
Joint Buffer & Server Allocation Van Woensel et al.

Buffer and Server Allocation in General
Multi-Server Queueing Networks

T. Van Woensel∗† R. Andriansyah‡ F. R. B. Cruz§¶

J. MacGregor Smith‖ L. Kerbache∗∗

t.v.woensel@tue.nl r.andriansyah@tue.nl frc@cs.nott.ac.uk jmsmith@ecs.umass.edu kerbache@hec.fr

September 23, 2009

Abstract — This paper deals with the joint optimization

of the number of buffers and servers, an important issue

since buffers and servers represent a significant amount of

investment for many companies. The joint buffer and server

optimization problem (BCAP) is a non-linear optimization

problem with integer decision variables. The performance

of the BCAP is evaluated by a combination of a two-moment

approximation (developed for the performance analysis of

finite general-service queues) and the generalized expan-

sion method (a well-known method for performance anal-

ysis of acyclic networks of finite queues). A standard non-

linear optimization package is used to optimize the BCAP

for a large number of experiments. A comprehensive set of

numerical results is presented. The results show that the

methodology is capable of handling the trade-off between

the number of servers and buffers, yielding better through-

puts than previously published studies. Also, the impor-

tance of the squared coefficient of variation of the service

time is stressed, since it strongly influences the approximate

optimal allocation.

Keywords — Joint buffer and server allocation; general ser-
vice; queues; networks.

1 INTRODUCTION AND MOTIVATION

OPTIMIZATION of large scale manufacturing systems
and complex production lines has been the focus

of numerous studies (Tempelmeier, 2003), given that
both buffers and servers represent a significant amount
of investment during the design phase of manufactur-

∗Corresponding author.
†School of Industrial Engineering, Eindhoven University of Tech-

nology, Eindhoven, The Netherlands.
‡Department of Mechanical Engineering, Eindhoven University of

Technology, Eindhoven, The Netherlands.
§School of Computer Science and Information Technology, Uni-

versity of Nottingham, Jubilee Campus, Wollaton Road, Nottingham
NG8 1BB, UK.

¶On sabbatical leave from the Department of Statistics, Federal
University of Minas Gerais, Belo Horizonte, MG, Brazil.

‖Department of Mechanical and Industrial Engineering, Univer-
sity of Massachusetts Amherst, Massachusetts 01003, USA.

∗∗HEC School of Management, Paris, France.

ing systems. Obviously, the exact number of buffers
and servers allocated to the different production steps
will also lead to differences in the operational character-
istics, such as throughput, work-in-process (WIP), cycle
times, etc. It is thus of high importance to provide deci-
sion makers tools that allow not only for the evaluation
of the performance of a given buffer and server combi-
nation, but also for the optimization of these combina-
tions.

In this paper, we focus on the joint buffer and server
optimization problem (BCAP) in a setting of restricted
M/G/c/K queueing networks. Queueing networks
are commonly used to model such complex systems
(Suri, 1985). Here we model the joint buffer and server
optimization problem using queueing networks which
are optimized for the allocated number of buffers and
servers at each node in the network. These queueing
networks are characterized by Markovian external ar-
rivals M with rate Λ, general service times G with rate
µ and a squared coefficient of variation s2, multiple
servers c, and total capacity K, including those entities
in service (see Fig. 1).

Moreover, since we deal with restricted queueing net-
works, there is a finite capacity in each node, referred to
as the total buffer capacity of size Kj . That is, a finite
node j can only hold entities up to a certain quantity
Kj including those entities in service. The buffer capac-
ity at finite node j causes blocking to occur when the
arriving quantity to node j exceeds its buffer capacity
Kj ((see Buzacott and Shanthikumar, 1993). As a con-
sequence, each node in the network might be affected
by events at other nodes, leading to the phenomena of
blocking and starvation (Perros, 1994). Because of this,
finite buffer queueing networks might eventually suffer
performance reduction, which can be measured via the
overall throughput Θ of the network.

We obtain the performance measures of the man-
ufacturing system via a two-moment approximation
developed by Smith (2003) for performance analysis
of finite general service time single queues and com-
bined with the generalized expansion method (GEM),
a well-known technique developed by Kerbache and

DocNum 2009923-927 1

Joint Buffer & Server Allocation Van Woensel et al.

Λ1
-

�

��

-1

M/G/c1/K1

Λ2
-

�

��

-2

M/G/c2/K2

Λ3
-

�

��

-3

M/G/c3/K3

�
�
���

A
A
AAU

A
A
A
A
A
AAU

Λ4

-
�

��

-4

M/G/c4/K4

Λ5

-
�

��

-5

M/G/c5/K5

@
@R

�
��

Λ6

A
A
AAU

�
�
���
-

�

��

-6

M/G/c6/K6

Θ

Figure 1: An arbitrarily configured queueing network

Smith (1987, 1988), for approximate performance anal-
ysis of acyclic networks of finite queues. The accuracy
of the two-moment approximation combined with the
GEM has previously been demonstrated (Smith, 2004)
but to the authors’ best knowledge this is the first
time that these two performance evaluation tools have
been conjointly used to simultaneously optimize buffer
and server allocation in finite general-service queueing
acyclic networks. In other words, the network configu-
ration is not restricted to a tandem single-server produc-
tion line; any possible acyclic multi-server configuration
can be analyzed and optimized.

More specifically, we consider arbitrary acyclic con-
figured queueing networks, including series, merge,
split topologies, and any possible combination that
can be evaluated using the GEM. For a given buffer
and server combination, the two-moment approxima-
tion and the GEM thus provide the performance mea-
sure. Here the throughput, Θ , is the preferred mea-
surement but other performance measures may also be
of interest, such as the average WIP, cycle time, sys-
tem utilization, and average queue lengths. However,
in the literature, the throughput has been the most com-
monly used metric for evaluating the performance of fi-
nite buffer queueing networks (Down and Karakostas,
2008). The two-moment approximation and the GEM
are combined with a non-linear optimization method-
ology based on Powell’s search method (Himmelblau,
1972) and are used to optimize any large and arbitrar-
ily acyclic configured networks including serial, merge,
and split topologies, as well as the combination of any
of these topologies, as we shall see shortly.

The optimization problem presented here is a difficult
non-linear integer programming problem. To validate
the optimization methodology, the results are compared
both with complete enumeration and with simulation.
These comparisons attest to the quality of the solutions
provided by the proposed methodology, showing that
the methodology provides sound allocations for both
buffers and servers. Moreover, comparing the results
to similar settings obtained from the literature allows
quantification of the potential improvement over pre-
viously published results. The methodology provided

in this paper can be used especially for system-level
design of production/manufacturing lines or in other
relevant environments (see examples and references in
Suri et al., 1993). Reasonable estimates are obtained for
the requirements and allocations for the optimal num-
ber of machines and waiting spaces for the WIP, given
the demand, routing of jobs, machine processing rate,
and variability.

Relevant literature

Although a great deal is known about improving pro-
duction lines (for instance, Li and Meerkov, 2009, have
considered simultaneous work and buffer allocation
and obtained closed formulas for the Bernoulli machine
reliability model), it is interesting to observe that lit-
tle literature is available on the simultaneous optimiza-
tion of both buffers and servers. To the authors’ best
knowledge, no papers exist that discuss the joint opti-
mization of buffers and servers in acyclic networks of
finite general-service time queues. Most papers dealing
with the BCAP have focused on pure Markovian sys-
tems (both in the arrival distributions as well in the ser-
vice distributions) and on serial or tandem lines (see for
example Hillier and So, 1995, Spinellis et al., 2000).

Shanthikumar and Yao (1987) looked into the simul-
taneous optimal allocation of both servers and buffer ca-
pacity for a single station system (i.e., no network was
analyzed due to the computational complexity) consid-
ering closed queueing networks. Hillier and So (1995)
and Spinellis et al. (2000) studied open networks of fi-
nite multi-server Markovian queues. Their experiments
are limited to series in which the first station in the
line is never starved (hence, infinite buffers for the first
node) and the last node is never blocked. In their paper,
Hillier and So (1995) considered joint optimization of fi-
nite multi-server Markovian queueing networks using
a complete enumeration strategy. Using this method-
ology, however, they generated results only for small,
relatively simple queueing networks. This is due to the
fact that the possible buffer and server allocations in-
crease exponentially with increasing number of nodes,
maximum number of servers, and maximum number
of buffers. Spinellis et al. (2000) extended the work of

DocNum 2009923-927 2

Joint Buffer & Server Allocation Van Woensel et al.

Hillier and So (1995) by combining simulated annealing
and the GEM to optimize the performance of produc-
tion lines. Spinellis et al. (2000) were able to optimize a
large production line (up to 70 stations with 140 buffers
and servers) in reasonable computation times.

