
A probabilistic model for networks generated by actors'

characteristics

Abstract

This work presents the a�nity network model for random graphs, consisting of a broad

family of random graph models depending on some parameters. In this model, we suppose

that each individual randomly chooses a set of characteristics that represent him according

to a certain probability measure. The connections between two individuals depend on their

shared characteristics and are valued according to a function that measures what we call

a�nity in the network. According to the choice of this function, the network's density can

vary from sparse to complete graph, causing the model to be very �exible, which makes it

suitable to �t with real networks. To illustrate the behavior of the a�nity network model,

we present a Monte Carlo simulation study. We tune the model's generating parameters,

analyze its topological measurements, and compare them with equivalent graphs with edges

occurring independently, disregarding actors' characteristics.

Keywords: Random graph models, Social networks, Inference for random graphs

1 Introduction

In this work, we present a random graph model, which we call the a�nity network model,
that considers the attributes of the vertices responsible for making a connection between them.
We de�ne a function that measures what we call a�nity between two vertices, or actors in the
network, based on their characteristics and use this function to build the network. The idea
is that vertices that share characteristics are alike and therefore are connected in the graph,
whose strength will depend on the shape of this a�nity function that in�uences the topological
structure of the network. We believe that �exibility makes our model suitable to �t with real
networks, which is supported by our simulated study of some instances of the model.

As examples of important random graph models based only on the connection probabilities,
disregarding vertex features, we can cite [7], [9], and [3]. By ignoring the characteristics of the
vertices, these models distance themselves from real network data. Many real networks show
properties not covered by these models, such as clustering or transitivity, the propensity for two
neighbors of the same vertex to be neighbors, forming a triangle of connections in the network.
We refer the reader to [14] for a detailed explanation. Besides, there are several generating
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models for Dynamic Weighted Complex Networks. To cite a few, we refer to [2], [16], [12], and
in [18] it is presented a comprehensive survey on this topic.

The main inspiration for the a�nity network model comes from Social Representations col-
lected via the Free Word Association Technique (TFAW) based on psychoanalytic principles of
non-cognitive associations. In this instrument, individuals are asked to freely write �ve words,
or evocations, about a speci�c subject and then order these words according to their importance
to them. The main goal of this technique is to �nd the central nucleus, that is, the words that
would represent the most critical and widespread thoughts in the collective thinking of that
society about a given social object. An overview of this subject is presented in [17].

In the literature on the subject, the quadrants of [22], which values words by frequency and
the mean order of evocation, are widely used. However, [6] presents an alternative methodology
for the construction of a cognitive network through shared evocations and values them according
to their order and frequency of evocation through a coe�cient we call cognitive a�nity . In this
way, the cognitive network can capture people's collective thinking about a given theme without
establishing cuto� points for the frequency and the average order of evocation, as in the analysis
of quadrants. The a�nity network model extends the family of networks presented in this paper
by allowing a broader class of functions linking the vertices.

The a�nity network model proposed here can also be seen as a generalization of the Random
Intersection Graph model introduced by [19], which also considers that the source of uncertainty is
in the vertex. The a�nity network model inherits some interesting Random Intersection Graphs'
proven properties. The studies that analyzed the Random Intersection Graphs model were
particularly interested in �nding topological properties. For example, the article [13] presents
the threshold probabilities for which a given induced subgraph would be present with a high
chance in the intersection graph, and [21] presents a study of its degree distribution.

This paper primarily aims to achieve two key objectives. First, we introduce a novel network
model that draws inspiration from the previously mentioned concept of Social Representations.
This model broadens the scope of established models and provides remarkable versatility, making
it suitable for a broad variety of scenarios. Second, we conduct a simulated study to support the
model's capacity to encapsulate network properties typically observed in real-world networks,
such as high clustering, small diameter, large maximum degree, etc.

This paper is organized as follows. In the �rst section, we recall the Erd®s-Rényi model that
we will use as a basis to make comparisons. Section 2 presents the A�nity Networks model,
describing its components in detail. Section 3 contains some examples and usage of the A�nity
Network model. In section 4, we present a simulated study of the model for various scenarios
showing the behavior of the A�nity Network model concerning the main topological measures for
graphs and other essential features. Section 5 presents the conclusions based on the simulations
performed, leading us to claim that our model may �t real networks adequately.

1.1 Baseline model

Let G(V,E) be a graph where V is a set of vertices and E is a set of edges connecting them.
We consider the collection of all graph con�gurations, G, with N vertices and a probability
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distribution over it. The maximum possible edges for a graph G ⊂ G is n =
(
N
2

)
. In the model

proposed in [7] (ER), a graph with M edges is chosen uniformly at random from G, that is, the
probability of choosing a graph in G that has exactly M edges, G(N,M), is

P (G(N,M)) =

(
n
M

)
2n

A variant of this model was introduced by [9], where a graph is constructed by connecting
labeled nodes randomly. Each edge is included in the graph with probability p, independently
from every other edge, where the probability for generating each graph that has N nodes and
M edges, G(N,p), is

P (G(N,p)) = pM (1− p)n−M .

The ER model G(N,p) is the one more commonly used, mainly due to its simplicity and the
ease of analysis allowed by the independence of the edges. Therefore, when we refer to an ER
model, we refer to the G(N,p) throughout this text.

We have that the expected number of edges in G(N, p) ER model is np and the degree
distribution of any particular vertex has a binomial distribution:

P (deg(v) = k) =

(
N − 1

k

)
pk(1− p)N−1−k,

which converges to a Poisson(λ) distribution for large N and λ = Np constant.
The introductory article by Erd®s and Rényi (1959) has more than 17000 citations in the

literature up to now, which gives an idea of its importance to the �eld of random graph models.
Since then, a lot of work has been dedicated to understanding this model and developing the
area of random graphs. For an interesting review, we refer the reader to the book by Newman
(2010).

