such a mixed data set, it has not been widely 
used. A mixed Weibull distribution represents a population 
that consists of several Weibull subpopulations. In this paper, 
a new approach is developed to estimate the mixed-Weibull 
distribution’s parameters. At first, the population sample data 
are split into subpopulation data sets over the whole test 
duration by using the posterior belonging probability of each 
observation to each subpopulation. Then, with the new 
concepts of Fracture Failure and Mean Order Number, the 
proposed approach combines the Least-Squares method with 
Bayes’ Theorem, takes advantage of the parameter estimation 
for single Weibull distribution to each derived subgroup data 
set, and estimates the parameters of each subpopulation. The 
proposed approach can also be applied for complete, censored, 
and grouped data samples. Its superiority is particularly 
significant when the sample size is relatively small and for the 
case in which the subpopulations are well mixed. A numerical 
example is given to compare the proposed method with the 
conventional plotting method of subpopulation separation. It 
turns out that the proposed method yields more accurate 
parameter estimates. 

NOTA TION 

f (4 Probability density hnction, p d !  of a mixed 
population 

x (4 Probability density function, pdJ; of jth 
subpopulation, j = 1 , 2  

4 ,  vj 
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Weibull shape and scale parameters of $ ( t )  

Mixing weight for Subpopulation 1 and 2, 
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Posterior belonging probability 

Mean Order Number 

Median Rank 
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Correlation coefficients, p = p1 + pz 

1 .  INTRODUCTION 

The Weibull distribution has been used to model times-to- 
failure data successfully. However, when a product has two or 
more failure modes or causes; e.g., both early failures and 
chance failures might be involved in a bum-in test, the 
appropriate mixed-Weibull distribution must be used. 

If the population consists of a mixture of two independent 
subpopulations with no correlation and each subpopulation 
has its own unique failure mode and distribution, then the 
lifetime distribution for the mixed population can be 
expressed by 

f ( 0  = P f i  0) + 4 f 2  (0, (1) 
where 

At) = pdfof the mixed population, 
Act) = pdfof the jth subpopulation, j = I ,  2, 
p 

p f q e l .  

= mixing weight, PE (0, I), 
and 

Usually, a subpopulation can be described by a single 
Weibull distribution; i.e., 

L 

Therefore, Eq. (1) becomes a mixed two-Weibull 
distribution with five parameters, PI,  ql, Pz, q2, andp. 

Jiang and Kececioglu (Ref. 1) found that there are six typical 
patterns of mixed, two-Weibull CDF curves on Weibull 
Probability Paper (WPP). In practice, if the plot of failure 
data on WPP falls in one of those six typical shapes, then a 
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mixed two- Weibull distribution might be a good model to use 
for the analysis of the failure data. The question is how to fit 
the mixed Weibull distribution to the failure data or how to 
estimate the distribution’s parameters properly. 

Actually, the mixed Weibull distribution has been 
recognized as a candidate model of multi-mode failures in 
reliability engineering for more than three decades. It has not 
been widely used, because it is difficult to estimate the 
distribution parameters. This paper will present a new 
algorithm which combines the Least-Squares method with 
Bayes Theorem by introducing new concepts. The objective 
of the paper is to find an easy way to get accurate estimates of 
parameters or, at least to stimulate some new ideas to find a 
better estimation method later. 

2. PARAMETER ESTIMATION FOR A MIXED TWO- 
WEIBULL DISTMBUTION 

2.1 Current Methods 

The parameter estimation for a mixed distribution is much 
more difficult than that for a single distribution. The 
difficulties are partly caused by the involvement of more 
unknown parameters. 

For a mixed, two-Weibull distribution, five parameters need 
to be estimated. Theoretically, the “best” way is to use the 
physics-of-failure analysis, classify each failure data point into 
a different subpopulation by its failure mode, and thus analyze 
each subpopulation separately. This additional failure analysis 
is usually costly, time-consuming, and impossible in most 
engineering practices. Sometimes, engineers even need to use 
statistical solutions instead of physics-of-failure analysis to 
identify the failure modes; e.g., engineers have to make a 
decision, based on a simple analysis of failure data. 

Currently, two major estimation methods are used for the 
mixed, two-Weibull distribution: the graphical method (Refs. 
1-3) and the MLE method (Ref. 4). The graphical parameter 
estimation method is very popular for the mixed Weibull due 
to its simplicity and visibility. Another reason for still using 
graphic estimates is that, so far, there is no other easy way to 
get reasonable estimates. This method is useful for the well- 
separsted subpopulation cases. It depends on visual 
inspection of the data plots, which fails in most well-mixed 
cases. Also, it is hard to use for small sample sizes which is 
the case engineers often encounter. However, since it can be 
quickly carried out, the graphical method can provide initial 
estimates of the population parameters. 