The BCAP can be reduced to a pure buffer alloca-
tion problem (BAP) or a pure server allocation prob-
lem (CAP). In both models, the servers for BAP and
buffers for CAP, respectively, are assumed as as given.
In the pure BAP buffers are inserted between servers
to limit the propagation of disruptions, which increases
the average throughput rate of the network (Hillier and
Hillier, 2006). In practice, inclusion of buffers requires
additional capital investment (floor space for manufac-
turing environments), which may be expensive. Buffer-
ing also increases in-process inventory. If the buffers
are too large, the WIP inventory and capital costs in-
curred will outweigh the benefit of increased produc-
tivity. If the buffers are too small, the servers will be
under-utilized or demand will not be met (Gershwin
and Schor, 2000). It is thus essential to set the buffer
sizes such that the desired performance can be realized
(for a list of recently published papers on the BAP, see
Smith et al., 2010).

The pure server allocation problem (CAP) has also
been well researched. There is a vast amount of liter-
ature on the optimal allocation of servers. Many stud-
ies have been done considering single nodes, open and
closed networks, infinite and finite buffer waiting room,
and exponential service systems (for an overview, see
Smith et al., 2009).

Structure of the paper

The paper is organized as follows. In Sec. 2, we mathe-
matically define the BCAP. Next, the performance eval-
uation and the optimization tools are described in Sec. 3.
We use a two-moment approximation and the GEM to
obtain the relevant performance measures and a clas-
sical non-linear search method to optimize this type of
system. In Sec. 4, we elaborate on the experimental re-
sults obtained for a large number of situations (i.e., tan-
dem, split, and merge cases). We analyze the perfor-
mance and optimize the system both analytically and
by simulation. Sec. 5 concludes this paper with final re-
marks and topics for future research.

2 MODEL FORMULATION AND IMPLICATIONS

The BCAP is formulated as a single-objective optimiza-
tion problem Smith et al. (rather than a multi-objective
formulation; see also 2009). In our formulation, we as-
sume that decision makers want to minimize their in-
vestment in buffers and servers, but want to assure a
certain minimum service level for their customers. This
service level is measured here as throughput, i.e., how
much of the arrivals has gone through the network. Ob-
viously, many other formulations could be used, but the

proposed model formulation has been used successfully
in the past for both the CAP and the BAP models (see
for example Smith and Cruz, 2005, for a similar model
formulation).

2.1 Model Formulation

The model optimizes the number of buffers and servers
such that the resulting throughput is greater than a pre-
defined threshold throughput. We define a queueing
network as a digraph G = (N,A, P) in which N is the
set of nodes, A is the set of arcs, and P is the set of re-
spective routing probabilities. The BCAP is mathemati-
cally formulated as follows.
(BCAP):

Z = min

[

∑

∀i∈N

ωici +
∑

∀i∈N

(1− ωi)Bi

]

, (1)

subject to:

θ(c,B) ≥ θmin, (2)

ci ∈ {1, 2, . . . }, ∀i ∈ N, (3)

Bi ∈ {0, 1, . . . }, ∀i ∈ N, (4)

in which ci is the number of servers at node i, Bi is the
number of pure buffers (i.e., excluding those in service,
and Ki = ci+Bi is the total capacity at node i), θ(c,B) is
the resulting throughput as a function of the server and
buffer allocation (c and B, respectively), θmin is a target
threshold throughput, and ωi is a relative cost variable
(0 ≤ ωi ≤ 1).

Note that if Bi = 0, we have a zero-buffer node
(i.e., only including servers). Bufferless networks oc-
cur throughout a number of real-life physical systems in
the semi-process and process industries (refer to Fran-
soo and Rutten, 1994, for more general information on
process industries). A zero-buffer production environ-
ment might be necessary due to the processing technol-
ogy of the product itself, or simply due to the absence
of any intermediate storage capacity between two con-
secutive operations of a job. Examples of real-life zero-
buffer networks are available in the literature. For in-
stance, Hall and Sriskandarajah (1996) describe a steel
production process and Ramudhin and Ratliff (1995)
describe a condiment manufacturer producing mayon-
naise and various types of salad dressing. These authors
also present a long list of references for additional real-
life zero-buffer examples.

Finally, observe that in the cost function we set the
weights ωi as dependent on the specific node i, ∀i ∈ N ,
because in many practical situations this is true, which
leads to specific node weights. The methodology pro-
posed is able to handle different weights per node, but
we include numerical experiments in the paper only for
equal weights for all nodes to avoid an explosion of pos-
sible experiments.

DocNum 2009923-927 3

Joint Buffer & Server Allocation Van Woensel et al.

2.2 Analysis and Implications of the proposed model

In objective function Eq. (1), we assign a cost of ωi to
servers and (1 − ωi) to buffers. We can modify the
value of ωi, such that 0 < ωi < 1, to reflect the relative
cost of servers versus buffers. As ωi is decreased, the
cost of servers will become relatively lower than that of
buffers. Alternatively, when the value of ωi is increased,
the servers become more costly relative to the buffers.
In this way, we evaluate whether different pricing of
servers and buffers results in a significantly different
buffer and server allocation. It is worthwhile to men-
tion that if ωi = 0, ∀i ∈ N , the above problem reduces
to the pure BAP and if ωi = 1, ∀i ∈ N , the pure CAP is
obtained.

One way to decrease the complexity of the BCAP is
by incorporating the complicating constraints into the
objective function via Lagrangian relaxation. A com-
prehensive overview of this method can be found in
Lemaréchal (2001, 2007). Thus, for this particular prob-
lem the difficult constraint (2) may be relaxed by means
of a Lagrangian variable α > 0. The relaxed BCAP (RB-
CAP) is then formulated as follows:

Zα = min

[

∑

∀i∈N

ωici +
∑

∀i∈N

(1− ωi)Bi + (5)

α
(

θmin − θ(c,B)
)

]

,

subject to constraints (3) and (4).
Note that in the relaxed formulation, RBCAP, the term

α
(

θmin − θ(c,B)
)

is always non-positive, for any feasi-

ble solution of the original formulation, BCAP. That is,
if constraints (2), (3) and (4) are to be met, it must hold

that α
(

θmin−θ(c,B)
)

≤ 0. Because Zα ≤ Z, we will use

Zα as a lower bound on the optimal objective value of Z
and therefore we would like to have this lower bound as
tight as possible. To solve such a simultaneous server-
buffer allocation problem, we set the threshold through-
put θmin equal to the external arrival rate, Λ. A two-
moment approximation and the GEM will then approx-
imate the resulting throughput, θ(c,B), given the par-
ticular server and buffer configuration. Note that alpha
gives the cost of not meeting the constraint. Following
the rationale given by Cruz et al. (2008), we set the La-
grangian variable α equal to 103.

It is interesting to see how the objective function be-
haves when adding a server versus adding a buffer dur-
ing the optimization. Let us assume that we start from a
zero-buffer single node with one server (i.e., N = {1},
K = 1, B = 0, and c = 1), submitted to an exter-
nal arrival rate Λ = 1.0, service rate µ = 2.0, squared
coefficient of variation of the service time distribution
s2 = {0.5, 1.0, 1.5}, and equal relative costs, ω = 0.5 (for
the sake of simplicity, here we will not use index i from
ωi because we have here a single M/G/c/K node).

Fig. 2 gives the percentage increase of adding either a
server (adding one to four servers compared to the base
case) or a buffer (adding one to seven buffers compared
to the base case) to the zero-buffer base situation. In this
way, we analyze the value of adding buffers and servers
to a single node, i.e., such as we would analyze when/if
a multi-server node is better than a multi-buffer node.

It is clear that in this case the first added buffer or
first added server gives the largest contribution to the
throughput value, which is limited by the arrival rate
λ. Note that the addition of the first extra server gives
an increase in throughput of 13.4% to 18.6% depend-
ing upon the coefficient of variation s2, while the first
added buffer gives only 8.2% to 9.2% increase. It is im-
portant to mention that to achieve the same increase in
throughput by using only buffers, we need five to six ex-
tra buffer spaces rather than only one server space. This
example does not yet consider the price of the buffer
versus the price of the server, which will also be an im-
portant driver in choosing between both. Based on the
above analysis, if costs are equal (ω = 0.5), a server will
be preferred due to the higher increase in throughput.
Clearly, depending upon the specific value for the cost
ω it will be preferable to add either buffers or servers.
Moreover, it is clear that if a buffer is equally as costly
as a server, a server will always be preferred, since the
latter will also act as a buffer but is also productive in
terms of throughput. In the extreme (less realistic) case
where servers are inexpensive and buffers expensive,
i.e., ω → 0, then only zero-buffer systems will be pre-
ferred.

Making use of the above insights with regards to the
buffer/server trade-off and taking into account the rel-
ative prices of buffers versus servers, the following the-
orem holds:

Theorem: If the marginal value of an extra buffer is less than

(1− ω)

α

a zero-buffer system will be preferred.
Proof: To show this theorem, let us compare the objective
function of a zero-buffer system with a non-zero buffer sys-
tem. The objective function value of a zero-buffer system FZB

can be obtained as follows (in this case B = 0, and θZB is the
throughput of the zero-buffer system):

FZB = ωc+ (1− ω)B + α
(

θmin − θZB
)

= ωc+ α
(

θmin − θZB
)

. (6)

The non-zero buffer system FNZB is given as follows (in
this case, θNZB is the throughput of the non-zero buffer sys-
tem):

FNZB = ωc+ (1− ω)B + α
(

θmin − θNZB
)

. (7)

DocNum 2009923-927 4

Joint Buffer & Server Allocation Van Woensel et al.