However, the ER model does not �t well with data from real networks, in general, due to the
complexity of the connections present in the real networks that it cannot capture. It represents
an unrealistic situation where the connections between individuals are set independently and
uniformly, disregarding all other information. Nevertheless, it is a valuable model used as a
baseline for other models. It is interesting to note how much other models deviate from it and
manage to capture essential features in real networks, such as small diameter, heavy-tailed degree
distribution, high clustering, and transitivity.

2 A�nity network model: presentation

In this section, we formally introduce the a�nity network model. The main ideas behind the
a�nity model are that vertices or actors might have intrinsic characteristics and that the intensity
of connections between actors is a function of these characteristics. The intrinsic characteristics
are encoded in the vocabulary matrix. At the same time, the mechanism controlling the intensity
of connections is formalized into the a�nity function. Thus, we will introduce these concepts in
the following subsections to properly formalize our model.
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2.1 Vocabulary matrix

We consider a set D = {d1, d2, . . . , dm−1, dm} with m ∈ N, which we call Dictionary, con-
sisting of all possible characteristics associated to a subject, that can be, for example, words,
labels, or features in a population. Suppose that each individual from this population randomly
chooses, according to a certain probability measure, a subset of characteristics in D. We denote
by Di = {di,1, di,2, . . . , di,mi−1, di,mi}, with mi ≤ m such that Di ⊂ D, the set of characteristics
chosen by the i-th individual and call it vocabulary.

For practical purposes, we associate each setDi with a binary vector Ui = [ui,1, ui,2, . . . , ui,m−1, ui,m]
such that

ui,j =

{
1, if dj ∈ Di

0, if dj /∈ Di.
(1)

In this way, Ui keeps the same information brought by Di. For a population of size N , we de�ne
the vocabulary matrix UN×m as

UN×m =


U1

U2

U3
...
UN

 =


u1,1 u1,2 · · · u1,m−1 u1,m
u2,1 u2,2 · · · u2,m−1 u2,m
u3,1 u3,2 · · · u3,m−1 u3,m
...

...
. . .

...
...

uN,1 uN,2 · · · uN,m−1 uN,m

 (2)

In words, the i-th row of UN×m stores all the relevant characteristics of the i-th actor/vertex.
For example, let's assume a population with N = 4 individuals and D = {d1, d2, d3, d4, d5},
According to Equation 1, a possible U matrix, would look like

U4×5 =


0 1 1 0 1
1 0 1 0 0
1 1 1 1 1
1 0 0 1 0

 ,
where U1 = [0, 1, 1, 0, 1] means that the �rst individual has chosen the characteristics d2, d3 and
d5.

If there is interest in knowing the order in which the characteristics were chosen, the matrix
U can store additional information, preserving each Di. To get U in this case, we write the order
vector associated with Di as Ui = [ui,1, ui,2, . . . , ui,m−1, ui,m] such that

ui,j =

{
t, if dj ∈ Di, dj = di,t

0, if dj /∈ Di

so that each non-zero element in Ui indicates the position of the respective characteristic in the
choices of the i-th individual.

For example, the vector U1 = [0, 2, 1, 0, 3] reveals which characteristics out of the 5 in D were
chosen by individual 1 and in which order. A possible U matrix for four individuals would be
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U4×5 =


0 2 1 0 3
1 0 2 0 0
4 3 1 5 2
1 0 0 2 0

 .
2.2 The a�nity function

As mentioned before, in our model, the connection between two vertices is according to a
deterministic function, which measures what we call a�nity between individuals regarding their
vocabulary. The idea behind this function is that we would like to say that individuals who have
chosen similar characteristics are very likely to be connected and to hold a strong connection.
On the other hand, if they share none of a few similarities, they are unlikely to be connected or
they are connected but by a weak connection.

The function measuring and determining the intensity of the connections between actors/vertices
is what we call the a�nity function. Mathematically, an a�nity function is de�ned as a sym-
metric function, f , such that

f : Rm × Rm → R+

We present some interesting examples in the following.

1. Binary a�nity function

The binary a�nity function is non-null whenever two individuals, i e j, share at least one
word in their choice sets, that is

f(Ui, Uj) = 1⇔ Di ∩Dj 6= ∅. (B)

2. Cardinal a�nity function

The cardinal a�nity function measures how many characteristics in common were chosen
by two individuals,

f(Ui, Uj) = |Di ∩Dj |. (C)

3. Jaccard a�nity function

In general, concordance coe�cients can be seen as a�nity functions. The agreement co-
e�cient described in [11] measures which proportion of the characteristics chosen by two
individuals is shared by them, that is

f(Ui, Uj) =
|Di ∩Dj |
|Di ∪Dj |

. (J)
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4. Cognitive a�nity coe�cient

In [6], the authors present an a�nity coe�cient to calculate the level of a�nity between
two individuals. Considering |D| = M , m = max(|Ui|, |Uj |), where uij is the order of the
characteristic wj for the individual i, they propose

f(Ui, Uj) =

M∑
l=1

[2 · (m+ 1)− (ui,l + uj,l)) · (m− |ui,l − uj,l|) · w · I(min{ui,l,uj,l} > 0)].

(CAE)
where I is an indicator function, I = 1 if (min{ui,l, uj,l} > 0), and 0, otherwise. Further-
more, the coe�cient w is a normalization factor that makes the a�nity coe�cient belong
to the [0.1] interval.

The cognitive a�nity coe�cient depends on the order and distance between characteristics
two individuals choose. We will discuss this choice for the a�nity function in detail in
Section 3.3.

2.3 The A�nity Network

We call a�nity network the graph obtained linking the n individuals using the a�nity
function. Two individuals, i and j, are connected if f(Ui, Uj) ≥ γ, for some value of γ, which is
a tuning parameter. The greater the γ, the less dense the a�nity network. High values of γ can
be used where only edges representing a powerful connection are allowed.

