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Abstract — The classical Wardrop System Optimum as-

signment model assumes that the users will cooperate with

each other in order to minimize the overall travel costs. The

importance of the System Optimum model lies on its well-

recognized ability of producing solutions that correspond to

the most efficient way of using the scarce resources repre-

sented by the street and road capacities. In this paper, we

present a version of the System Optimum model in which

the travel costs incurred on each path come from M/G/c/c

state-dependent queueing networks, a stochastic travel time

estimation formula which takes into account congestion ef-

fects. A differential evolution algorithm is proposed to solve

the model. We motivate this version of the problem in sev-

eral ways and computational results show that the proposed

approach is efficient.

Keywords — System Optimum; traffic assignment; queue-
ing networks; genetic algorithms.

1 INTRODUCTION

THERE HAVE BEEN successful attempts in the litera-
ture to model how users select their route in a con-

gested network (for instance, see Helbing et al., 2005,
and references therein). Two major streams of work
can be distinguished: the System Optimum (SO) models
versus the User Equilibrium (UE) models.

The User Equilibrium model, assuming perfect
knowledge of the travel costs, states that drivers will
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choose the best route according to Wardrop’s first prin-
ciple. This principle is equivalent to a mixed-strategy
Nash equilibrium of an n-player, non-cooperative game
(Bell & Cassir, 2002). The Deterministic User Equilib-
rium (UE) is an important classical traffic assignment
model approach (Sheffi, 1985), which even recently
keeps receiving improvements (see, for instance, the re-
cent paper by Watling, 2006). In equilibrium, routes car-
rying a positive flow will have equal travel costs. The
disadvantage of the User Equilibrium model is that the
scarce resources (street and road capacity) may be used
in an inefficient way (Helbing et al., 2005).

In contrast, the classical Wardrop System Optimum
(SO) assignment model, assumes that all users are able
to cooperate with each other in order to minimize the
overall system-wide travel costs (Sheffi, 1985). Even
though the System Optimum (SO) assignment model
is based on a rather non-realistic behavioral assump-
tion, we argue that its solution may be seen as a result
of a well-succeeded control action on the transporta-
tion network, such as, for instance, by route inducement
(Moreno-Quintero, 2006). In other words, signal tim-
ings may be re-optimized and alternative routes may be
re-defined in response to an increase in demand. It is
well-known that traffic lights and adaptive routing can
improve the flow (Poli Jr. & Monteiro, 2005), depend-
ing on the traffic densities (e.g. using DRIPS, Dynamic
Routing Information Panel Systems). Next to this, sev-
eral paradoxes show the deficiency of the UE optimum
compared to the SO model. For example, Braess’s para-
dox shows that adding extra capacity to a network,
when people selfishly choose their own route, can re-
duce overall performance (Braess, 1968; Braess et al.,
2005). A similar result has been observed by Sheffi &
Daganzo (1978). On the other hand, Charnes & Kling-
man (1971) showed that both increasing supply and de-
mand could counter-intuitively lead to a reduction in
total costs. In any case, both paradoxes show that trans-
port planners should not trust in the users’ selfish ac-
tions when optimizing the traffic network. As such,
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these paradoxes enforce the necessity of the System Op-
timum (SO) assignment model.

One major problem in the above models is that the
travel times are usually assumed to be either determin-
istic or approximate stochastic models. Typically, the SO
models express the travel costs in terms of determinis-
tic travel time functions (Prashker & Bekhor, 2000), yet
these times are known to be rather variable between
trips, within and between days. The relevant travel time
models are usually built on the classical formulas that
have been constructed over the past 40 years. For in-
stance, the well-known BPR (Bureau of Public Roads,
1964) was developed in 1964 using data from the High-
way Capacity Manual.

Kimber & Hollis (1979) developed another travel time
formula based upon an approximation to the time-
dependent M/G/1/∞ model. Since analytical expres-
sions for the transient M/G/1/∞ model are intractable,
they developed an approximation based upon a coordi-
nate transformation technique to adjust the steady state
formula to account for the transient effects of the queue.
In their approach, they can account for existing traffic
on the highway link, but they fix the service rate of the
traffic link µ, the queue is infinite in capacity, and there
is only one server for the traffic. Subsequently Akçelik
(1991) extended the work of Kimber & Hollis with for-
mulas based upon the coordinate transformation tech-
nique that are recognized as efficient to model the travel
times, especially under congestion during rush hours,
when the demand far exceeds capacity (Ceylan & Bell,
2005). The performance of Akçelik’s model is similar
to Kimber & Hollis. Under these ‘typical’ link per-
formance functions, good solution methods are well-
known. We will argue that another stochastic approach
is more powerful based on state dependent queues be-
cause it can also handle general service times, multiple
servers, and has transient as well as steady-state solu-
tions. It is a true stochastic approach with no approxi-
mations. Figure 1, presents results from many empirical
studies for North American roads (Drake et al., 1967;
Edie, 1961; Greenshields, 1935; Transportation Research
Board, 2000; Underwood, 1961). Obviously congestion
may be perceived as a decrease in the mean speed when
the vehicular density increases, resulting in the well-
known speed-flow-density curves (see e.g. the seminal
work by Greenshields, 1935, on this).