Figure 2: Throughput increase versus added number of buffers and servers

One is indifferent between a zero-buffer system or a non-
zero buffer system if the difference between both objective
functions values is equal to zero, i.e. FZB − FNZB = 0.
Using Eqs. (6) and (7), we obtain the following expressions:

FZB − FNZB = 0 ⇒
[

ωc+ α
(

θmin − θZB
)

]

−
[

ωc+ (1− ω)B+

α
(

θmin − θNZB
)

]

= 0 ⇒

(1− ω)B + α
(

θZB − θNZB
)

= 0. (8)

Defining ∆B = B − 0 and ∆θ =
(

θNZB − θZB
)

, Eq. (8)

can then be rewritten as:

(1− ω)∆B − α∆θ = 0 ⇒

∆θ =
(1− ω)

α
∆B ⇒

∆θ

∆B
=

(1− ω)

α
.

This theorem says that if the marginal gain on
throughput of one extra unit of buffer, ∆θ

∆B , is greater

than (1−ω)
α , a non-zero buffer system will be better; sim-

ilarly, when ∆θ
∆B < (1−ω)

α , the zero- buffer system will
be preferred. Interestingly, this cut-off point is equal

to (1−ω)
α (and not zero). This means that although the

throughput might be higher, the other system might still
be preferred due to the relative price relationship of ω
versus α and depending upon the change in B. Conse-
quently, the marginal gain on throughput of one extra
unit of buffer should be significantly larger (compared

to (1−ω)
α) to prefer a non-zero buffer system.

2.3 A word on the complexity of the model

It is worthwhile to state that the model described above
is a difficult non-linear integer programming problem.

For a capacity K ≤ 3, we obtain the following possible
(c,B) combinations which are all candidate solutions:
{(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0)}. Solutions where
B = 0 are the zero-buffer combinations; any other solu-
tion includes buffers. In general, it is easy to show that
given the maximum capacity K at a node, the number
of combinations that must be evaluated at that node is
equal to

∑K
i=1(K − i+ 1). After some rewriting this re-

duces to K(K + 1)/2. With regards to these possible
combinations, each node can be seen as independent
of the other nodes. Consequently, for a network with
N nodes, the number of combinations involved goes to

[K (K + 1) /2]
N .

Clearly, the solution space grows exponentially in the
number of nodes, but not in the capacity of each node.
The worst-case complexity of the solution space can
thus be written as O(K2N). This shows that a complete
enumeration, certainly for larger real-life networks, is
infeasible. Note that one could reduce the number of
combinations if the number of servers at each node is re-
duced (i.e., not up to capacity K). This would, however,
mean that some zero-buffer combinations would not be
evaluated. Based on the analysis in the previous sec-
tion, this could prove to be dangerous and lead to sub-
optimal solutions. Finally, it is worth mentioning that
the complexity of the solution space is exponentially in-
creasing in the number of network nodes rather than
in the characteristics of the node (i.e., the capacity K).
For an arbitrary topology, the optimal topology prob-
lem (i.e., the design of the network) is shown to be NP-
hard ((Johnson et al., 1978), and the same is conjectured
(see Smith and Daskalaki, 1988) for the resource alloca-
tion problems (i.e., the optimal allocation of the scarce
resources in the network).

3 PERFORMANCE EVALUATION AND OPTIMIZATION

In the relaxed problem, RBCAP, the performance of
the network is measured via the throughput θ. This
throughput is obtained with a two-moment approxima-
tion and the GEM. The optimization with regards to the

DocNum 2009923-927 5

Joint Buffer & Server Allocation Van Woensel et al.

number of buffers, servers and throughput will be done
via a standard non-linear search method.

3.1 Performance Evaluation with the GEM

The GEM is an effective and robust approximation tech-
nique to measure the performance of open finite queue-
ing networks. Developed by Kerbache and Smith (1987,
1988), the GEM has become an appealing approxima-
tion technique for performance evaluation of queueing
networks due to its accuracy and relative simplicity.
Moreover, exact solutions to performance measurement
are restricted only to very simple networks and simula-
tion requires a considerable amount of time.

The GEM is basically a combination of two approx-
imation methods, namely repeated trials and node-by-
node decomposition. To evaluate the performance of a
queueing network, the GEM first divides the network
into single nodes with revised service and arrival pa-
rameters. Blocked customers are registered into an arti-
ficial ‘holding node’ and are repeatedly sent to this node
until they are serviced. The addition of the holding
node expands the network and transforms the network
into an equivalent Jackson network, where each node
can be solved independently. Generally, the GEM as-
sumes a type I blocking that is commonly referred to as
transfer blocking. This type of blocking occurs when the
service of a job is completed at a certain node but cannot
proceed to the next node because the queue is full. This
condition is prevalent in most production and manufac-
turing, transportation, and other similar systems.

The effectiveness of GEM as a performance evalua-
tion tool has been presented in many papers, including
Kerbache and Smith (1987, 1988, 2000), Jain and Smith
(1994), Smith (2003), and Andriansyah et al. (2009). The
GEM, however, cannot handle feedback loops such as
those found in semiconductor manufacturing, for ex-
ample. This creates a dependency in the arrival pat-
terns that is hard to tackle in this type of queueing net-
work analysis. Here we will present only a high-level
overview of the method. For more detailed information
and applications of the GEM, the reader is referred to,
e.g., Kerbache and Smith (1987, 1988).

There are three main stages in the GEM, (I) a network
reconfiguration, (II) a parameter estimation, and (III) a
feedback elimination. The notation for the GEM pre-
sented in Table 1 will be used throughout the paper. The
steps are described as follows.

Stage I: Network reconfiguration

For each finite node in the queueing network, an artifi-
cial node is created to register the blocked jobs. By intro-
ducing such artificial nodes, we also create new routing
probabilities in the network. The result of network re-
configuration can be seen from Figure 3.

There are two possible states of the finite node,
namely saturated and unsaturated. Arriving jobs will try
to access the finite node j. With a probability of (1−pK),

Table 1: Basic network notation

Variable Description
Λ external Poisson arrival rate to the network
λj Poisson arrival rate to node j
λ̃j effective arrival rate to node j
µj exponential mean service rate at finite node j
µ̃j effective service rate at finite node j due to block-

ing
pK blocking probability of finite queue of size K
p′K feedback blocking probability in the expansion

method
h the artificial holding node created in the GEM
c number of servers
Bj buffer capacity at node j excluding those in service
Kj buffer capacity at node j including those in service
N set of nodes in the network
ρ λ/(µc) = traffic intensity
θ mean throughput rate
s2 squared coefficient of variation of the service time

distribution

the job will find the finite node unsaturated, so that the
job will enter the queue and eventually get serviced.
However, if the finite node is saturated (with a proba-
bility of pK), then the job will be directed to the artificial
holding node h where it will get delayed. The delay at
the artificial node is modeled using an M/G/∞ queue,
representing delay time without queueing. Afterward,
the blocked job will try to re-enter the finite queue with
a success probability of (1 − p′K). There is a probabil-
ity of p′K that the blocked job still finds the finite node
saturated and thus will be directed again to the artificial
node h. This process repeats until the blocked job is able
to enter the finite node.

λi-
�

��

-i

M/G/ci/Ki

λi
-

�

��

-i

M/G/ci/Ki

-
pKj

(1 − pKj
)

-
�

��

-hj

M/G/∞

?

p′

Kj

-
�

��

-j

M/G/cj/Kj

-
(1 − p′

Kj
)

6
-

�

��

-j

M/G/cj/Kj

θj

θj

Figure 3: The Generalized Expansion Method (GEM)

Stage II: Parameter estimation

At this stage the values for important parameters are
determined, namely, the blocking probability, pK , the
feedback blocking probability, p′K, and the service rate
of the holding node, µh.

• To determine pK , exact analytical formulas should
be used whenever possible (Kerbache and Smith,
2000). Unfortunately, an exact pK formula is un-
available for M/G/c/K queues, the case of in-
terest in this paper. However, approximations

DocNum 2009923-927 6

Joint Buffer & Server Allocation Van Woensel et al.

for pK were provided recently by Smith (2003)
and they can be used here. These approxima-
tions are based on a closed-form expression deriv-
able from the finite capacity exponential queue
M/M/c/K using Kimura’s two-moment approxi-
mation (Kimura, 1996). The following pK formula
for M/G/2/K is presented as an example:

pK =
2 ρ

2
(2+

√
ρ
e
s2−

√
ρ
e
+B)

2+

√
ρ
e
s2−

√
ρ
e (2µ− λ)

−2 ρ
2
(2+

√
ρ
e
s2−

√
ρ
e
+B)

2+

√
ρ
e
s2−

√
ρ
e λ+ 2µ+ λ

.

Other expressions are readily available for c ∈
{3, . . . , 10} (Smith, 2003) and in principle it is pos-
sible to extend the approximation approach to c ≫
10. The formulas are likely to become extremely
complex, but they should also be directly translat-
able into numerical formulas that would be useful.
This will be done at a future date.