We denote the a�nity network by G(λ), λ = (n,m, µ, f, γ), where n is the number of vertices,
m is the number of characteristics in D, µ = {µj}1≤j≤m is the probability distribution over D,
f is the a�nity function and γ is the cuto�. We notice that U carries all the uncertainty about
G(λ) since λ is �xed. We set f(Ui, Ui) = 0 to avoid loops in G(λ).

More formally, given λ = (n,m, µ, f, γ), G(λ) is the weighted graph whose vertex set is
V = {1, 2, . . . , n} and edge set, E, is

E := {{i, j} : f (Ui, Uj) ≥ γ} (3)

and the weight or intensity of the connection between i and j is given by f (Ui, Uj).
Figure 1 below presents an example of an a�nity network with 15 actors, m = 10, and a

cardinal a�nity function de�ned at (C) where the cuto�, γ, changes from 2 to 5. We use γ = 1,
for the binary a�nity function.

3 Examples and Usage Cases of The A�nity Networks

To illustrate the model's versatility, we provide several examples and discuss some use cases
of the a�nity network model in this section. Notice that modeling a certain phenomenon or
situation with the a�nity network involves choosing the distribution µ's, the proper a�nity
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Figure 1: A�nity network with cardinal function, m = 10, and cuto� γ = {2, 3, 4, 5}.

function, and the cuto� parameter γ. The choice of µ involves assumptions on how characteristics
are assigned to the actors. Whereas the a�nity function together with γ drives not only the
density of connections in the network but also their intensity/weights.

3.1 A particular important case of the a�nity network model

The Random Intersection Graphs (RIG) model introduced by [19] is a particular case of the
a�nity network model considering the Ui,j independent and identically distributed and binary
a�nity function with cut point 0 ≤ γ ≤ 1.

There are several interesting works in the literature on RIG models. To cite a few, we
refer the reader to [13] , [10], [5] , [4], [1] . These studies analyze topological features, phase
transition, and evolution of subgraphs' appearance as the probability of choosing an element
grows. An interesting result presented by [8] relates the order of a RIG, n, with the size of
the characteristics set, m, such that m = nα. Considering p̂ as the asymptotic probability of a
particular edge, it is shown that is necessary α > 6 for a RIG graph to behave like an Erd®s-Rényi
model. This result is, therefore, valid for a�nity network models when Uij ∼ Bernoulli(δ) and
the a�nity function is binary.

This result means that the dictionary size must be much larger than the number of individuals
for the binary a�nity network graph to have the same behavior as the ER. For example, for a
n = 10, a dictionary with more than 1 million characteristics would be needed for a RIG to
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behave like an ER. Since the size of D in real cases is limited, it would be highly unlikely that
a�nity networks representing social relations would behave as ER graphs.

3.2 Modeling Perceptions on a Topic

A natural application of the a�nity model concerns modeling how people perceive a given
topic. In this case, the dictionary D might be a set of adjectives. Then, Ui becomes a list
of adjectives used by the i-th individual to describe the topic T . Moreover, we may connect
individuals if they have shared at least two adjectives to describe T . In the context of a�nity
networks, our a�nity function is the cardinal function (C) with cut point γ = 2.

Assumptions on how individuals select their adjectives are encoded on the choices for distri-
butions µ. Additionally, correlations might be added so that the description given by i a�ects
the description given by j. Formally, one might add some correlation between Ui and Uj to
accommodate the fact that individuals might in�uence each other's opinions.

Finally, in this situation, identifying connected components in G(λ) leads to interesting in-
sights about the general perception of T . If there are only two connected components in G(λ),
this indicates the presence of polarization.

3.3 Collective Thinking

A particular case of an a�nity network appears in [6], serving as an empirical motivation
for us. This work proposes an alternative methodology for constructing a cognitive network
through shared evocations by individuals and values them according to their order and frequency
of evocation. The authors propose a new function, cognitive coe�cient, that maps individual
cognitive links within a graph structure. This function transforms the data generated by the
words chosen for an individual regarding a speci�c subject into an appropriate relational object
for analyzing cognitive networks. The methodology was applied to novel data on evocations
about river �oods, allowing to �nd communities inside the network according to their thinking
about this subject, identify the most active individuals inside each one, and, therefore, explicit
their collective thinking.

3.4 Anti-a�nity Network and Political Polarization

The degree of freedom one has in choosing the a�nity function leads to other interesting
examples. For the proper choice of f , the a�nity network can capture not the a�nity among
the individuals but how di�erent they are. More concretely, consider the a�nity function given
by

f(Ui, Uj) = 1− |Di ∩Dj |
|Di ∪Dj |

. (4)

The above function gives more weight to those pair of individuals whose set of characteristics
have fewer elements in common. The function reaches its maximum whenever i and j do not
share any characteristics. And it reaches its minimum when i and j have the exact same set of
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characteristics. This way, the network generated by this choice of f connects actors when they
are di�erent. This might be seen as an anti-a�nity network.

A concrete situation in which one might be interested in the anti-a�nity network is measuring
political polarization. One should expect a graph with two distinct components in a polarized
set of individuals. But one interesting question one may raise could be: how far the individuals

on each side of the political spectrum are? This can be measured by analyzing the weight of
the connections on the anti-a�nity network. For instance, if, on average, f(Ui, Uj) is close to
one, the population is not only polarized, but the two groups are quite distant in the political
spectrum.

4 Simulated study of the A�nity Network with cardinal a�nity

In this section, we present the second main goal of this paper: a simulated study of the a�nity
network model. Our goal here is to �nd a way to create simulations that allow us to understand
the behavior of the a�nity network model, taking into account several di�erent scenarios. We
do this study for a particular a�nity function: the cardinal function. Recall that the cardinal
a�nity is de�ned as

f(Ui, Uj) = |Di ∩Dj |,

that is, f counts the number of characteristics two actors share. Thus, throughout this entire
section, the a�nity function will be set as the cardinal function.