In particular, we introduce a stochastic version of the
SO model in which the costs incurred on each path
come from M/G/c/c state-dependent queueing net-
works. This latter model is a stochastic travel time es-
timation formula that takes into account these impor-
tant congestion effects. The M/G/c/c state-dependent
queueing models originated with the work of Yuhaski
& Smith (1989) for pedestrian traffic flows. This pa-
per formed the foundation of all the subsequent models
used in this approach to the travel time flow modeling
problem. Following this were the papers of Cheah &
Smith (1994) which generalized the process and showed
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Figure 1: Empirical distributions for vehicular traf-
fic flows (Drake et al., 1967; Edie, 1961; Greenshields,
1935; Transportation Research Board, 2000; Under-
wood, 1961) and M/G/c/c state-dependent models
(Jain & Smith, 1997).

that the state dependent queue was quasi-reversible and
Jain & Smith (1997) which showed how the state de-
pendent queues could be used for modeling vehicular
congestion. In Sec. 3.1.2, we will describe in detail the
elaboration of the M/G/c/c state-dependent queueing
model. For a review on the use of queueing models
to model traffic flows and congestion, the reader is re-
ferred to the paper by van Woensel & Vandaele (2007).
Another successful attempt to refine the travel time es-
timation may be found in the paper by Garcı́a-Ródenas
et al. (2006).

Fig. 2 shows typical travel time functions (recently
used, for instance, by Ghatee & Hashemi, 2009; Pursals
& Garzón, 2009) in comparison with the M/G/c/c state-
dependent queueing model functions (Jain & Smith,
1997), for a 1-mile long freeway, with free-flow speed
62.5 mph (100 km/h), and capacity 2,400 veh/h, based
on the Highway Capacity manual (Transportation Re-
search Board, 2000). In addition, Fig. 3 shows how the
travel time functions behave as a function of the arrival
rate for several single links admitting an M/G/c/c state-
dependent queue to model the road traffic. Note that
under low traffic, the queueing approach is close to clas-
sical and accurate formulas, such as BPR and Akçelik’s,
as seen in Fig. 2.

Important to note from Fig. 2 and Fig. 3 is that the
M/G/c/c travel time function is not convex but S-
shaped, which will produce many local optima. Con-
sequently, the introduction of these stochastic M/G/c/c
state-dependent models will make the SO problem com-
putationally more challenging as multiple solutions
may be present. The Frank-Wolfe algorithm is a con-
vex combination algorithm (Frank & Wolfe, 1956) that
has been often used for determining the equilibrium
flows in transportation networks. However, since our
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Flow Volume (veh/h) for 1 mile freeway
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Figure 2: 1-mile vehicular traffic flows
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Figure 3: Travel time under M/G/c/c state-dependent
models

problem on-hand is intrinsically non-convex (due to the
shape of the M/G/c/c travel time functions), we de-
cided not to use the Frank-Wolfe based optimization ap-
proaches, but selected a flexible heuristic. In this pa-
per, we use a Differential Evolution (DE) based heuris-
tic, which is part of the family of Genetic Algorithms
(GA). The optimization quality of Differential Evolution
is independent of the shape of the objective functions
and proves to be an efficient and acceptable solution for
the problem on hand. For another application of the
Differential Evolution approach in the field of reverse
logistics, the reader is referred to Lieckens & Vandaele
(2007). Also in this Lieckens & Vandaele (2007) paper,
the objective function is exhibiting many local optima
and the DE proves to give accurate results in reasonable
running times.

Contributions

The main contributions of this paper are twofold. First,
we propose a stochastic extension to the SO model by
applying state-dependent M/G/c/c queueing network
models in order to estimate the travel times, usually
the main factor for route selection (Prashker & Bekhor,
2000). The consequence of selecting these more realis-
tic travel time functions is that the objective function in
the System Optimum model exhibits multiple local op-
tima.

Secondly, because of these local optima, we propose
a different way to solve the SO by using a Differen-
tial Evolution (DE) heuristic, which is part of the family
of Genetic Algorithms (GA). This hybrid modeling ap-
proach (finite queueing networks and Differential Evo-
lution) results in efficient and acceptable solutions for
the problem on-hand.

Besides, the following results are obtained in the pa-
per.

1. Networks of M/G/c/c state-dependent queues are
an effective way of modeling travel times in traffic
networks;

2. The Differential Evolution (DE) heuristic proves to
be an efficient optimization tool for the problem on-
hand;

3. The algorithms proposed provide fast and good-
quality solutions for realistic and complex topolo-
gies.

Outline of Paper

This paper is structured as follows. In Sec. 2 the mathe-
matical programming formulations for the classical traf-
fic assignment models are presented in detail. Sec. 3 de-
scribes the algorithm for solving the SO, as well as the
performance evaluation algorithm. Sec. 4 focuses on de-
tailed computational experiments, some of them based
on an actual urban traffic network. Finally, Sec. 5 sum-
marizes the paper and discusses open questions for fu-
ture research in the area.