• Since no exact method is available to calculate
p′K , an approximation from Labetoulle and Pujolle
(1980) based on diffusion techniques is used:

p′K =

[

µj + µh

µh

−

λ
[

(rK2 − rK1)− (rK−1
2 − rK−1

1)
]

µh

[

(rK+1
2 − rK+1

1)− (rK2 − rK1)
]

]−1

,

in which r1 and r2 are the roots of the polynomial

λ− (λ+ µh + µj)x+ µhx
2 = 0,

in which λ = λj −λh(1−p′K), and λj and λh are the
actual arrival rates to the finite and artificial hold-
ing notes, respectively. Furthermore, it can be ar-
gued that

λj = λ̃i(1− pK) = λ̃i − λh.

• The delay distribution at the holding node h is ac-
tually nothing but the remaining service time of the
finite node j. Based on the renewal theory, one can
formulate the remaining service time distribution
as the following rate µh, where

µh =
2µj

1 + σ2
jµ

2
j

,

in which σ2
j is the service time variance of the fi-

nite node. At this point, one should notice that if
the service time of the finite node is exponentially
distributed with rate µj , then the memoryless prop-
erty of exponential distribution will hold such that

µh = µj .

Stage III: Feedback elimination

As a result of the feedback loop at the holding node, a
strong dependency on the arrival process is created. To
eliminate such dependency, the service rate at the hold-
ing node must be adjusted as follows,

µ′
h = (1− p′K)µh.

As a consequence, the service rate at node i preceding
the finite node j is affected as well. One can see that the
mean service time at node i is µ−1

i when the finite node

is unsaturated, and µ−1
i + µ′

h
−1 when the finite node is

saturated. Thus, on average, the mean service time of
node i preceding the finite node j is

µ̃−1
i = µ−1

i + pKµ′
h
−1

. (9)

Bringing it all together

Similar equations can be established with respect to
each of the finite nodes. Ultimately, we have simultane-
ous non-linear equations in variables pc, p′c, µ−1

h along

with auxiliary variables such as µj and λ̃i. By solving
these equations simultaneously we can compute all the
performance measures of the network.

λ = λj − λh(1− p′K), (10)

λj = λ̃i(1− pK), (11)

λj = λ̃i − λh, (12)

p′K =

[

µj + µh

µh

−

λ
[

(rK2 − rK1)− (rK−1
2 − rK−1

1)
]

µh

[

(rK+1
2 − rK+1

1)− (rK2 − rK1)
]

]−1

,(13)

z = (λ+ 2µh)
2
− 4λµh, (14)

r1 =
[(λ+ 2µh)− z

1
2]

2µh

, (15)

r2 =
[(λ+ 2µh) + z

1
2]

2µh

, (16)

pK = f(ρ, s2, c). (17)

Note that Eq. (17) for pK is a function of the traffic in-
tensity ρ, the squared coefficient of variation of the (gen-
eral) service time, s2, and it is mainly a function of the
number of servers c. Expressions for pK for M/G/c/K
queues, with c ∈ {1, 2, . . . , 10}, have been developed by
Smith (2003) and are used in the above set of equations.
Following a similar approach as in Smith (2003), expres-
sions for c ≫ 10 can be straightforwardly developed.

To recapitulate, we first expand the network followed
by approximation of the routing probabilities due to
blocking and the service delay in the holding node, and
finally the feedback arc at the holding node is elimi-
nated. Once these three stages are complete, we have
an expanded network that can then be used to compute
the performance measures for the original network. As
a decomposition technique this approach allows succes-
sive addition of a holding node for every finite node, es-
timation of the parameters and subsequent elimination

DocNum 2009923-927 7

Joint Buffer & Server Allocation Van Woensel et al.

of the holding node. An important point about this pro-
cess is that we do not physically modify the networks,
only represent the expansion process through the soft-
ware.

The actual throughput at a node i that is succeeded by
a finite node j, denoted as θi, is then obtained as follows,

θi = λi (1− pK) .

Note that the blocking probability pK at node i is a
complex function of the traffic intensity ρ, among other
parameters, which is dependent on its corrected mean
service time µ̃i, given by the last step of the GEM,
Eq. (9). Finally, the throughput of the overall queueing
network is the sum of all throughput(s) obtained at the
last node(s) of the network.

3.2 Optimization Algorithm

To optimize the relaxed problem RBCAP, given by
Eq. (6), subject to constraints (3) and (4), we shall use
Powell’s method (a classical non-linear derivative-free
optimization algorithm) while a two-moment approx-
imation and the GEM compute the performance mea-
sure of interest (the throughput). In a few words, Pow-
ell’s method, well detailed in Himmelblau (1972), lo-
cates the minimum of a non-linear function f(x) by suc-
cessive unidimensional searches from an initial starting
point x(0) along a set of conjugate directions. These con-
jugate directions are generated within the procedure it-
self. Powell’s method is based on the idea that if a mini-
mum of a non-linear function f(x) is found along p con-
jugate directions in a stage of the search, an appropriate
step is made in each direction. The overall step from
the beginning to the pth step is conjugated to all of the
p sub-directions of the search. Fig. 4 describes Powell’s
unconstrained optimization algorithm, as used in our
experiments. Implementations of the algorithm in FOR-
TRAN and C are common.

Although we have had remarkable success in the past
with coupling Powell’s algorithm and the GEM (Smith,
2004), extra care must be taken here with the buffer and
server allocation problem because Powell’s algorithm
is an unconstrained search process. Thus, unless we
control the search, certain solution vectors violating the
constraints could be considered and we do not want
to consider these solutions. Additionally, because the
search process could be trapped in local optima, we re-
started the algorithm several times (20 was sufficient)
with different random starting solutions.

Another important point is that the algorithm re-
lies on the blocking probabilities that are actually im-
plemented. For instance, we used for the tests given
here an implementation that included only the block-
ing probabilities pK for the cases c = {1, 2, . . . , 10}.
That means if one tries the algorithm for cases with
ρ = λ/(10 × µ) > 1.0, then an error message should
be given, because there is such a thing as a stable queue
under ρ > 1.0. However, this should not be a problem

algorithm

input G(N,A, P), Λ, µ, and x(0)

/* choose a set of linear-independent search directions */

choose d(1), . . . ,d(n)

x(opt) ← x(0)

repeat

x(1) ← x(opt)

for i = 1 to n do

/* perform uni-dimensional search */

/* computing f(•) by the GEM */

x(i+1) ← arg min
γ∈R

f
(

x(i) + γd(i)
)

end for

x(n+2) ← 2x(n+1) − x(1)

if f(x(n+2)) ≥ f(x(1)) then

x(opt) ← x(n+1)

else

x(opt) ← arg min
γ∈R

f
(

x(n+1) + γ(x(n+1) − x(1))
)

choose new search direction d(1), . . . ,d(n)

end if

until ‖x(opt) − x(1)‖ < ǫ

print x(opt)

end algorithm

Figure 4: Powell’s algorithm

from a practical point of view because it is possible to
extend pK for values c ≫ 10, as noted by Smith (2003).

As a final remark, the reader should be aware that
usually the quality of the approximations deteriorates
with the increase of the number of nodes in the network.
Thus, where possible, the user should try to reduce the
number of nodes by aggregation so as to retain only the
nodes that are very important. However, we notice that
quite long lines have been successfully analyzed by the
GEM, as reported by Spinellis et al. (2000).

4 NUMERICAL RESULTS

First, complete enumeration results are shown for a sim-
ple network and detailed results generated by our opti-
mization methodology are given. Subsequently, we de-
scribe the different network structures used and their
input data. Next, we elaborate on the results for these
network structures. Finally, we analyze more complex
queueing network structures. The reader should bear
in mind that since the range of possible experiments is
exponential, we have presented a select sample.

4.1 Complete Enumeration

To evaluate the quality of the solutions given by the al-
gorithm, we compare the optimal allocation of buffers
and servers generated via our approach with the results
obtained via a complete enumeration. The purpose is to
verify whether the optimal solution obtained is indeed
(close to) the true optimal solution. We focus here on
the objective function where price ωi = 0.5, ∀i ∈ N . The
reason is that based on the analysis presented in Sec. 2.2,
we know that the zero-buffer system is preferred. The

DocNum 2009923-927 8

Joint Buffer & Server Allocation Van Woensel et al.

situation with price ωi = 0.5 is thus appreciated as a
convenient configuration for testing the proposed ap-
proach developed for the BCAP.

We evaluate a 3-node series topology (see Fig. 6), in
which the arrival rate Λ is fixed at 1.0, the processing
rate at each node µi is fixed at 10, and an s2 of 1.5 is
used. Table 2 gives the results for this experiment and
Fig. 5 shows the graphical representation of the buffer
and server combinations and their respective objective
function values.

Figure 5: Complete enumeration results

Although the network analyzed is small, the perfor-
mance measures for 49 possible combinations of buffers
and servers were required. Each of these possible com-
binations was evaluated using the GEM to obtain the re-
lated throughput. The objective function value was then
minimized to obtain the optimal allocation, for a given
server and buffer allocation. The number of buffers, the
number of servers, and the resulting throughput for this
minimized objective function value are given in Table 2.
Based on the complete enumeration, we see that the
lowest objective function value Zα, is obtained with the
zero-buffer configuration c = (2, 2, 2) and B = (0, 0, 0)
(Table 2, line #22). The solution generated by the pro-
posed methodology also gives the same zero-buffer net-
work configuration. Other settings (not shown) were
also tested and these results confirmed the ability of
our methodology to find sound server and buffer allo-
cations.