Maximum Likelihood Estimation (MLE) is preferred by 
statisticians because the MLE estimate has excellent statistical 
characteristics. It finds simultaneously all parameters that 
maximize the likelihood function of the observed sample. For 
a mixed Weibull population, the MLE is very complex. The 
Expectation and Maximization (EM) algorithm (Ref. 4) is 
recommended to solve the MLE for the mixed Weibull 
distribution. However, the calculations (iterations) may not 
always converge and multiple local maxima occur in all MLE 
algorithms. It has to be pointed out that, for small size 

samples, the MLE estimates tend to be highly biased and 
should be used very carefully. 

The method presented here takes advantage of both physics- 
of-failure analysis results, which takes advantage of the 
single-Weibull analysis approach plus the MLE method, 
which uses every failure point of both subpopulations. The 
new method tries to split each failure point into two. By 
calculation, it theoretically separates the data sample into two 
subsamples corresponding to two subpopulations, 
respectively. Each subpopulation will fully use the 
information of the whole sample. Also the single-Weibull 
analysis approach can be applied to estimate the parameters of 
each subpopulation separately. 

2.2 The Application of Bayes’ Theorem 

If a reliability life test is carried out on N units of a product 
which has two failure modes, a times-to-failure sample { t i ,  i 
= I ,  2, ..., N I  is obtained. Assume that 

t ,  < t2 < . . * . ’ *  < t ,  . 
At time ti, a failure is observed. To split this failure point 

rationally, the concept of belonging probability, Pi (ti), which 
is the posterior probability that this failure belongs to the j th 
subpopulation (j = 1,2), is introduced by Kamath (Ref. 5),  and 
Kececioglu and Sun (Ref. 6). By definition 

P j ( t i ) = P T E  f -  t t i - - A t < T < t i + - A t  I 1 , i J O I  2 2 
j = l , 2 ,  i = 1 , 2  ,..., N.  (3 1 

Applying Bayes’ Theorem, yields 

P(t; - + A t < T < t [  + + n t l T E f i ( t ) ) . P ~ T E f i ( t ) ~  
.I X P { t ;  - $ d t < T < t ;  + + n t l T E f i ( t ) } . P { T E f i ( t ) l  1 (4) p .  = 

.i 
where 

and 
P { T E f i ( t ) l = P ,  

P{  T E f 2 ( t ) }  = 1 - p = q .  

Then, the probability that a failure occurring at time ti 
belongs to Subpopulation 1 is 

Similarly, the probability that a failure occurring at time ti 
belongs to Subpopulation 2 is 

Note that for each failure point, the sum of all belonging 
probabilities must be unity; i.e., 

Pl(tj)  + P2(ti) = 1, ‘v’ i . 
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2.3 Determination of the Subsamples 

Without doing any physics-of-failure analysis, there is no 
way to tell exactly from which subpopulation an observation 
comes, By means of the posterior belonging probabilities, the 
failure occurring at ti can be divided into two portions: 
1 OO.Pl(ti) percentage of this failure belongs to Subpopulation 
1 and 100-P,(ti) percentage belongs to Subpopulation 2. It can 
be claimed that there were Pl(ti)  failures expected at time ti if 
only Subpopulation 1 was put in test with the sample size of 
N p .  In other words, Pl(ti) can be considered as the failed unit 
number at time ti in Subpopulation 1 and P2(ti) the failed unit 
number of Subpopulation 2 at time ti. Pooling these 
“fractional failures” versus their corresponding occurrence 
times under the same subpopulation yields the following two 
subsamples: 

Subsample 1 : {( t l ,  Pl(t />>, ( t2, P/(t2))9 . * .) ( t N ,  PdtN))} ; 
Subsample 2: {( t / ,  PZ(t/)), ( t?, P?(t?)), ( tN9 P 2 ( t N ) ) } .  