2 MATHEMATICAL PROGRAMMING FORMULATIONS

Well-known from the literature, the main equilibrium
formulations are the System Optimum (SO) and the De-
terministic User Equilibrium (UE), which are briefly re-
viewed as follows. These models can be classified ac-
cording to the behavioral assumption governing route
choice and, generally, the major factor for route choos-
ing are the expected travel times (Prashker & Bekhor,
2000). The network notation used is summarized in
Tab. 1.
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Table 1: Basic network notation

Variable Description

N node (index) set

A arc (index) set

R set of origin nodes; R ⊆ N

S set of destination nodes; S ⊆ N

Krs set of paths connecting origin-destination (O − D) pair r − s; r ∈ R, s ∈ S;

xa flow on arc a; x = (. . . , xa, . . . )

ca(xa) travel time on arc a; c(x) = (. . . , ca(xa), . . . )

frs
k flow on path k connecting O − D pair r − s; frs = (. . . , frs

k , . . . ); f = (. . . , frs, . . . )

crs
k travel time on path k connecting O − D pair r − s; crs = (. . . , crs

k , . . . ); c = (. . . , crs, . . . )

qrs trip rate between origin r and destination s; (q)rs = qrs

δrs
a,k indicator variable: δrs

a,k =

{

1, if link a is on path k between O − D pair r − s,

0, otherwise;

(∆rs)a,k = δrs
a,k; ∆ = (. . . ,∆rs, . . . )

2.1 User Equilibrium (UE)

The User Equilibrium model results from a choice of
the best route according to Wardrop’s first principle. In
other words, no driver could possibly reduce the cor-
responding travel time by moving unilaterally to an-
other route. Several mathematical formulations appear
in the literature for the model. Beckmann et al. (1956)
represented the UE model by a formulation assuming a
link cost as a continuous increasing function of the link
flows, as follows

min z(x) =
∑

a

∫ xa

0

ca(w)dw,

subject to

∑

k

frs
k = qrs, ∀ r, s,

xa =
∑

r

∑

s

∑

k

frs
k δrs

k , ∀ a,

frs
k ≥ 0, ∀ k, r, s,

in which xa is the flow on link a, ca(w) is the travel cost
on link a as a function of the flow w, frs

k is the flow on
route k between origin r and destination s, and qrs is the
demand between r and s (for the complete notation, see
Tab. 1).

The solution of this model are the equilibrium route
flows defined as

frs
k (crs

k − grs∗) = 0, crs
k − grs∗ ≥ 0, ∀ k, r, s,

in which crs
k is the cost on route k between r and s and

grs∗ is the user equilibrium route cost between r and s.
Note that all travel costs on each path carrying a posi-
tive flow are equal at the equilibrium.

2.2 System Optimum (SO)

The System Optimum formulation is equivalent to a sit-
uation in which users cooperate (or are forced to cooper-
ate) with each other in order to minimize the total travel
costs. According to Wardrop’s second principle, the SO
model is formulated as follows

min z(x) =
∑

a

xaca(xa),

subject to:

∑

k

frs
k = qrs, ∀ r, s,

xa =
∑

r

∑

s

∑

k

frs
k δrs

k , ∀ a,

frs
k ≥ 0, ∀ k, r, s.

The optimum solution is reached when the marginal
travel costs on each path carrying a positive flow are
equal, that is

frs
k (grs

k − grs∗) = 0, grs
k − grs∗ ≥ 0, ∀ r, s,

in which grs
k is the marginal cost on route k and grs∗ is

the optimal marginal cost, both between r and s.

2.3 Remarks

The relationship between the two mentioned classical
models above has long been studied in the literature
(see Prashker & Bekhor, 2000, and references therein).
We cannot leave unnoticed the comparison between UE
and SO solutions, with its most popular example, the
Braess’ paradox. Also, the SO problem can be written
as a special UE model with an adjusted travel cost func-
tion. However, we only propose a solution algorithm
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for the SO model in this article. Again, the main goal is
to improve the traffic network as a whole by minimizing
the total travel costs.

Note that the travel costs, ca(xa), are usually ex-
pressed in terms of times (Prashker & Bekhor, 2000) and
are usually given from classical formulas. In this pa-
per, the aim is to investigate a different travel time esti-
mation formula, namely an M/G/c/c state-dependent
queueing network based formula. For classical and
M/G/c/c based formulas, the reader is referred to Fig. 2,
which shows the usual link performance functions in
comparison with the function given by the M/G/c/c
state-dependent queueing model, for a 1-mile long free-
way, with free-flow speed 62.5 mph (100 km/h).

3 ALGORITHMS PROPOSED

Concerning how people have solved the UE and SO
models, many algorithms have been proposed. To cite
a few, results have been reported with dual algorithms
(Hearn & Lawphongpanich, 1990), parallel algorithms
(Ho, 1990), and Lagrangian based algorithms (Lars-
son & Patriksson, 1995). Recently published results on
stochastic algorithms for the solution of traffic assign-
ment problems include the papers by Ceylan & Bell
(2005) and Patriksson (2006).