As an ultimate check, we also set up a simulation ex-
periment for this case. We used an observation period of
200,000 time units and a warm-up period of 2,000 time
units (Robinson, 2007), for 20 independent replications.
The simulation was carried out using ARENA (Kelton
et al., 2001). Using simulation, we find that the simu-
lated throughput equals 0.999 (the half-width of the 95%
confidence interval equals 0.001). This accuracy is simi-
lar to that reported by Smith (2003), Andriansyah et al.
(2009), and others.

4.2 Results for three basic network structures

In this section, we analyze the buffer and server alloca-
tions for three basic configurations (series, merge and
splits). First, we review the different network structures
analyzed. Subsequently, we elaborate on the results for
these different network structures.

Network Structures

For each topology, we use networks with number of
nodes |N | = {3, 7, 15}. Jobs arrive into the network
with an arrival rate of Λ ∈ {2.0, 4.0, 8.0}. It is possi-
ble to have more than one arrival node in the network.
The jobs then flow following the predefined routes. At
each node i, there are ci available servers that process
the jobs, each with a processing rate of µi. For all set-
tings of serial, split, and merge topologies, we will use
a processing rate µi = 10, ∀i ∈ N . The variability of the
servers is reflected by their squared coefficient of vari-
ation s2, which we set to {0.5, 1.0, 1.5} for each node.
There is a capacity of Ki (buffers and servers) at each
node. Due to the finite buffer capacity, blocking may oc-
cur and some arrivals will be lost. In such cases, the re-
sulting throughput θ will be lower than the arrival rate
Λ.

Figure 6: Series topology, |N | = 3

Figure 7: Series topology, |N | = 7

Figure 8: Series topology, |N | = 15

The series topology is shown in Figs. 6, 7, and 8,
which present networks of 3, 7, and 15 nodes, respec-
tively. This topology has a simple flow structure where
the finished jobs from one node are moved to the next
node downstream. The routing probability from one
node to another is simply 1.0.

The split topology is shown in Figs. 9, 10, and 11,
which present networks of 3, 7, and 15 nodes, respec-
tively. This topology represents alternative routings to
be chosen by the incoming arrival after being processed
at a node. The likelihood of choosing a route is repre-
sented by the routing probability.

The merge topology is shown in Figs. 12, 13, and 14,
which present networks of 3, 7, and 15 nodes, respec-
tively. This topology combines more than one incoming
source of arrival stream into a finite node. In all figures
from these three topologies, the position of each node
in the network is also depicted. These positions will be
referred to in all experiments and analysis that involve
such topologies.

DocNum 2009923-927 9

Joint Buffer & Server Allocation Van Woensel et al.

Table 2: Complete enumeration of buffer-server combinations (N = 3, Λ = 1.0, and s2 = 1.5)

c K
∑

i
ci

∑
i
Ki

∑
i
Bi θ(c,B) Zα # c K

∑
i
ci

∑
i
Ki

∑
i
Bi θ(c,B) Zα

1 (1 1 1) (1 1 1) 3 3 0 0.96896 32.5 26 (2 2 2) (4 3 3) 6 10 4 1.00000 5.00
2 (1 1 1) (1 1 2) 3 4 1 0.97783 24.2 27 (2 2 2) (4 4 3) 6 11 5 1.00000 5.50
3 (1 1 1) (1 2 2) 3 5 2 0.98692 15.6 28 (2 2 2) (4 4 4) 6 12 6 1.00000 6.00
4 (1 1 1) (2 2 2) 3 6 3 0.99623 6.77 29 (3 2 2) (3 2 2) 7 7 0 0.99997 3.53
5 (1 1 1) (2 2 3) 3 7 4 0.99734 6.16 30 (3 2 2) (3 3 2) 7 8 1 0.99999 4.01
6 (1 1 1) (2 3 3) 3 8 5 0.99844 5.56 31 (3 2 2) (3 3 3) 7 9 2 1.00000 4.50
7 (1 1 1) (3 3 3) 3 9 6 0.99955 4.95 32 (3 2 2) (3 4 3) 7 10 3 1.00000 5.00
8 (1 1 2) (1 1 2) 4 4 0 0.97898 23.0 33 (3 2 2) (3 4 4) 7 11 4 1.00000 5.50
9 (1 2 1) (1 2 2) 4 5 1 0.98811 14.4 34 (3 2 2) (4 4 4) 7 12 5 1.00000 6.00
10 (1 1 2) (2 2 2) 4 6 2 0.99747 5.53 35 (3 2 2) (5 4 4) 7 13 6 1.00000 6.50
11 (1 1 2) (2 3 2) 4 7 3 0.99858 4.92 36 (3 3 2) (3 3 2) 8 8 0 0.99999 4.01
12 (2 1 1) (2 3 3) 4 8 4 0.99969 4.31 37 (3 3 2) (3 3 3) 8 9 1 1.00000 4.50
13 (2 1 1) (3 3 3) 4 9 5 0.99970 4.80 38 (3 3 2) (3 3 4) 8 10 2 1.00000 5.00
14 (2 1 1) (4 3 3) 4 10 6 0.99970 5.30 39 (3 3 2) (4 3 4) 8 11 3 1.00000 5.50
15 (1 2 2) (1 2 2) 5 5 0 0.98931 13.2 40 (3 3 2) (5 3 4) 8 12 4 1.00000 6.00
16 (2 1 2) (2 2 2) 5 6 1 0.99871 4.29 41 (3 3 2) (5 4 4) 8 13 5 1.00000 6.50
17 (2 2 1) (2 2 3) 5 7 2 0.99982 3.68 42 (3 3 2) (5 5 4) 8 14 6 1.00000 7.00
18 (2 2 1) (3 2 3) 5 8 3 0.99984 4.16 43 (3 3 3) (3 3 3) 9 9 0 1.00000 4.50
19 (2 2 1) (3 3 3) 5 9 4 0.99985 4.65 44 (3 3 3) (4 3 3) 9 10 1 1.00000 5.00
20 (2 2 1) (4 3 3) 5 10 5 0.99985 5.15 45 (3 3 3) (5 3 3) 9 11 2 1.00000 5.50
21 (2 2 1) (4 4 3) 5 11 6 0.99985 5.65 46 (3 3 3) (5 4 3) 9 12 3 1.00000 6.00
22 (2 2 2) (2 2 2) 6 6 0 0.99996 3.04 47 (3 3 3) (5 5 3) 9 13 4 1.00000 6.50
23 (2 2 2) (3 2 2) 6 7 1 0.99997 3.53 48 (3 3 3) (5 5 4) 9 14 5 1.00000 7.00
24 (2 2 2) (3 3 2) 6 8 2 0.99998 4.02 49 (3 3 3) (5 5 5) 9 15 6 1.00000 7.50
25 (2 2 2) (3 3 3) 6 9 3 1.00000 4.50

Figure 9: Split topology, |N | = 3

Figure 10: Split topology, |N | = 7

Figure 11: Split topology, |N | = 15

Detailed results

Tables 3, 4 and 5 give the results for the basic network
structures outlined in the previous section. The c/B

Figure 12: Merge topology, |N | = 3

Figure 13: Merge topology, |N | = 7

Figure 14: Merge topology, |N | = 15

price ratio gives an indication of the relative cost of
servers compared to buffers. A price ratio of 8:1, for

DocNum 2009923-927 10

Joint Buffer & Server Allocation Van Woensel et al.

example, means that servers are 8 times more expensive
than buffers. For the small networks given in Table 3,
simulation results are added to verify the quality of the
solutions.

Some interesting observations can be made from
these tables.

• Zero-buffer solutions are generated where it is ex-
pected, i.e., if the c/B cost ratio favors adding
servers. This is a good indication of the quality
of our heuristic. We observe that in some cases it
is harder to identify the zero-buffer solution. For-
tunately, if the zero-buffer system is not identified,
the error made is small and is maximally off by one
buffer unit per node.

• As the price of servers is increased (and the price of
buffers is reduced), the resulting allocation shows
that there is a decrease in the number of servers,
∑

i ci. Then the number of buffers,
∑

i Bi, will in-
crease compared to the allocation for the case with
equal prices. The reduction of servers happens due
to the fact that the price of servers is becoming
higher and hence it is better to reduce the servers
and add more buffers to the network. However, re-
ducing the number of servers affects the through-
put significantly due to the large reduction of the
processing rates and therefore many buffers are
needed to compensate for even a slight decrease in
the number of servers. This confirms our analysis
as discussed in Sec. 2.

• It is interesting to note that the number of servers
is sometimes severely reduced, especially when the
server cost is high, leading to single server systems.
To compensate, the buffer sizes need to be dramat-
ically increased to guarantee the target through-
put (see in Tables 3 to 5, the buffer size columns,
∑

i Bi). This is an important observation in cases
where servers are relatively expensive compared to
buffers (e.g., in the semiconductor industry).