We point out that the cardinal function is the most natural choice for the a�nity function
when one desires to connect actors by their a�nity since it counts the number of shared charac-
teristics. Also, observe that the cardinal a�nity function is closely related to the Jaccard index
de�ned at (J) since the Jaccard index is the cardinal function normalized by the size of the union
to make it an index between 0 and 1.

4.1 Generating vocabulary matrix U

Recall that all the uncertainty of the model lies in the vocabulary matrix U . That is, given
f and γ; the graph is completely determined by each realization of U . Thus, to simulate a
realization of the A�nity Network with the cardinal a�nity and some cut point γ, it is enough
to know how to generate U .

With the above in mind, in this subsection, we demonstrate results that show how to gen-
erate the vocabulary matrices, U , by setting some parameters in simulations. Considering Ui,j
independent and identically distributed, and P (Uij = 1) = δ for each characteristic j, we have
that the probability of a connection between two individuals P (f(Ui, Uk) > 0) = p is given by

p = 1− (1− δ2)m, (5)

which is the complementary probability that there is no characteristic in common between the
set of characteristics attributed to the individuals. Hence, we can de�ne the probability of choice
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for each characteristic as a function of m and p by isolating δ in the equation 5.

δ =

√
1− m

√
1− p. (6)

In the case where the probability of choosing each characteristic is not the same, let δj =
P (Uij = 1) be the probability with which the i-th individual chooses the j-th characteristic, then
we have

p = 1−
m∏
j=1

(1− δ2j ). (7)

and,
m∏
j=1

(1− δ2j ) = 1− p⇒
m∑
j=1

log(1− δ2j ) = log(1− p). (8)

Now, let's consider a weight vector z such that, 0 < zj < 1 ∀ j = {1, 2, . . . ,m} and
∑m

j=1 zj =
1. The objective of this weight vector is to allow the generation of random variables with di�erent
probabilities over the dictionary symbols in an automatic way for each simulation. Then

m∑
j=1

log(1− δ2j ) = log(1− p) ·
m∑
j=1

zj =
m∑
j=1

zj · log(1− p), (9)

such that
log(1− δ2j ) = zj · log(1− p)⇒ 1− δ2j = exp {zj · log(1− p)} (10)

and,

δj =
√

1− exp {zj · log(1− p)}. (11)

This means we can �nd the probability δj in terms of zj , which can be generated following
some auxiliary probability distribution and p. Thus, we can also compare distributions where
the probability of choosing characteristics in the dictionary is not the same for all characteristics
but still has �xed m and p, which allows us to make comparisons with other models, including
the ER model. We emphasize that δ �xed implies zj = 1

m , ∀j = {1, 2, . . . ,m}.

4.2 Vocabulary distribution with cardinal a�nity function

In this subsection, we show that the probability P (f(Ui, Uj) = k), k ∈ {0, 1, . . . ,m} con-
sidering a cardinal a�nity function has a closed-form, which is one advantage of this a�nity
function, crucial to understanding the topological features of the a�nity network model.

For each individual vocabulary Ui = {Ui,1, . . . , Ui,m}, ∀i ∈ {1, . . . , N}, we have that Uil ∼
Ber(δl), the probability of any individual to choose the characteristic dl,1 ≤ l ≤ m, such that
Ui ⊥ Uj for i 6= j.

Let S ⊂ D, such that S = {d1, d2, . . . , dk} be the set of the k common characteristics for each
two individuals Ui and Uj , ∀i 6= j ∈ {1, . . . , N}.
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Then

P (f(Ui, Uj) = k) =

m∑
k

∑
S,|S|=k

(
∏
dl∈S

δ2l
∏
dh /∈S

(1− δ2h)), k = {0, 1, . . . ,m}. (12)

That is f(Ui, Uj) has Poisson-binomial distribution with vector parameter ∆ = {δ1 . . . , δm}. In
particular, if Uil ∼ Ber(δ), ∀i, l , then f(Ui, Uj) has a binomial distribution with parameter δ2,

P (f(Ui, Uj) = k) =

(
m

k

)
· (δ2)k · (1− δ2)m−k, k = {0, 1, . . . ,m}.

And the mean and variance of f(Ui, Uj) with cardinal a�nity are given by

E(f(Ui, Uj)) =

m∑
j=1

δ2j and V ar(f(Ui, Uj)) =

m∑
l=1

δ2l · (1− δ2l ) (13)

However, the expected number of edges on an a�nity network depends on the cuto� param-
eter. In the case of cardinal a�nity, a link between two individuals only happens if the number
of common characteristics between these individuals, k, is greater than the established cuto�,
γ. Let Aij be the adjacency matrix associated with the a�nity network, such that each entry
aij = 1 if there is an edge between vertices i and j. Then we have

aij = 1 ⇐⇒ k ≥ γ, k, γ ∈ N.

Henceforth,

P (aij = 1) = P (f(Ui, Uj) ≥ γ)

=
m∑
l≥γ

P (f(Ui, Uj) = l)

= 1− {
∑

1≤l<γ
}P (f(Ui, Uj) = l)

= 1− {P (f(Ui, Uj) = 1) + . . .+ P (f(Ui, Uj) = γ)

= pγ

That is, the bigger the γ, the smaller the connection probability, pγ . Since the expectation
E(aij) = P (aij = 1), the expected number of edges in the a�nity network with cardinal function
is Npγ , decreasing when γ increases.
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4.3 Simulating the A�nity Network model

This section presents a Monte Carlo simulation study of the topological measurements of the
graph generated by an a�nity network with a cardinal function. The cardinal function's image
is the number of characteristics individuals share. We observe the behavior of each topological
measure considered in the study for some values of the parameters.

In addition to comparing the topological measurements observed between the a�nity function
scenarios, we also compared the behavior of the a�nity network with the behavior of graphs
generated with the Erd®s-Rényi model whose probability distribution preserves the distribution
of the weights of the edges of the graph G(λ).