The algorithm proposed in Fig. 4 is based on a sim-
ple and easy to implement scheme. Note that the algo-
rithm solves iteratively the routing probabilities pij and
the performance evaluation, toward the minimization
of the objective function

∑

a xaca(xa). The main steps
are detailed as follows.

algorithm
read graph, G(V, A)
read arrival rates, λv , ∀ v ∈ V
read link lengths, lij , ∀ (i, j) ≡ a ∈ A
repeat

/* generate routing probabilities */
generate pij , ∀ (i, j) ≡ a ∈ A
/* compute flows and travel times */
compute xa, ca(xa), ∀ a ∈ A
/* compute objective function */
compute

∑

a xaca(xa)
until convergence is reached

write p
(opt)
ij , ∀ a ∈ A

end algorithm

Figure 4: Algorithm for SO traffic assignment

3.1 Computing Flows and Travel Times

Note that the optimization heuristic needs an estimate
for the flows and travel times, xa and ca(xa), which may
be done as follows. First, the single link modeling is
presented. Then, a model for an entire transportation
network is described.

3.1.1 Single Link Modeling

The traffic movement area of a single link may be seen
as c parallel servers to its occupants, which is also the
total number of users allowed in a system that has no
buffer or waiting space. Second, based on the empiri-
cal results presented in Fig. 1, the service time for the
occupants depends on the number of users currently
in the system. As a consequence, an M/G/c/c state-
dependent queueing model seems to be a reasonable
tool to describe a single link (Yuhaski & Smith, 1989).

The limiting probabilities for the random number of
entities N in an M/G/c/c queueing model, pn ≡ Pr[N =
n], are as follows (Yuhaski & Smith, 1989)

pn =







[

λE[T1]
]n

n!f(n)f(n − 1) · · · f(2)f(1)







p0, (1)

in which n = 1, 2, . . . , c, p0 is the empty system proba-
bility, given by

p−1
0 = 1 +

c
∑

i=1











[

λE[T1]
]i

i!f(i)f(i − 1) · · · f(2)f(1)











, (2)

λ is the arrival rate, E[T1] = l/V1 is the expected service
time of a lone vehicle in the traffic space of length l, con-
sidering that V1 is the speed of a lone vehicle, and c is
the capacity of the traffic space

c = ⌊klw⌋,

in which ⌊x⌋ is the largest integer not superior to x, l is
the length, w is the width in number of lanes, and k is
the capacity of the link per length-unit per lane. Consid-
ering vehicular related applications and realizing that
k represents the jam density parameter (veh/mi-lane),
normally it ranges from 185-265 veh/mi-lane.

Notice that in Eqs. (1) and (2), f(n) = Vn/V1 is the ser-
vice rate, considered to be the ratio of the average speed
of n users in the link to that of a lone occupant V1. Basi-
cally, what one wants is that the congestion model rep-
resents the effect depicted in Fig. 1, in which the service
rate depends on the number of user in the system.

Successful in the past, presenting consistent and ro-
bust empirical results (Yuhaski & Smith, 1989), was an
exponential model in which the service rate decays fol-
lowing the expression

f(n) = exp

[

−

(

n − 1

β

)γ]

,

with

γ = log

[

log(Va/V1)

log(Vb/V1)

]

/ log

(

a − 1

b − 1

)

,

and

β =
a − 1

[log(V1/Va)]1/γ
=

b − 1

[log(V1/Vb)]1/γ
.
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The values a and b are arbitrary points used to adjust
the exponential curve. In vehicular related applications,
commonly used values are a = 20lw and b = 140lw
corresponding to densities of 20 and 140 veh/mi-lane
respectively. Looking at the curves presented in Fig. 1,
reasonable values for such points are Va = 48 mph and
Vb = 20 mph.

From Eq. (1), important performance measures can be
derived



























pc = Pr[N = c],
θ = λ(1 − pc),

L = E[N ] =
c
∑

n=1

npn,

W = E[T ] = L/θ,

in which pc is the blocking probability, θ ≡ xa is the
throughput in veh/h, L is the expected number of
customers in the link (also known as work-in-process,
WIP), and W ≡ ca(xa), here derived from Little’s for-
mula, is the expected service time in hours.

3.1.2 Queueing Network Modeling

Deriving performance measures for M/G/c/c state-
dependent queues configured in networks is a task con-
siderably more complex because of the routing proba-
bilities that will define the input in each queues and be-
cause of the inter-blocking effects. An algorithm avail-
able is the Generalized Expansion Method (GEM), suc-
cessfully used in the past to estimate performance mea-
sures for finite queueing networks.

Well described in many papers, in particular in the
recently published paper by Kerbache & Smith (2000),
the GEM is basically a combination of repeated trials
and node-by-node decomposition in which each queue
is analyzed separately and then corrections are made in
order to take into account the interrelation between the
queues in the network. The GEM uses type I blocking,
that is, the upstream node gets blocked if the service
on a customer is completed but it cannot move down-
stream due to the queue at the downstream node being
full. This is sometimes referred to as blocking after ser-
vice, which is prevalent in most production and manu-
facturing, transportation, and similar systems.