2.4 Application of the Least-Squares Method 

If two different products, one of sample size N p  and another 
of N q  (total is N), respectively, are put into a reliability life 
test independently, two lifetime samples are obtained. In Test 
1 ,  Pl(tl) units fail at time tl, Pl(t2) units fail at time t2, ..., 
Pl(tN) units fail at time tN. Similarly, P2(tl) units fail at time t l ,  
P2(t2) units fail at time t2, . . ., PZ(tN) units fail at time t N  in Test 
2. For each subpopulation, its corresponding subsample can 
be seen as a grouped data sample. The only difference is that 
the failure number at each failure point is not an integer. For 
each subsample, the conventional estimation method, the 
Rank Regression method, for single-Weibull distribution can 
be used to estimate the parameters of each subpopulation. The 
Mean Order Number (MON) of the ith failure in the jth 
subpopulation will be 

i 
MONl(t i )= C P / ( t k ) ,  i = 1,2, ..., N, (7) 

k=l 
and 

i 

k = I  
MONz(t i )= x P 2 ( t k ) ,  i = 1,2, ..., N. (8) 

The corresponding Median Ranks, A4Rj(ti), can be calculated 
as follows: 
Subpopulation 1 

Subpopulation 2 

(9) 

Having these two data sets, the least-squares method can be 
used to determine the posterior parameters. The CDF, or 
unreliability, for a Weibull distribution can be written in the 
form of 

or in the linearized form of 

where 
Y j  ( i)  = pj X ( i )  + b j  , (12) 

q(i) = loge (-loge[ 1 -MRj(ti)lly 
X(i) = log, ti , 
bj = -4 log, r l j .  

Finally, applying the least-squares method, the distribution 
parameters are given by 

and 

j =  1,2. (15) 

On the other hand, the posterior mixing weight can be 
obtained from 

or 

Note that the estimate given by Eq. (16) or (17) also satisfies 
the Maximum Likelihood Equation. For the mixed, two- 
Weibull distribution, the Maximum Likelihood Function is 

N N 

i=l i=l 
L =  IT f ( t i )=  n [ P * f i ( t i ) + q * f 2 ( t i ) I  7 

or 
N 

i=l 
I =  loge(L) = Clog, [p * fi(ti) + 9 * f i ( t i l 1 .  

Taking the partial derivative with respect top,  yields 
-= 81 f l ( t i ) - f 2 ( t i )  
6 ’ ~  j = l  f ( t i )  

Substituting Eqs. (5) and (6 )  into it, yields 
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Then, substituting Eqs. (16) and (17) into this equation, yields 

0. 21 __ = N . P - N  .-= 
2P P 4 

4 

2.5 Algorithm 

91.1 

The original estimation problem is that of having a data 
sample from a mixed population, which has a pdf given in 
Eqs. (1) and (2), and then of estimating the five parameters, 
PI, V I ,  P2, q2, and p ,  such that the distribution fits the data 
“best”. 

From the mathematical point of view, the problem is to find 
the five unknowns from the given data set {t, ; i= I ,  2, ..., N) 
So, five relations (equations) among unknown parameters and 
given data need to be constructed to solve for the five 
unknowns. 

From previous discussion, the belonging probabilities are 
completely determined if the distribution parameters and the 
data set are known. This means the belonging probabilities, Pi 
(ti), are a function of the parameters, PI, 71, P2, q2, and p ,  and 
of the data set, {ti ; i= I ,  2 ,..., N } ,  only. From Eqs. (7) 
through (17), it is easy to see that PI ,  71, P2, v2, and p are 
functions of the belonging probabilities, P, (ti), and the data 
set, or 

5 

Note that Eqs. (1 8), (1 9) and (20) actually are five equations 
with respect to PI, vl, P2, v2, and p (unknowns), including the 
sample data {ti ; i= 1, 2, ..., N }  (given). Theoretically, the 
least-squares parameter estimates would be obtained by 
solving these five equations directly. Obviously, it is 
impossible to get analytical solutions in practice. Normally, 
an alternative way is to use the iterative technique to solve the 
equations numerically. However, if the iterative procedure is 
applied directly, the calculation process may not always 
converge or may converge very slowly. Also the result is 
sensitive to the initial value and the quality of the’data set. In 
practice, the quality of the data is not always good. 
Sometimes, engineers may face “dirty” data. In these cases, 
Eqs. (18), (19) and (20) may not have any solution or give 
very low quality estimates. However, the idea of the least- 
squares method is to find the “best” fit. Regardless of how 
good or bad the quality of the data, the “best” fitting line 
always exists. According to the least-squares principle, the 
“best’ fitting line minimizes the residual variation around the 
line. Generally, the correlation coefficient, p, provides a good 
measure of how well the line fits the data. The larger the 
absolute value of p is, the better the fitted line is. Based on 
this discussion, the “best” parameter estimates can be obtained 
by employing the least-squares principle to iterate on the PI,  
ql, P2, v2, and p values to minimize the deviations from the 
points to the line or maximize the correlation coefficient. 