4.3.1 Methodology

To generate a�nity networks with n vertices and m characteristics is su�cient to know the
distribution µ on D, the a�nity function f , and the cuto� γ.

Generating Ui,j i.i.d is simple, since, having �xed a connection probability p and m the size
of the set D, we just apply the Equation 6 to obtain the value of δ such that the connection
probability is p.

In the case where Ui,j is independent, but not iid, �nding the vector of choice probabilities
∆ = {δ1, . . . , δm} associated with D requires generating the weight vector z, in addition to setting
a connection probability p.

We now present a method for generating the ∆ vector that requires two entries: the number
of characteristics m, and an unbalance parameter of the choice probability distribution, θ ≥ 0.
We introduce this parameter to simulate scenarios with di�erent probability distributions in the
dictionary. The unbalance parameter controls how di�erent the probabilities in ∆ are so that
θ = 0 represents null unbalance, that is, Ui,j are i.i.d. and, as θ increases, we put more probability
of choice in a speci�c set of characteristics than in the others.

According to the de�nition of z in the subsection 4.1, let Z = {z1, . . . , zm} be a random
vector with

∑m
j=1 zj = 1 and 0 ≤ zj ≤ 1 ∀ j. We generate samples of Z using a Dirichlet

distribution
Z ∼ Dirichlet(v),

where v = {v1, . . . , vm} is a parameter vector of size m with vj > 0 ∀ j.
We want to generate the parameter v from a density function whose parameter is a function

that depends on θ, v ∼ η(g(θ)), such that the η variance is directly proportional to θ, and
raising θ would consequently increase its variance. A large variance in v implies an unbalanced
Z. Besides, it is interesting that η has not an upper bound. The gamma distribution meets this
requirement. Then we consider the random variable Vj as

Vj ∼ gamma
(

1

θ
,
θ

α

)
,
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where α is an arbitrary constant, chosen to control the process. Therefore

E(Vj) =
1

α
and V ar(Vj) =

θ

α2
.

To avoid computational problems, we make Vj ∼ η + c with constant c > 0. We use this
device to prevent vj from getting too close to 0, causing the software to round the value down to
0, which is not a valid parameter for the Dirichlet distribution. The constant c guarantees that
no matter how large V arX(ηj) is, ηj will be always bounded below by c.

The following algorithm summarizes the steps required to generate ∆ with length m and an
unbalanced level θ.

� Step 0: Veri�fy if θ = 0. If yes , then take z such that zj = 1
m ∀ j and then go to step 4.

Otherwise, go to step 1.

� Step 1: Generate t samples of η + c. Let us denote the b-th sample by η[b].

� Step 2: For each sample η[b], generate and order

Z[b] ∼ Dirichlet(η[b]).

� Step 3: Calculate the ordered weights vector z

z(j) =
1

t
·

t∑
b=1

Z
[b]
(j), ∀ j = {1, . . . ,m}, α = {1, . . . , t}.

� Step 4: Calculate the choice probability vector ∆

δ(j) =
√

1− exp{z(j) · log(1− p)}.

4.4 Results

This section presents the behavioral pro�les of the a�nity network with cardinal a�nity
function, which we call cardinal a�nity network, and compares them with the respective ER
model (ER) for scenarios resulting from combinations of its parameters.

The simulated study presented was carried out using Monte Carlo simulations using the
software R. The graphics were generated dynamically in the software Microsoft Excel.

We also analyze the di�erences between the cardinal a�nity network with a corresponding
Erd®s-Rényi model, which, although generated independently, retains the same weight distribu-
tion.

We start considering the probability distribution of the cardinal a�nity network, calculating
the expectation and variance of f(Ui, Uj),∀i, j ∈ {1, . . . , n}, and the degree distribution. After
that, we present a series of comparisons, focusing on some topological measures of the graphs

13



to understand each of the chosen scenarios of the cardinal a�nity model's behavior. The fol-
lowing topological measures were analyzed: maximum degree, transitivity, clustering coe�cient,
proximity, number of components, and the order of the largest component. We set the following
parameters for the study:

� Graph order: n = 256;

� Number of characteristics: m ∈ {20, 80, 320};

� Probability of connection: p ∈
{

1
40 ,

2
40 , . . .

38
40 ,

39
40

}
;

� Unbalance parameter: θ ∈ {0, 4, 16};

� Number of replicas: M = 200;

� Cuto�: γ ∈ {1, 2, . . . , 6};

� Constants: c = 1 · 10−12 and α = 1
100 .

4.5 Mean and variance

Table 1 shows the expected values for the number of connections per each scenario and Table
2 presents the variances for γ = 1.

Table 1: Expected values of the numbers of connections in the cardinal a�nity model.

p
θ = 0 θ = 4 θ = 16

m =20 m = 80 m =320 m =20 m = 80 m =320 m =20 m = 80 m =320
0.1 0.1051 0.1053 0.1053 0.1009 0.1038 0.1049 0.0961 0.1009 0.1038
0.2 0.2219 0.2228 0.2231 0.2111 0.2191 0.2220 0.1957 0.2111 0.2189
0.3 0.3535 0.3559 0.3565 0.3322 0.3488 0.3544 0.3043 0.3359 0.3485
0.4 0.5044 0.5092 0.5104 0.4674 0.4980 0.5067 0.4260 0.4741 0.4995
0.5 0.6813 0.6902 0.6924 0.6270 0.6716 0.6869 0.5559 0.6309 0.6743
0.6 0.8956 0.9111 0.9150 0.8079 0.8781 0.9063 0.7148 0.8227 0.8847
0.7 1.1685 1.1950 1.2017 1.0354 1.1480 1.1888 0.8653 1.0508 1.1556
0.8 1.5464 1.5934 1.6054 1.3305 1.5198 1.5842 1.0519 1.3726 1.5346
0.9 2.1750 2.2698 2.2943 1.7990 2.1340 2.2528 1.4453 1.8694 2.1529

As in the case of a RIG, the expectation of f(Ui, Uj) in the cardinal a�nity model increases
as p grows, as does the variance. It is worth noting that, even in the scenario with 320 charac-
teristics and p = 0.9, we have E(f(Ui, Uj)) < 2.3, that is, in those models where the choices are
independent of each other, we do not expect many characteristics shared between two individuals.