As it is seen in the paper by Kerbache & Smith (2000),
the GEM consists of creating for each finite queue, rep-
resented by vertex j, an auxiliary vertex hj , modeled as
an M/G/∞ queue (see Fig. 5). When an entity arrives
to the system, vertex j may be blocked with probabil-
ity pcj

, or unblocked, with probability (1 − pcj
). Under

blocking, the entities are rerouted to vertex hj for a de-
lay while node j is busy. Vertex hj helps to accumulate
the time an entity has to wait before entering vertex j
and to compute the effective arrival rate to vertex j. In
other words, the GEM’s ultimate goal is to provide an
approximation scheme to update the service rates of up-
stream nodes that takes into account all blocking after
service in there, caused by downstream nodes

µ̃−1
i = µ−1

i + pcj
(µ′

h)−1.

-
M/G/ci/ci

-
��
��

-i

M/G/cj/cj

-
��
��

-j

- -
M/G/ci/ci

-
��
��

-i

M/G/∞

-
��
��

-hj

M/G/cj/cj

-
��
��

-j
6

?

λi θj

λi λj λhj
λhj

(1 − p′

cj
) θj

λj(1 − pcj
)

Figure 5: Generalized expansion method

The iterative algorithm presented in Fig. 6 was re-
cently proposed by Cruz & Smith (2007). The algorithm
has been used in the context of vehicular traffic network
modeling for the first time here in this paper. Firstly, a
pre-evaluation is performed, Fig. 6-a. The performance
evaluation algorithm chooses an arbitrary node, j, from
set V but not from set Q (in which Q is the set of nodes
already evaluated), such that for all arc (i, j) ∈ A, vertex
i has been evaluated already. Then, vertex j has com-

puted its blocking probability p
(j)
k and its arrival rate,

from

θj = λj × (1 − p
(j)
k ).

These service rates are then forwarded as arrival rates
to the downstream nodes (if they exist), and vertex j is
included in set Q. Notice that the pre-evaluation step is
a variant of Dijkstra’s minimum path algorithm (Dijk-
stra, 1959).

The GEM includes also an evaluation step, Fig. 6-b.
This second part of the algorithm seeks flow conserva-
tion, that is

θj ≤ λj +
∑

∀ i|(i,j)∈A

θipij , ∀j ∈ V.

The evaluation algorithm is a Dijkstra’s labeling algo-
rithm working in reverse. Notice that the performance
evaluation algorithm must have available the routing
probabilities pij before it can compute all the perfor-
mance measures.

3.2 Generating routing probabilities

For the routing probabilities, pij , we propose to use
the Differential Evolution (DE) heuristic, which is part
of the broader family of Genetic Algorithms (GA). The
following characteristics of the DE algorithm, valid for
continuous space optimization problems (Storn & Price,
1997), justify its use as an appropriate solution method
for our problem:

• it is simple, fast and robust;

• it has a superior global optimization ability;
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algorithm
get routing probabilities, pij , ∀ (i, j) ≡ a ∈ A
initialize set of labeled nodes, P ← ∅
while P 6= V

choose j such that (j ∈ V ) and (j 6∈ P )
if {i| (i, j) ∈ A} ⊆ P then

/* compute performance measures */
E[T1]j ← lj/V1

compute Pr[N = cj ]
compute θj

compute Lj , Wj

/* forward information to successors */
for ∀ k ∈ {k′| (j, k′) ∈ A} then

λk ← λk + θjpjk

end for
/* label node as pre-evaluated */
P ← P ∪ {j}

end if
end while

end algorithm

a) pre-evaluation step

algorithm
initialize set of labeled nodes, P ← ∅
initialize maximum throughput, θmax

i ←∞, ∀i ∈ V
while P 6= V

choose i such that (i ∈ V ) and (i 6∈ P )
if {j| (i, j) ∈ A} ⊆ P then

/* update performance measures */
E[T1]∗i ←min E[T1]i

s.t.: θi ≤ θmax
i ,

E[T1]i ≥ li/V1

compute Pr[N = ci], θi, Li, Wi

/* backpropagate to predecessors */
for ∀ k ∈ {k′| (k′, i) ∈ A} then

update θmax
k

end for
/* label node as evaluated */
P ← P ∪ {k}

end if
end while

end algorithm

b) evaluation step

Figure 6: Performance evaluation algorithm

• it can easily be implemented in a parallel comput-
ing environment, which speeds up the optimiza-
tion;

• it is effective in nonlinear optimization and can be
very easily adapted for mixed parameter optimiza-
tion;

• it does not require a differentiable objective func-
tion;

• it operates on flat surfaces;

• it can provide multiple solutions in a single run.

In addition, Babu & Sastry (1999) found the technique
of DE to be the best evolutionary computation method
after the study of seven difficult design and control
MINLP problems in chemical engineering. For hard
non-linear objective functions with multiple non-trivial
constraints, Lampinen & Zelinka (1999) report solutions
found by the DE that outperform any of the competing
methods (branch & bound using sequential quadratic
programming, integer-discrete-continuous non-linear
programming, simulated annealing, genetic algorithm,
non-linear mixed-discrete programming, . . . ).

The DE is an improved version of genetic algorithms,
which belongs to the class of evolutionary algorithms
(EA) that are based on the principle of survival of the
fittest. It is basically a computerized search and opti-
mization algorithm based on populations. The DE dif-
fers from EA’s in the way the mutation is driven. In the
context of EA’s, mutation is based on the output of a pre-
defined distribution function, while DE uses the differ-
ence of randomly sampled pairs of object vectors. The
response of these object vectors to the objective function
determines their distribution, which on its turn deter-
mines the distribution of the object vector differences.
So the mutation that improves the object vectors reflects

information of the objective function it is optimizing. In-
stead of using only local information for each object vec-
tor, the DE mutates all object vectors with the same uni-
versal distribution. In this way the whole search space
is covered and a global optimum can be found.