• The observations made are consistent over the dif-
ferent topologies (comparing Tables 3, 4 and 5). Se-
ries, merges and split topologies behave similarly
with regard to the c/B cost ratio.

• Focusing on the small sets, we see that the through-
put results are confirmed by the simulations. More
specifically, the estimated throughput falls in the
confidence interval for all simulated experiments.
Note that the simulation of larger-sized networks
may be possible but it certainly would require pro-
gramming a simulation code from scratch instead
of using ARENA, as was done here. We remark
that the aim here is only to give some idea of the
accuracy of the performance evaluation methodol-
ogy since a more detailed study has been done else-
where (for instance, see Smith, 2003).

4.3 A complex topology

We consider a combination of all three basic topologies,
as shown in Fig. 15. This network consists of 16 nodes
with the processing rate of servers in each node given
in Fig. 15. The network is originally from Smith and
Cruz (2005). We use exactly the same values for Λ, µ,
s2, and routing probabilities for the splitting node (#1
and #2). Note that the routing probability #1 refers to
the upper tier of the node, while #2 refers to the lower
tier (see Fig. 15 for the position of each node in the net-
work). For the purpose of comparison, we reproduce in
Table 6 the results from Smith and Cruz (2005) for this
network structure (Table 29 in their paper). Note that
they considered an M/G/1/K setting and therefore the
number of servers in all nodes is set to 1 while optimiz-
ing the buffer allocation. Using our methodology, we
run experiments with all settings similar to those listed
in Table 6. The results are presented in Table 7.

Figure 15: Combined topology

The results from our methodology, given in Table 7,
show a higher throughput than for the pure Buffer Al-
location Problem (see Table 6) for every setting. As ex-
pected, we found that the optimal server allocation in
the BCAP is different from the server settings in the pure
BAP. However, this depends strongly upon the price ra-
tio of servers to buffers. We found that M/G/1/K is
not an optimal configuration for this particular queue-
ing network structure, except when servers are becom-
ing relatively expensive. For these cases, we found that
single servers are indeed optimal (see rows where the
c/B ratio is 8:1).

We observe that (near) zero-buffer configurations are
identified where appropriate, i.e., where the servers are
relatively cheaper compared to buffers. Varying the co-
efficient of variation does result in some changes in the
optimal server and buffer allocation, which highlights
the importance of models dealing with general service
times. The results show that the number of buffers seem
to be larger with higher variability, which could be ex-
pected, since the increase in the squared coefficient of
variation means a high variability. The extra buffers are
there to handle this increased variability.

Of course, no equal allocation is obtained. This is
intuitively acceptable since there are some nodes that
receive more arrivals (i.e., merging nodes) and other
nodes that receive fewer arrivals (i.e., nodes preced-
ing the splitting nodes). Furthermore, the processing
rates of servers are not the same at each node. Extra

DocNum 2009923-927 11

Joint Buffer & Server Allocation Van Woensel et al.

Table 3: Results for N = 3

SERIES Simulation
c/B ratio c K

∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα θ(c,B)s δ Zs
α

Λ = 2 1:8 (3 3 3) (3 3 3) 9 9 0 2.0000 1.00 2.000 0.002 1.20
s2 = 1.0 1:4 (3 3 3) (3 3 3) 9 9 0 2.0000 1.80 2.000 0.002 2.00

1:2 (2 2 2) (2 2 2) 6 6 0 1.9990 2.98 2.000 0.001 2.10
1:1 (2 2 2) (2 2 2) 6 6 0 1.9990 3.98 2.000 0.001 3.10
2:1 (2 2 2) (2 2 2) 6 6 0 1.9990 4.98 2.000 0.001 4.10
4:1 (1 1 1) (5 5 5) 3 15 12 1.9997 5.11 1.999 0.001 5.60
8:1 (1 1 1) (5 5 5) 3 15 12 1.9997 4.31 1.999 0.001 4.80

SPLIT Simulation
c/B ratio c K

∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα θ(c,B)s δ Zs
α

Λ = 4 1:8 (3 3 3) (3 3 3) 9 9 0 3.9999 1.07 3.999 0.002 2.50
s2 = 1.0 1:4 (3 3 3) (3 3 3) 9 9 0 3.9999 1.87 3.999 0.002 3.30

1:2 (3 2 2) (3 2 2) 7 7 0 3.9993 3.06 3.998 0.002 4.63
1:1 (3 3 3) (3 3 3) 9 9 0 3.9999 4.57 3.999 0.002 6.00
2:1 (3 2 2) (3 2 2) 7 7 0 3.9993 5.39 3.998 0.002 6.97
4:1 (2 1 1) (5 5 5) 4 15 11 3.9997 5.67 3.999 0.002 6.40
8:1 (1 1 1) (10 5 5) 3 20 17 3.9997 4.86 3.999 0.002 5.86

MERGE Simulation
c/B ratio c K

∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα θ(c,B)s δ Zs
α

Λ = 8 1:8 (4 4 4) (4 4 4) 12 12 0 7.9999 1.43 7.999 0.004 2.53
s2 = 1.0 1:4 (4 4 4) (4 4 4) 12 12 0 7.9999 2.50 7.999 0.004 3.60

1:2 (4 4 4) (4 4 4) 12 12 0 7.9999 4.10 7.999 0.004 5.20
1:1 (3 3 3) (3 3 5) 9 11 2 7.9995 6.05 8.000 0.003 5.30
2:1 (3 3 4) (3 3 4) 10 10 0 7.9998 6.90 7.999 0.003 7.57
4:1 (2 2 3) (5 5 6) 7 16 9 7.9998 7.65 7.998 0.003 9.00
8:1 (1 1 3) (10 10 6) 5 26 21 7.9997 7.09 8.000 0.002 7.08

Table 4: Results for N = 7

SERIES
c/B ratio c K

∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα

Λ = 4 1:8 (3 3 3 3 3 3 3) (3 3 3 3 3 3 3) 21 21 0 3.9995 2.81
s2 = 1.0 1:4 (3 3 3 3 3 3 3) (3 3 3 3 3 3 3) 21 21 0 3.9995 4.67

1:2 (3 3 3 3 3 3 3) (3 3 3 3 3 3 3) 21 21 0 3.9995 7.47
1:1 (3 3 3 3 3 3 3) (3 3 3 3 3 3 3) 21 21 0 3.9995 11.0
2:1 (3 3 3 3 3 3 3) (3 3 3 3 3 3 3) 21 21 0 3.9995 14.5
4:1 (2 2 2 2 2 2 2) (5 5 5 5 5 5 5) 14 35 21 3.9995 15.9
8:1 (1 1 1 1 1 1 1) (10 10 10 10 10 10 10) 7 70 63 3.9993 13.9

SPLIT
c/B ratio c K

∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα

Λ = 8 1:8 (4 4 4 4 4 4 4) (4 4 4 4 4 4 4) 28 28 0 7.9999 3.21
s2 = 1.0 1:4 (4 4 4 4 4 4 4) (4 4 4 4 4 4 4) 28 28 0 7.9999 5.70

1:2 (3 3 3 3 3 3 3) (5 3 3 3 3 3 3) 21 23 2 7.9995 8.88
1:1 (3 3 3 3 3 3 3) (5 3 3 3 3 3 3) 21 23 2 7.9995 12.0
2:1 (4 3 3 2 2 2 2) (4 3 3 2 2 2 2) 18 18 0 7.9985 13.5
4:1 (4 2 2 1 1 1 1) (4 5 5 5 5 5 5) 12 34 22 7.9994 14.6
8:1 (2 1 1 1 1 1 1) (9 10 10 5 5 5 5) 8 49 41 7.9991 12.6

MERGE
c/B ratio c K

∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα

Λ = 2 1:8 (2 2 2 2 2 2 4) (2 2 2 2 2 2 4) 16 16 0 2.0000 1.80
s2 = 1.0 1:4 (2 2 2 2 2 2 2) (2 2 2 2 2 2 2) 14 14 0 1.9996 3.15

1:2 (2 2 2 2 2 2 2) (2 2 2 2 2 2 2) 14 14 0 1.9996 5.02
1:1 (2 2 2 2 2 2 2) (2 2 2 2 2 2 2) 14 14 0 1.9996 7.35
2:1 (1 1 1 1 2 2 2) (2 2 2 2 2 2 2) 10 14 4 1.9994 8.59
4:1 (1 1 1 1 1 1 1) (2 2 2 2 3 3 5) 7 19 12 1.9995 8.52
8:1 (1 1 1 1 1 1 1) (2 2 2 2 3 3 5) 7 19 12 1.9995 8.08

servers allocated to some nodes in the network are com-
pensated by a significant reduction in the number of
buffers. In all settings, our methodology identifies sys-
tems with a very low buffer size. Even so, the result-
ing throughput is higher than for the single-server case.
These encouraging results show the importance of con-
sidering both buffers and servers in the optimization of
complex queueing networks.

Sensitivity analysis

Table 8 shows the results of varying the arrival rate to
the complex 16-node network, Λ = {2.0, 8.0}. The re-
sults suggest that changing the arrival rate results in a
change to the buffer and server allocation. Extra arrivals
will require more servers and buffers to minimize block-
ing. As such, there is a notable increase in the number of
servers at each node. Again, the zero-buffer allocations

DocNum 2009923-927 12

Joint Buffer & Server Allocation Van Woensel et al.