Let's focus on the roles that θ and m play on expectation and variance. According to Table
1, the higher the probability of concentration in a speci�c group of characteristics, the lower the
expected number of characteristics shared by two individuals. On the other hand, increasing the
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Table 2: Variance of the number of connections in the cardinal a�nity model.

p
θ = 0 θ = 4 θ = 16

m =20 m = 80 m =320 m =20 m = 80 m =320 m =20 m = 80 m =320
0.1 0.1045 0.1052 0.1053 0.0988 0.1031 0.1047 0.0920 0.0992 0.1033
0.2 0.2194 0.2222 0.2229 0.2028 0.2163 0.2212 0.1781 0.2040 0.2166
0.3 0.3473 0.3543 0.3561 0.3106 0.3420 0.3525 0.2621 0.3185 0.3427
0.4 0.4916 0.5060 0.5096 0.4241 0.4842 0.5029 0.3498 0.4412 0.4882
0.5 0.6581 0.6842 0.6909 0.5565 0.6477 0.6798 0.4284 0.5690 0.6539
0.6 0.8555 0.9007 0.9124 0.6893 0.8350 0.8938 0.5158 0.7213 0.8488
0.7 1.1002 1.1771 1.1972 0.8441 1.0762 1.1683 0.5681 0.8847 1.0943
0.8 1.4268 1.5616 1.5973 1.0261 1.3975 1.5476 0.6052 1.1029 1.4325
0.9 1.9385 2.2054 2.2779 1.2547 1.8925 2.1786 0.7471 1.3877 1.9469

number of characteristics raises the expected number of characteristics shared by individuals.
Thus, about the expectation of f(Ui, Uj), θ and, m appear to have opposite e�ects.

Observing Table 2, we can see that raising the value of θ implies reducing the variance of
f(Ui, Uj) while raising m implies increasing the variance of f(Ui, Uj). We pay more attention
to the following pairs of parameters in the subsequent analysis based on this information. :
(θ,m) = {(0, 320), (4, 80), (16, 20)}, since (0, 320) and (16, 20) represent extreme cases, while the
pair (4.80) represents the average case in terms of expectation and variance of f(Ui, Uj) in this
simulated study.

4.6 Degree distribution

To assess the di�erences between the degree distributions of the two models, we used the
Kolmogorov-Smirnov D statistic. Considering X and Y the vectors containing the degrees of
the N vertices of the graph G and the degrees of the s vertices of the graph H. Then,

FX(a) =
1

N
·
n∑
i=1

I(Xi < a) (14)

is the empirical cumulative probability function of X. The Kolmogorov- statistic, D, [20] is
de�ned as

DX,Y = max
a
|FX(a)− FY (a)| (15)

Figure 2 presents the behavior pro�le of the Kolmogorov-Smirnov D statistic resulting from
the comparison between the degree distributions of the a�nity function and the ER model whose
weights were generated under the binomial-Poisson distribution with ∆ as parameters. We can
see that, as in the case of RIG , [8], increasing the value of m results in a decrease in the distance
between the degree distribution of the cardinal a�nity model and the degree distribution of the
ER model. On the other hand, we can see that raising the value of θ increases that distance. We
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(a) θ ∈ {0, 4, 16}, p = 0.3,

m ∈ {20, 80, 320}
(b) θ ∈ {0, 4, 16}, p = 0.6,

m ∈ {20, 80, 320}
(c) θ ∈ {0, 4, 16}, p = 0, 9,

m ∈ {20, 80, 320}

Figure 2: Kolmogorov-Smirnov D statistic for the distance between the degree

distributions of the cardinal a�nity and ER models.

noticed that the scenario with (0.320) is, for all p displayed, is the closest from the ER model
and the scenario with (16.20) is the furthest.

4.7 Network features of the A�nity Network model

We present the results obtained for the pro�les of some features and topological measures of
the a�nity network with cardinal function: maximum degree, transitivity, clustering coe�cient,
proximity, number of components, and the size of the largest component. The pro�les were made
by increasing the values of the connection probabilities p. For each network feature analyzed,
we present two �gures: one with the behavior of the a�nity network with cardinal function
concerning the network feature, and another comparing it with the Erd®s-Renyi (ER) model.

For the text's readability, we presented only the scenario results with θ = 16, representing
the highest probability concentration around a set of characteristics. The other scenarios with
θ = 0 and θ = 4 can be downloaded from
https : //drive.google.com/drive/folders/1pQjD3hjnCLS8gkpSgw1jSkdZl12d2z8.

4.7.1 Maximum degree

Figure 3 presents the pro�les of the maximum degrees of the cardinal a�nity function for
the scenarios where γ and m vary and θ = 16.The connection probabilities p, 1/40 ≤ p ≤ 40/40
are on the X-axis. The maximum degrees are displayed on the Y-axis.

For θ large, the curves representing the larger loss in terms of expected values for the maxi-
mum degree are those with smallm. This loss can be explained because small θ induces scenarios
with E(f(Ui, Uj)) less than the others. There are fewer connections through characteristics with
a low choice probability and fewer characteristics available.
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Figure 3: Monte Carlo expectation pro�le for the cardinal a�nity function maximum degree.

Scenarios: θ = 16, γ ∈ {1, 3, 5} e m ∈ {20, 80, 320}
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Figure 4 presents the di�erence pro�le between the Monte Carlo expected pro�les for the
maximum degree of the cardinal a�nity and the ER model for θ = 16, m ∈ {20, 80, 320} e γ = 1.