The method is defined as a parallel direct search
method which operates on a population PG of constant
size that is associated with each generation G and con-
sists of NP vectors, or candidate solutions, Xp,G, p =
1, 2, . . . ,NP . Each vector Xp,G consists of D decision
variables Xo,p,G, o = 1, 2, . . . ,D. This is briefly sum-
marized as:

PG = {X1,G, X2,G, . . . , Xp,G, . . . , XNP,G} ,

Xp,G = {X1,p,G,X2,p,G, . . . ,Xo,p,G, . . . ,XD,p,G} ,

G = 1, . . . , Gmax,

NP ≥ 4.

Each routing probability is then considered as the de-
cision variable, pij ≡ Xo,p,G.

The different steps of the algorithm are:

Step 1: Choose a strategy. Price & Storn (2006)
suggested ten different strategies of DE, i.e.
the DE/rand/1/bin, DE/rand/2/bin, and
DE/current-to-rand/1 schemes.

Step 2: Initialize the key parameters of control. The
user-defined control parameters, which remain
constant during the search process, are the
crossover constant CR, the population size NP , the
mutation scaling factor F , the coefficient of combi-
nation K and the maximum number of generations
Gmax.
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Step 3: Initialize the population. The initial population
PG=0 provides us with a starting solution for op-
timum seeking and is chosen randomly within the
bounds of the parameters that are set by the con-
straints. It should cover the entire variable space.

Step 4: Evaluate the profit of each vector and find the
one with the highest profit. The objective function
have to be evaluated for each vector in the popu-
lation, after which the best one can easily be deter-
mined.

Step 5: Perform mutation and recombination. Muta-
tion aims to keep a population robust and to search
a new area. Mutation involves adding a randomly
generated step to one or more parameters of an ex-
isting object vector in order to move existing object
vectors in the right direction by the right amount
at the right time. DE mutates an object vector by
adding the weighted difference of randomly sam-
pled pairs of vectors in the current population PG.
The mutated vector that will be used to build the
population of the next generation is denoted by
Vp,G+1. Recombination, or crossover, is comple-
mentary to mutation and builds trial vectors out of
existing object vector parameters in order to rein-
force prior successes. The crossover operation cre-
ates a trial vector Up,G+1 by selecting elements from
the target vector Xp,G and the mutated donor vec-
tor Vp,G+1. The crossover constant CR controls the
probability that a trial vector parameter will come
from the mutated vector Vp,G+1, instead of from
the current vector Xp,G, and therefore ranges from
0 to 1.

Step 6: Check lower and upper bounds of the vari-
ables. The parameters of the child vectors must
be checked for boundary conditions. If a mutated
parameter exceeds some boundary constraint, one
way is to select a new random but feasible value.

Step 7: Perform selection. To select the vectors for the
next generation, each child has to be evaluated by
the objective function and compared with its par-
ent’s objective value. If the profit of the child is
greater than or equal to the profit of its parent, it re-
places that parent in the population, otherwise the
parent will be retained in the next generation. As a
result, all the individuals of the next generation are
as good as or better than their counterparts in the
current generation.

Step 8: Repeat the evolutionary cycle until Gmax is
reached.

We refer to Lampinen (2000), Lampinen & Zelinka
(1999), and Fan & Lampinen (2004), for more details
about the mutation schemes, values for the control pa-
rameters, and other constraint handling methods and
stopping criteria.

4 COMPUTATIONAL RESULTS

In this section of the paper, an application of the
M/G/c/c state-dependent model and the DE heuristic
is presented to a system equilibrium traffic assignment
problem based on an actual network. All algorithms
presented in Fig. 4 and 6 were coded in C++ and are
available from the authors upon request. The experi-
ments took place on a PC, Pentium 4 3.0 GHz 2 MB CPU,
1.0 GB RAM, under Windows XP operating system.

4.1 Algorithm Efficacy and Efficiency

One of the main issues is to know how the algorithm
results compare with earlier studies of stochastic traffic
network assignment. In order to show the relationship
between classical travel time estimation formulas and
the new M/G/c/c formula we will consider a simple ex-
ample, illustrated in Fig. 7.
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Figure 7: Two-road network and corresponding
M/G/c/c model

This example was considered by Prashker & Bekhor
(2000), in which the two routes connecting A and B are
composed by links 1 to 4, with link travel costs repre-
sented by the classical BPR formula (Bureau of Public
Roads, 1964), as follows

ca(xa) = c0
a

(

1 + 0.6

(

xa

sa

)4
)

,

in which c0
a is the free-flow travel cost on link a and sa

is its capacity. For the experiment to be shown, we will
use the free-flow on route 1-2 equal to 10 and on route
3-4, 12, as follows

c1+c2 = 10, s1 = s2 = 1000, c3+c4 = 12, s3+s4 = 2000.