Table 5: Results for N = 15

SERIES
c/B ratio c K

∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα

Λ = 8 1:8 (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) 60 60 0 7.9985 8.14
s2 = 1.0 1:4 (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) 60 60 0 7.9985 13.5

1:2 (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) 60 60 0 7.9985 21.5
1:1 (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) 60 60 0 7.9985 31.5
2:1 (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4) 60 60 0 7.9985 41.5
4:1 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (6 6 6 6 6 6 6 6 6 6 6 6 6 6 6) 45 90 45 7.9984 46.6
8:1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (10 10 10 10 10 10 10 10 10 10 10 10 10 10 10) 30 150 120 7.9983 41.7

SPLIT
c/B ratio c K

∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα

Λ = 2 1:8 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) 30 30 0 1.9996 3.68
s2 = 1.0 1:4 (4 2 2 2 2 2 2 1 1 1 1 1 1 1 1) (4 2 2 2 2 2 2 1 1 1 1 1 1 1 1) 24 24 0 1.9988 6.04

1:2 (4 2 2 2 2 2 2 1 1 1 1 1 1 1 1) (4 2 2 2 2 2 2 1 1 1 1 1 1 1 1) 24 24 0 1.9988 9.24
1:1 (4 2 2 2 2 2 2 1 1 1 1 1 1 1 1) (4 2 2 2 2 2 2 1 1 1 1 1 1 1 1) 24 24 0 1.9988 13.2
2:1 (2 2 2 1 1 1 1 1 1 1 1 1 1 1 1) (2 2 2 2 2 2 2 1 1 1 1 1 1 1 1) 18 22 4 1.9982 15.1
4:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (5 3 3 2 2 2 2 1 1 1 1 1 1 1 1) 15 27 12 1.9983 16.1
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (5 3 3 2 2 2 2 2 2 2 2 2 2 2 2) 15 35 20 1.9994 16.1

MERGE
c/B ratio c K

∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα

Λ = 4 1:8 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) 31 31 0 3.9992 4.21
s2 = 1.0 1:4 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (2 2 2 2 2 2 2 2 2 2 2 2 2 2 4) 31 32 1 3.9993 7.71

1:2 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) 31 31 0 3.9992 11.1
1:1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (2 2 2 2 2 2 2 2 2 2 2 2 2 2 4) 31 32 1 3.9993 16.7
2:1 (1 1 1 1 1 1 1 1 2 2 2 2 2 2 3) (2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) 23 31 8 3.9988 19.2
4:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 2) (2 2 2 2 2 2 2 2 3 3 3 3 5 5 5) 16 43 27 3.9989 19.3
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (2 2 2 2 2 2 2 2 3 3 3 3 5 5 10) 15 48 33 3.9989 18.1

Table 6: Results for complex topology (taken from Smith and Cruz, 2005)

#1 #2 Λ s2 c B
∑

i ci
∑

i Bi θ(c,B)
0.5 0.5 5.0 0.5 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5) 16 69 4.9899

1.0 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (10 5 5 5 5 4 4 4 4 4 4 4 4 5 5 5) 16 77 4.9879
1.5 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6) 16 87 4.9877

Table 7: Results for the complex topology optimized on both buffers and servers

#1 #2 Λ s2 c/B ratio c K
∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα

0.5 0.5 5.0 0.5 1:8 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9996 5.76
1:4 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9996 10.0
1:2 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9996 16.4
1:1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9998 22.2
2:1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 32 44 12 4.9989 26.5
4:1 (3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3) (3 5 5 5 5 3 3 3 3 3 3 3 3 5 5 3) 20 60 40 4.9974 26.6
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (11 6 6 6 6 4 4 4 4 4 4 4 4 6 6 11) 16 90 74 4.9994 23.0

1.0 1:8 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9994 5.94
1:4 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9997 9.09
1:2 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9997 15.0
1:1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9997 22.3
2:1 (3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3) 34 40 6 4.9984 26.2
4:1 (2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 3) (6 3 3 3 3 4 4 4 4 4 4 4 4 3 3 4) 25 60 35 4.9989 28.1
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (13 6 6 6 6 4 4 4 4 4 4 4 4 6 6 13) 16 94 78 4.9987 24.1

1.5 1:8 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 5.24
1:4 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 9.15
1:2 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 15.0
1:1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 22.4
2:1 (3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3) 34 40 6 4.9979 26.8
4:1 (2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 3) (6 3 3 3 3 4 4 4 4 4 4 4 4 3 3 4) 25 60 35 4.9983 28.7
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (15 7 7 7 7 4 4 4 4 4 4 4 4 7 7 15) 16 104 88 4.9986 25.4

occur when buffers are relatively more expensive than
servers, regardless of the arrival rate.

Table 9 shows the results of varying the routing prob-
ability of the complex 16-node network. We changed
the routing probability in such a way that two mirrored
networks are evaluated: first, #1 = 0.2 and #2 = 0.8,
and second, #1 = 0.2 and #2 = 0.8. Based on the re-
sults, we see that the resulting allocations are also mir-
rored in most cases. Some deviations are observed, but
these are within an acceptable range. This again sug-

gests that the methodology is performing as it should.
Similarly, depending upon the relative price of buffers
versus servers, the allocation changes accordingly, giv-
ing preference to either buffers or servers.

4.4 Managerial insights

Based on the results provided above, we list here the
main insights and the important managerial contribu-
tions of the proposed approach:

DocNum 2009923-927 13

Joint Buffer & Server Allocation Van Woensel et al.

Table 8: Complex topology: different Λ

#1 #2 Λ s2 c/B ratio c K
∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα

0.5 0.5 2.0 0.5 1:8 (4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4) (4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4) 36 36 0 1.9999 4.06
1:1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) 32 32 0 1.9994 16.6
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 16 44 28 1.9993 18.0

1.5 1:8 (4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4) (4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4) 36 36 0 1.9999 4.09
1:1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) 32 32 0 1.9991 16.9
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (6 4 4 4 4 2 2 2 2 2 2 2 2 4 4 6) 16 52 36 1.9991 19.1

8.0 0.5 1:8 (4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4) (4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4) 65 65 0 7.9999 7.34
1:1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 7.9976 24.4
8:1 (3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3) (6 8 8 8 8 5 5 5 5 5 5 5 5 8 8 6) 20 100 80 7.9986 28.0

1.5 1:8 (4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4) (4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4) 50 50 0 7.9991 6.41
1:1 (6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6) (6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6) 54 54 0 7.9994 27.6
8:1 (3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3) (7 11 11 11 11 6 6 6 6 6 6 6 6 11 11 7) 20 128 108 7.9985 31.3

Table 9: Complex topology: different routing probability

#1 #2 Λ s2 c/B ratio c K
∑

i ci
∑

i Ki

∑

i Bi θ(c,B) Zα

0.2 0.8 5.0 0.5 1:8 (5 2 3 2 3 2 2 2 3 2 2 2 3 2 3 5) (5 2 3 2 3 2 2 2 3 2 2 2 3 2 3 5) 43 43 0 4.9998 4.98
1:1 (5 2 3 2 3 2 2 2 3 2 2 2 3 2 3 5) (5 2 3 2 3 2 2 2 3 2 2 2 3 2 3 5) 43 43 0 4.9998 21.7
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (11 3 8 3 8 1 3 3 7 1 3 3 7 3 8 11) 16 83 67 4.9988 22.9

1.5 1:8 (5 2 3 2 3 2 2 2 3 2 2 2 3 2 3 5) (5 2 3 2 3 2 2 2 3 2 2 2 3 2 3 5) 43 43 0 4.9996 5.16
1:1 (5 2 3 2 4 1 2 2 3 1 2 2 3 2 4 5) (5 2 3 2 4 1 2 2 3 1 2 2 3 2 4 5) 43 43 0 4.9996 21.9
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (15 4 11 4 11 1 3 3 9 1 3 3 9 4 11 15) 16 107 91 4.9986 25.8

0.8 0.2 5.0 0.5 1:8 (5 3 2 3 2 3 2 2 2 3 2 2 2 3 2 5) (5 3 2 3 2 3 2 2 2 3 2 2 2 3 2 5) 43 43 0 4.9998 4.98
1:1 (5 3 2 3 2 3 2 2 2 3 2 2 2 3 2 5) (5 3 2 3 2 3 2 2 2 3 2 2 2 3 2 5) 43 43 0 4.9998 21.7
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (11 8 3 8 3 7 3 3 1 7 3 3 1 8 3 11) 16 83 67 4.9988 22.9

1.5 1:8 (5 3 2 3 2 3 2 2 2 3 2 2 2 3 2 5) (5 3 2 3 2 3 2 2 2 3 2 2 2 3 2 5) 43 43 0 4.9996 5.16
1:1 (5 4 2 4 2 4 2 2 1 3 2 2 1 4 2 5) (5 4 2 4 2 4 2 2 1 3 2 2 1 4 2 5) 45 45 0 4.9997 22.8
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (15 11 4 11 4 9 3 3 1 9 3 3 1 11 4 15) 16 107 91 4.9986 25.8

1. The theorem in Sec. 2.2 is confirmed by all results.
This shows that the marginal throughput gain of
one extra unit of buffer must be sufficiently large
to prefer a non-zero buffer system. If this is not
the case, it is always better to choose a zero-buffer
system. An important factor in this trade-off is the
relationship between the cost of a server, ω, and
the cost of not meeting the throughput constraint,
α. In addition, it is important to recognize that
a server is simultaneously acting as a buffer, but
has the advantage that the server also adds value.
Consequently, one extra buffer has to improve the
throughput much more than a server to be added.