Figure 4: Pro�le of the di�erence between the Monte Carlo expected maximum degree of the cardinal

a�nity and the ER model. Scenarios: θ = 16, m ∈ {20, 80, 320} e γ = 1

We noticed that the cardinal a�nity function tends to have a maximum degree greater than
the random edge model, where the di�erence increases when θ increases and decreases when m
increases.
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4.7.2 Transitivity

Figure 5 shows the transitivity pro�les of the cardinal a�nity function for the scenarios
θ = 16, m ∈ {20, 80, 320} and γ ∈ {1, 3, 5}. The connection probabilities p, 1/40 ≤ p ≤ 40/40
are on the X-axis. The transitivity coe�cient, based on the relative number of triangles in the
graph, compared to the total number of connected triples of nodes, is displayed on the Y-axis.

Figure 5: Transitivity pro�les of the cardinal a�nity function. Scenarios: θ = 16, γ ∈ {1, 3, 5} e
m ∈ {20, 80, 320}

For all values of θ, when γ = 1, the higher the value of m, the lower the observed transitivity.
Besides, there is an increase in the transitivity as θ grows. We observed that concentrating
probability on a speci�c group of characteristics causes that group to be chosen more often, and
then choosing a characteristic from this group increases the probability of making connections
and, consequently, triangles. A plausible explanation for the drop in transitivity at the initial p
levels is that individuals for these p are more likely to choose fewer characteristics. Soon their
connections would be formed through a tiny group of characteristics. Hence, if these people
choose only one word, the people who choose this word automatically form triangles (as long
as there are more than two people, of course). As p increases, individuals are more likely to
choose more characteristics. Hence, a new possibility becomes more likely: two individuals
who choose characteristics di�erent from each other and a third individual who chooses both.
Therefore, although the third individual connects with the �rst two, this scenario does not form
a triangle. By concentrating more weight on a characteristic, that is, increasing θ, it is expected
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that the probability that, for a small p, the individual will choose a single characteristic increases.
Therefore, it is expected that the rate of drop in transitivity over the initial levels will be lower.

Figure 6 presents the pro�le of the di�erence between the Monte Carlo expectation pro�les
for the transitivity of the cardinal a�nity and ER models for θ = 16, m ∈ {20, 80, 320} e γ = 1.

Figure 6: Di�erence between the Monte Carlo expectation pro�les for the transitivity of the cardinal

a�nity and ER models. Scenarios: θ = 16, m ∈ {20, 80, 320} e γ = 1

In all cases, we noticed that the transitivity for the cardinal a�nity model was superior to the
ER model. This result agrees with the argument of [15] for social networks. Also, in all scenarios,
we observed that the di�erence between the expected transitivity increases by reducing m, which
agrees with the result of [8]. The di�erence between transitivity increases by increasing θ while
decreasing to zero as p approaches 1.

4.7.3 Clustering

Figure 7 presents the pro�le of Monte Carlo's expectation for the observed clustering coef-
�cient of the cardinal a�nity function for θ = 16, γ ∈ {1, 3, 5} and m ∈ {20, 80, 320}. The
connection probabilities p, 1/40 ≤ p ≤ 40/40, are on the X-axis. The clustering coe�cient is
displayed on the Y-axis.

The curves for each value of m assume di�erent behaviors in the initial values of p when
γ = 1. We observed three behaviors: growth over p, growth followed by a decrease and new
growth, and decrease followed by growth.

We observe more evident patterns for the other values of γ. We note that as θ increases, the
trend is for the higher m curve to have a higher expected clustering coe�cient over p. At the
same time, if a value of θ is close to 0, the trend is that the lower values of m have a higher
expected clustering coe�cient.
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Figure 7: Pro�le of Monte Carlo's expectation for the observed clustering coe�cient of the cardinal

a�nity function. Scenarios: θ = 16, γ ∈ {1, 3, 5} and m ∈ {20, 80, 320}
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Figure 8 presents the Di�erence between the Monte Carlo expectation clustering coe�cient
for the cardinal a�nity model and the ER model for θ = 16, m ∈ {20, 80, 320} and γ = 1.

Figure 8: Di�erence between the Monte Carlo expectation clustering coe�cient for the cardinal

a�nity model and the ER model. Scenarios: θ = 16, m ∈ {20, 80, 320} and γ = 1

The clustering coe�cient is higher than that observed in the ER model, and the higher the
m, when θ = 0, the closer they become. We can observe the change in behavior of the di�erence
as the θ grows, suggesting that the limit behavior would be approximately one parable when θ is
high. In this case, we observe that for the lowest values of p and θ high, the highest m functions
have a more signi�cant di�erence with the ER model, a panorama that is inverted as p grows.

4.7.4 Closeness

Figure 9 presents the pro�le of Monte Carlo's expectation for the proximity of the cardinal
a�nity function for θ = 16, γ ∈ {1, 3, 5} and m ∈ {20, 80, 320}. The connection probabilities
p, 1/40 ≤ p ≤ 40/40, are on the X-axis. The closeness is displayed on the Y-axis.

We observed a pattern in the expected proximity. For all observed values of θ and γ, the
higher the value of m, the greater the expected proximity. Also, we observe that the proximity in
the initial values of p reduces when θ increases, which means that concentrating more probability
on a speci�c group of characteristics makes the distances longer. There is also a shift away from
the curves for the m as θ and γ grow. Proximity, in general, grows as p grows.

Figure 10 presents the di�erence between the Monte Carlo expectation pro�les for the prox-
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Figure 9: Pro�le of Monte Carlo's expectation for the proximity of the cardinal a�nity function.

Scenarios: θ = 16, γ ∈ {1, 3, 5} and m ∈ {20, 80, 320}
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imity of the cardinal a�nity model and ER models' proximity. θ = 16, m ∈ {20, 80, 320} and
γ = 1

Figure 10: Di�erence between the Monte Carlo expectation pro�les for the proximity of the cardinal

a�nity model and ER models' proximity. Scenarios: θ = 16, m ∈ {20, 80, 320} and γ = 1

The graph generated by the cardinal a�nity model is less close than in the ER model. We
found that increasing θ reduces the proximity and increases its distance from the closeness of ER
models while increasing m has the opposite e�ect. We can observe that for small m and even
for large m combined with large θ, a change of concavity begins in the initial levels of p, with an
increase in the distance when p is small followed by the reduction for the other p. Besides, as θ
grows, the curves for the m move away from each other.