This example is also known as the two-link network,
where one router is shorter (i.e, faster), but with a lower
capacity, than the bypass route. Finally, to adjust the
corresponding M/G/c/c model, we will use the setting
presented in Tab. 2.

The results may be seen in Fig. 8, which shows the
flow on route 1-2 (the shorter route) for several differ-
ent values of the arrival rate, from 0 to 3,000 veh/h. Up
to 500 veh/h, only the upper route carries flow, inde-
pendently on the model under use. That is, we confirm
here that both models should agree under light traffic
loads, as claimed earlier in this paper. Significant dif-
ferences start to show under heavy traffic though. In
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fact, the M/G/c/c model is more optimistic and allo-
cates significant more traffic to the shorter route as the
arrival rate increases. Because M/G/c/c queues will
reject (or block) users that arrive when the system is
at capacity, the travel time will never go to infinity as
in the BPR formula, leading to the S-shaped behavior
mentioned earlier. The conclusion is that the M/G/c/c
based travel time formula may produce traffic assign-
ments that make a better use of the network, once a
higher part of the traffic will take the shorter (faster)
route.
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Figure 8: Flow on shorter route (1-2) in the two-link
network

Another important issue here is to know how the al-
gorithm behaves as the number of decision variables in-
creases. We considered a sequence of experiments with
the network presented in Fig. 9, composed by an arbi-
trary combination of links such as those presented in
Tab. 3, configured in a basic split topology, in such a
way that the number of decision variables considered
increases. For the experiments with one decision vari-
able, p12, only nodes #1, #2, and #3 were considered.
Notice that the decision variable p13 is obtained by the
relation p12 + p13 = 1. For the experiments with two
decision variable, only nodes #1 to #5 were considered,
and so on.

The results of the computational experiments are pre-
sented in Fig. 10. The results reported are the CPU times
in seconds and the boxplots obtained from 10 runs. The
running times do not increase dramatically with the
number of variables, which is very encouraging and
confirms the efficiency of DE algorithms for continuous
optimization, but these times tend to be less predictable
(the variability increases with the number of variables)
and may be prohibitive in large scale networks.
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Figure 10: Running times as a function of the number
of decision variables

4.2 A Realistic Assignment

Problem Description

One of the principal arterial road networks surround-
ing the Eindhoven University of Technology campus is
illustrated in Fig. 11. The corresponding network repre-
sentation is seen in Fig. 12, which is an interesting exam-
ple because it is rather compact and also has a number
of alternative routes for directing the traffic flows. This
type of network model is indicative of the evacuation of
a region due to a natural or man-made calamity, so the
origin-destination networks with alternative routings is
quite typical of this type of evacuation problem. In the
experiments that follow, we would like to examine how
the travel time model and the DE algorithm perform in
this context.

The origin of the traffic is “o”, from the center of cam-
pus where a major parking garage is located, and the
destination is “d”, the intersection of two roads. Tab. 3
illustrates the basic data necessary to implement the
travel time function of the M/G/c/c model and Fig. 13
depicts the queueing network representation. Notice
that the capacity is determined by the speed-density
curves of the particular link along with the geometry
of the link. All adjusted service types are presented in
Fig. 14 and all travel times as functions of the arrival
rates are illustrated in Fig. 3.

Discussion

For the M/G/c/c model, the capacity analysis of the
routes may be determined by a bottleneck analysis of
the links in the routes. There are four distinct routes, as
it is shown in Table 4.

From Tab. 3, it is possible to realize that, for route
#1, the bottleneck is link #7, from the point of view of
capacity. Likewise, for route #2 the bottleneck is link
#6, while for route #3 the bottleneck is link #4 and for
route #4 the bottleneck is link #5. These bottlenecks are
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Table 2: Settings for the two-road network example

Route Length(∗) Width (# lanes) V
(∗∗)
1 V

(∗∗)
a V

(∗∗)
b c (veh) E[T1] (h) service #

1-2 5 (8.0) 1 30 (48) 27 (43) 12 (19) 1,000 0.1667 (10 min) 5

3-4 5 (8.0) 2 25 (40) 23 (37) 10 (16) 2,000 0.2000 (12 min) 6
(∗) in miles (km); (∗∗) in mph (km/h);

Table 3: Basic M/G/c/c network data

Link (i, j) Length(∗) Width (# lanes) V
(∗∗)
1 V

(∗∗)
a V

(∗∗)
b c (veh) E[T1] (h) service #

1 (o,A) 0.80 (0.50) 5 25 (40) 23 (37) 10 (16) 800 0.0320 6

2 (A,C) 2.50 (1.55) 2 20 (32) 18 (29) 6 (10) 1000 0.1250 7

3 (A,B) 1.85 (1.15) 2 20 (32) 18 (29) 6 (10) 740 0.0925 7

4 (B,C) 1.00 (0.62) 1 45 (72) 40 (64) 16 (26) 200 0.0222 4

5 (C,B) 1.00 (0.62) 1 45 (72) 40 (64) 16 (26) 200 0.0222 4

6 (C,D) 0.53 (0.33) 2 30 (48) 27 (43) 12 (19) 212 0.0177 5

7 (B,D) 0.56 (0.35) 2 45 (72) 40 (64) 16 (26) 224 0.0124 4

8 (D,d) 0.62 (0.39) 2 45 (72) 40 (64) 16 (26) 248 0.0138 4
(∗) in miles (km); (∗∗) in mph (km/h);
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Figure 9: Basic split topology
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Figure 11: TU/e campus map