2. In this paper, networks up to size N = 16 are an-
alyzed. Theoretically, networks of any size N can
be handled by the algorithm. In many practical ap-
plications, we see that although N is large at first
sight, a reduction in N is possible by combining
machines, states etc. Note that the number of nodes
N can be small, but each node i can have a large
number of servers. Specifically, we have not hit the
boundary of our methodology yet for practical in-
dustrial applications.

3. Variability in the service rates clearly results in per-
formance deterioration and increases the need for
buffers and servers, as deduced from the different
results using different coefficients of variation. Pro-
grams that reduce variability are thus important to
minimize the total number of buffers and servers
needed.

5 CONCLUSIONS

In this paper, we discussed the joint buffer and server al-
location problem (BCAP). We considered arbitrary con-
figured networks that consist of series, split, and merge
topologies, and combinations of all three topologies.
The optimization methodology that we developed uti-
lizes a Lagrangian relaxation so as to incorporate mul-
tiple objectives (minimizing the number of buffers and
minimizing the number of servers) and constraints (i.e.,
a threshold throughput) into a single objective function.
This methodology identifies the best buffer and server
allocation for a given queueing network structure using
the Powell’s search method.

The results from this optimization methodology were
compared with complete enumeration and with simu-
lation. These comparisons demonstrated the good so-
lution quality of the proposed methodology. The re-
sults obtained for different network structures show
that the methodology provides sound allocations for
both buffers and servers. Comparing the results to sim-
ilar settings obtained from the literature, we quantify
the possible improvements over these published results.
For instance, the throughput could be improved with
the increase of the number of servers, disclosing that
sometimes we cannot go any further with the through-
put with increasing only the number of buffers. Previ-
ously developed methodologies were not able to han-
dle this trade-off between the number of servers and
buffers. Another important conclusion is that it is im-
portant to consider general service times when they oc-
cur, because the squared coefficient of variation of the

DocNum 2009923-927 14

Joint Buffer & Server Allocation Van Woensel et al.

service time strongly influences the allocation that will
ensure optimum performance.

A potential research direction is using multi-objective
algorithms as the search method in combination with
the GEM for the problem on-hand. This powerful class
of search method would allow one to consider a multi
objective buffer-server allocation problem with multiple dis-
tinct objectives.

ACKNOWLEDGMENTS

The research of Frederico Cruz has been
partially funded by CNPq (Conselho Na-
cional de Desenvolvimento Cientı́fico e Tec-
nológico; grants 201046/1994-6, 301809/1996-8,
307702/2004-9, 472066/2004-8, 304944/2007-6,
561259/2008-9, 553019/2009-0), by CAPES
(Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior; grant BEX-0522/07-4), and by FAPEMIG
(Fundação de Amparo à Pesquisa do Estado de Minas
Gerais; grants CEX-289/98, CEX-855/98, TEC-875/07,
and CEX-PPM-00401/08).

REFERENCES

Andriansyah, R., van Woensel, T., Cruz, F. R. B.
and Duczmal, L., 2009. Performance optimiza-
tion of open zero-buffer multi-server queue-
ing networks. Manuscript under review. URL:
http://www.est.ufmg.br/ftp/fcruz/publics/zbuff.pdf

Buzacott, J. A. and Shanthikumar, J. G., 1993. Stochastic
Models of Manufacturing Systems, Prentice-Hall, Engle-
wood Cliffs, NJ.

Cruz, F. R. B., Duarte, A. R. and van Woensel, T.,
2008. Buffer allocation in general single-server
queueing network, Computers & Operations Research
35(11): 3581–3598.

Down, D. G. and Karakostas, G., 2008. Maximiz-
ing throughput in queueing networks with limited
flexibility, European Journal of Operational Research
187(1): 98–112.

Fransoo, J. C. and Rutten, W. G. M. M., 1994. A typology
of production control situations in process industries,
International Journal of Operations & Production Man-
agement 14(12): 47–57.

Gershwin, S. B. and Schor, J. E., 2000. Efficient algo-
rithms for buffer space allocation, Annals of Operations
Research 93: 117–144.

Hall, N. G. and Sriskandarajah, C., 1996. A survey of
machine scheduling problems with blocking and no-
wait in process, Operations Research 44(3): 510–525.

Hillier, F. S. and So, K. C., 1995. On the optimal design of
tandem queueing systems with finite buffers, Queue-
ing Systems 21: 245–266.

Hillier, M. S. and Hillier, F. S., 2006. Simultaneous
optimization of work and buffer space in unpaced
production lines with random processing times, IIE
Transactions 38: 39–51.

Himmelblau, D. M., 1972. Applied Nonlinear Program-
ming, McGraw-Hill Book Company, New York.

Jain, S. and Smith, J. M., 1994. Open finite queueing net-
works with M/M/C/K parallel servers, Computers &
Operations Research 21(3): 297–317.

Johnson, D. S., Lenstra, J. K. and Rinnooy Kan, A. H. G.,
1978. The complexity of the network design problem,
Networks 8(4): 279–285.

Kelton, D., Sadowski, R. P. and Sadowski, D. A., 2001.
Simulation with Arena, MacGraw Hill College Div.,
New York, NY, USA.

Kerbache, L. and Smith, J. M., 1987. The generalized
expansion method for open finite queueing networks,
European Journal of Operational Research 32: 448–461.

Kerbache, L. and Smith, J. M., 1988. Asymptotic behav-
ior of the expansion method for open finite queueing
networks, Computers & Operations Research 15(2): 157–
169.

Kerbache, L. and Smith, J. M., 2000. Multi-objective
routing within large scale facilities using open finite
queueing networks, European Journal of Operational
Research 121(1): 105–123.

Kimura, T., 1996. A transform-free approximation for
the finite capacity M/G/s queue, Operations Research
44(6): 984–988.

Labetoulle, J. and Pujolle, G., 1980. Isolation method
in a network of queues, IEEE Transactions on Software
Engineering SE-6(4): 373–381.

Lemaréchal, C., 2001. Lagrangian relaxation, Computa-
tional Combinatorial Optimization 1: 112–156.

Lemaréchal, C., 2007. The omnipresence of Lagrange,
Annals of Operations Research 153(1): 9–27.

Li, J. and Meerkov, S. M., 2009. Production Systems Engi-
neering, Springer, New York, NY.

Perros, H. G., 1994. Queueing networks with blocking, Ox-
ford University Press, Inc., New York, NY.

Ramudhin, A. and Ratliff, H. D., 1995. Generating daily
production schedules in process industries, IIE Trans-
actions 27(5): 646–656.

Robinson, S., 2007. A statistical process control ap-
proach to selecting a warm-up period for a discrete-
event simulation, European Journal of Operational Re-
search 176(1): 332–346.

DocNum 2009923-927 15

Joint Buffer & Server Allocation Van Woensel et al.

Shanthikumar, J. G. and Yao, D. D., 1987. Optimal server
allocation in a system of multi-server stations, Man-
agement Science 33(9): 1173–1180.

Smith, J. M., 2003. M/G/c/K blocking probability mod-
els and system performance, Performance Evaluation
52(4): 237–267.

Smith, J. M., 2004. Optimal design and performance
modelling of M/G/1/K queueing systems, Mathe-
matical and Computer Modelling 39(9-10): 1049–1081.

Smith, J. M. and Cruz, F. R. B., 2005. The buffer allo-
cation problem for general finite buffer queueing net-
works, IIE Transactions 37(4): 343–365.

Smith, J. M., Cruz, F. R. B. and van Woensel, T., 2009.
Optimal server allocation in general, finite, multi-
server queueing networks, Applied Stochastic Models
in Business & Industry (in press).

Smith, J. M., Cruz, F. R. B. and van Woensel, T., 2010.
Topological network design of general, finite, multi-
server queueing networks, European Journal of Opera-

tional Research 201(2): 427–441.

Smith, J. M. and Daskalaki, S., 1988. Buffer space alloca-
tion in automated assembly lines, Operations Research
36(2): 343–358.

Spinellis, D., Papadopoulos, C. T. and Smith, J. M., 2000.
Large production line optimization using simulated
annealing, International Journal of Production Research
38(3): 509–541.

Suri, R., 1985. An overview of evaluative models for
flexible manufacturing systems, Annals of Operations
Research 3: 13–21.

Suri, R., Sanders, J. L. and Kamath, M., 1993. Logistics
of Production and Inventory, North Holland, Amster-
dam, chapter Performance evaluation of production
networks, pp. 199–286.

Tempelmeier, H., 2003. Practical considerations in the
optimization of flow production systems, Interna-
tional Journal of Production Research 41(1): 149–170.

DocNum 2009923-927 16