4.7.5 Number of components

Figure 11 presents the pro�le of Monte Carlo's expected number of components of the a�nity
network with cardinal function for θ = 16, γ ∈ {1, 3, 5} and m ∈ {20, 80, 320}. We can see a
pattern for the expected relative size of the largest component. The higher p, the lower the
expected number of components. Besides, the higher the m, the lower the expected number of
components. On the other hand, the higher θ, the greater the number of components, which
means that increasing m increases the probabilities of a connected graph while concentrating
probability on a speci�c group of characteristics reduces this probability.

Analyzing the observations raised for transitivity, we can see that considering p �xed, a loss
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of connectivity o�sets the gain concerning transitivity, and the exchange level is in�uenced by
m and θ.

Figure 11: Pro�le of Monte Carlo's expected number of components of the a�nity network with

cardinal function. Scenarios: θ = 16, γ ∈ {1, 3, 5} and m ∈ {20, 80, 320}

Figure 12 presents the di�erence between the Monte Carlo expectation of the number of
components in the cardinal a�nity model and the ER model for θ = 16, γ ∈ {1, 3, 5} and
m ∈ {20, 80, 320}. The connection probabilities p, 1/40 ≤ p ≤ 40/40, are on the X-axis. The
expected number of components is displayed on the Y-axis.

We observed that the cardinal a�nity model is less connected than the ER model. This dif-
ference is increased to θ large, especially for smallm. The higher them, the smaller the di�erence
when θ = 0. We notice a decline in the di�erence as p grows. As stated earlier, combining this
interpretation with that of transitivity, for a �xed p, the non-independent arrangement of edges
increases transitivity by sacri�cing the graph's connectivity. Besides, concentrating probability
on a speci�c group of characteristics causes groups' formation but is much less connected with
other characteristics, causing connectivity to decline further.

4.7.6 Largest component size

Figure 13 presents the Monte Carlo expectation pro�le for the largest component's relative
size of the a�nity network with a�nity function for θ = 16, γ ∈ {1, 3, 5} and m ∈ {20, 80, 320}.
The connection probabilities p, 1/40 ≤ p ≤ 40/40, are on the X-axis. The expected large com-
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Figure 12: Di�erence between the Monte Carlo expectation of the number of components in the

cardinal a�nity model and the ER model Scenarios: θ = 16, γ ∈ {1, 3, 5} and m ∈ {20, 80, 320}
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ponent size is displayed on the Y-axis.

Figure 13: Monte Carlo expectation pro�le for the largest component's relative size of the a�nity

network with a�nity function. Scenarios: θ = 16, γ ∈ {1, 3, 5} and m ∈ {20, 80, 320}

We observed a relationship between the number of components and the relative size of the
largest component. The behavior of the two topological measurements' pro�les seems mirrored,
being very similar in shape but in the opposite direction. The higher p, the larger the expected
relative size. Besides, the higher the m, the larger the expected relative size. On the other
hand, the larger θ, the smaller the expected relative size, which means that increasing m in-
creases the probability of a connected graph while concentrating probability on a speci�c group
of characteristics reduces this probability.

Figure 14 presents the pro�les of the di�erence between the Monte Carlo expectation for the
relative size of the largest component of the cardinal a�nity model and the ER model for θ = 16,
m ∈ {20, 80, 320} and γ = 1.

27



Figure 14: Di�erence between the Monte Carlo expectation for the relative size of the largest

component of the cardinal a�nity model and the ER model. Scenarios: θ = 16, m ∈ {20, 80, 320} and
γ = 1

5 Conclusions

We �nish this paper with a discussion about the results obtained. The discussion concerns
two aspects of our work. Firstly, how the parameters introduced in our methodology a�ect the
topology of the a�nity network. Secondly, we address whether a�nity networks �t with real-life
networks.

5.1 The e�ect of the parameters on the topology of G(λ)

We found that the size of the set of characteristics, D, and the level of unbalance of the vector
of choice probabilities, ∆, have opposite e�ects on the a�nity network's topological measures and
also on the distance between the a�nity network model with cardinal function and ER model.
Increasing the number of characteristics in the dictionary makes the two models closer, as in the
RIG model. In contrast, the increased unbalance of the probability vector moved them away.

We also noted that graphs generated via cardinal a�nity have a maximum degree, maximum
strength, transitivity, and clustering coe�cient higher than the ER model. The cost for this
increase is the reduction in the network's connectivity level. On the other hand, they have a
smaller size of the larger component and also smaller proximity.

5.2 The A�nity Network and real-life eetworks

As for real-life networks, we begin by highlighting the type of properties observed in real-life
networks. By analyzing empirical data Watts and Strogatz (1998) and Barabási and Albert
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(1999) observed that real-life networks have small diameters and heavy-tailed degree distribu-
tions. M. E. J Newman (2001) investigated networks of scienti�c collaboration, �nding that these
networks have high clustering coe�cients. In 2006, Ahn et al. investigated real-life networks with
more than 10 million nodes, such as MySpace and Orkut �nding high clustering coe�cients.

As our results suggest, for proper choices of the parameters, A�nity Networks with the
cardinal a�nity are capable of capturing features observed in real-life networks. All these char-
acteristics make this model a good candidate to �t with a real network. Therefore, we claim that
the a�nity network model with a high unbalance parameter is a good candidate to �t networks
based on instruments that collect characteristics of the individuals, like those who collect words,
which inspired this work.

The study developed here can be extended to models with other a�nity functions and de-
pendence structures, but we leave it for future work.
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