Table 4: Routes and lone occupant travel times

Route Links∗ E[T1] (h)

1 1→ 3→ 7→ 8 0.1507

2 1→ 2→ 6→ 8 0.1884

3 1→ 3→ 4→ 6→ 8 0.1782

4 1→ 2→ 5→ 7→ 8 0.2054
∗ bottlenecks are in boldface

due to the length of the road segment and the number
of lanes as well as the free flow speeds and parameters
necessary for the M/G/c/c model. Thus, it makes sense
to route the traffic along the shortest time route which
is route #1. However, due to the capacity limitations,
other routes will absorb the additional overflow traffic if
route #1 is saturated. Ultimately, we would like to know
which routes are best given the traffic volumes that are
to be accommodated.

Tab. 5 illustrates the results of applying the proposed
algorithms to the traffic network. Notice that the re-

sults are sound over the different scenarios and pro-
vide interesting insights for the traffic flow behavior,
if one admits M/G/c/c state-dependent queueing net-
works as a modeling tool. Mostly, only routes #1 and
#2 received flows, which makes sense. In fact, routes #3
and #4 add nodes #4 and #5 and because of that they are
longer options, as we can see from column E[Ts]. Up
to λ = 2, 000 veh/h, the flow divides into routes #1 and
#2. Beyond this point, it is even more advantageous to
keep the whole traffic in route #1. It is curious that it
was never an advantage to reroute the traffic to alterna-
tive routes and that the total traffic throughout the net-
work even decreased when the arrival went above 2,000
veh/h, which seems to be the maximum capacity of this
network. The M/G/c/c state-dependent model has this
well-know property of saturation indeed, as seen in pre-
vious studies (see Jain & Smith, 1997; Mitchell & Smith,
2001), caused by the rejection of blocked users, that is,
users that arrived when the system was at capacity. In
other words, the M/G/c/c state-dependent queueing
model helps to identify a capacity in terms of the maxi-
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Figure 12: Traffic network representation

mum amount of vehicles that can go thought it per time
unit.

Sensitivity Analysis

As part of a sensitivity analysis to see what would hap-
pen if reductions in capacity were to occur. Let us re-
move one lane of traffic from link 7 and reduce its speed
to 25 mph. This link is a critical part of the traffic net-
work because it is responsible for all blocking present in
route #1. The results of this removal may be seen in Ta-
ble 6. Again, the M/G/c/c model assigns traffic to the
longer route to alleviate the congestion on the shorter
routes.

One positive thing about these results is that even
losing the full capacity on link #7, one of the most im-
portant, the overall throughput does not change signif-
icantly as we see different assignments only for λ =
1, 000 and 2, 000 veh/h. In other words, the M/G/c/c
state-dependent queueing model provides robust solu-
tions, that is, which do not change significantly with
slight uncertainties and errors in the network parame-
ters.

In summary, we believe that the M/G/c/c state-
dependent models should be considered carefully as al-
ternative ways of modeling vehicular traffic. Instead of
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Figure 13: Queueing network representation

travel time formulas that accept arrivals too close to the
maximum capacity of the traffic links producing times
that go to infinity, finite queueing networks will reject
(or block) users under massive arrivals leading to S-
shaped travel times. Without considering the blocking
effect, the true capacity and the real utilization of the
networks will not be revealed, as seen in this example.

5 CONCLUSIONS AND FINAL REMARKS

This paper has presented an overview of the traffic as-
signment problem in urban networks. A new heuristic
algorithm was proposed to the system optimum model,
which is important for a better use of the scarce re-
sources represented by the streets and roads capacities.
The M/G/c/c state-dependent model was felt to be a
good fit for the problem, having generated in the past
sound results under many different scenarios (Jain &
Smith, 1997; Kerbache & Smith, 2000; Mitchell & Smith,
2001; Cruz & Smith, 2007). The solutions seemed to be
robust as it was demonstrated by a sensitivity analy-
sis. A case study of the application of the algorithms
to a traffic assignment problem in and around the Eind-
hoven University of Technology campus revealed in-
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Figure 14: Service types for M/G/c/c state-dependent
models

teresting traffic assignment patterns under different de-
mands and scenarios.

Finally, the authors wish to point out that the main
focus of this paper was to present how the system op-
timum may be reached in a urban traffic network mod-
eled as an M/G/c/c state-dependent queueing system,
a recent and one of the most appealing traffic flow mod-
eling tool (van Woensel et al., 2006), an some new in-
sights the approach may bring to the analysis.

There are a number of directions possible with this
research. For example, a more general network may be
considered, in which the number of decision variables is
larger than those tested in this article. More work can be
done to try to improve algorithm efficiency, especially
in real life arge-scale networks. Another possibility is to
recognize that the M/G/c/c model is also directly ap-
plicable to modeling pedestrian networks, so that many
of the similar features of the travel delay function as
shown in this paper apply to pedestrian dynamics.
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