129.1 

With any chosen set of PI,  ql, P2, v2, and p ,  the correlation 
coefficients of p1 and p2 are determined from Eqs. (5) through 
(1 l), and 

6 

j =  1,2. (21) 

157.8 

Since two lines are simultaneously fitted to two subsamples 
from two Weibull subpopulations and every parameter has an 
effect on both correlation coefficients, the sum of the squares 
of these two correlation coefficients might be the “best” 
measure for the degree of fitting. Note that in the mixed two- 
Weibull case, the correlation coefficient is always positive, or 
p, > 0, j = 1, 2. So, the sum of two coefficients, instead of the 
sum of the squares, can be simply used for the measure of the 
degree of fitting, or 

P =p1+p2. (22)  

7 

Therefore, employing the iterative procedure, the estimates 
of PI,  vl, P2, 7 2 ,  and p can be obtained by maximizing the 
value o f p  , starting from a proper initial point colo, q,’, pZ0, 
7720, PO).  It is recommended to use the graphical estimates as 
the initial point to save search time. In the authors’ experience 
the function of mI, ql, P2, v2, p )  has always displayed 
unimodal behavior. So, any nonlinear programming algorithm 
may be incorporated easily to handle this problem. The 
proposed computing flow chart is given in Fig. 1. Since every 
computing step is in closed form, this method is easy to 
program. 

EXAMPLE 

188.9 

Given are the life test data of Table 1. If the mixed two- 
Weibull distribution is used to represent the times-to-failure 
distribution, determine the mixed population’s parameters 
using the proposed approach and the graphic method. 
Conduct the K-S goodness-of-fit test to compare the results. 

8 

TABLE 1 - Failure data from a life test for Example. 

226.1 

Failure order, i Times to failure 

28.5 

9 278.0 
10 367.2 
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+ 
Initial Parameters 

28.5 
71.6 

1 0.017825 0.015671 
0.015086 0.019961 Calculating 

157.8 
188.9 Calculating 

MRj (ti ) 

0.0 1945 1 0.073926 
0.075794 0.017055 

+ 
I Calculating 

278.0 
367.2 

0.035371 0.0 12674 
0.009758 0.003933 

P j = V j , P j = r j , ~ = ~  

Fig. 1 - The proposed computing flow chart. 

SOLUTIONS TO EXAMPLE 

1. Graphic Estimation. 

Calculating 

The separation plotting method (Ref. 2, pp. 53 1-579) is used 
The parameter estimates are to get the graphic estimation. 

found to be 
j3 = 0.3, = 0.6, $1 = 39.4, a 2  = 2.3, $2 = 233.5. 

Parameters j $1 i l  $2 $2 
Graphic 0.3 0.6 39.4 2.3 233.5 

2. The Proposed Estimation. 
To start the proposed approach, use the graphic estimates as 

the initial values of pio, vio, p?, 7720, and po. Using the 
algorithm developed in this paper and shown yields (the 
calculation details are omitted here) 

= 0.3, = 0.5, 61 = 50.0, a 2  = 1.9, 6 2  = 193. 

DMAX 
0.075 

3. Comparison 
A comparison is made by conducting the Kolmogorov- 

Smimov (K-S) goodness-of-fit test on the parameter values 
obtained by the graphical method and the proposed approach, 
as given in Table 2. It may be seen that the proposed approach 
yields a value of Dm smaller than that of the graphical 
method. 

TABLE 2 - K-S goodness-of-fit test on the parameter 
estimates for the Example. 

Estimates 
Proposed 
Estimates 

Times to Failure, ti I D- (Graphic) I D (Proposed) 
3.0 I 0.038181 I 0.032322 

0.3 0.5 50.0 1.9 193.0 0.032 

0.0123 16 
129.1 I 0.061995 I 0.020648 
91.1 I 0.065898 I 

226.1 I 0.064070 I 0.014820 I 

* D = I Qdti) - Qdti) I 3 

where 
Qo(ti) = observed probability of failure or unreliability, 
Qb.Cti) = expected probability of failure or unreliability. 

TABLE 3 - Parameter estimates obtained using the graphic 
and the proposed methods for the Example. 

3. CONCL USIONS 

The proposed method, which combines the least-squares 
method with the Bayesian Method, makes full use of the 
information on the distributions' behavior of two 
subpopulations over the whole test duration and takes 
advantage of the simple parameter estimation for single- 
Weibull distributions. Therefore, it may yield more accurate 
parameter estimates. The following conclusions may be 
derived from this paper: 
0 The proposed method is more accurate than conventional 

methods. Its superiority is particularly significant for the 
small sample size case and a well-mixed population. 
The proposed method can be applied to the complete, 
censored, ungrouped and grouped samples. It always can 
find proper estimates for any data sample. 
The proposed method is easy to program since the closed 
forms for every computing step are given. 
The proposed method can be applied to other mixed 
distributions. 

0 
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