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Abstract—

Algorithms are developed to compute optimal space allocation in pedestrian circulation systems

modeled as state dependent queueing networks. Series, merge, and split topologies are of interest and various
performance measures are computed, such as blocking probabilities at the nodes, throughput, average number
of customers in the system, and mean delay. Computational experiments testify to the effectiveness of the
algorithm. The results obtained indicate that the pattern of the optimal capacity surprisingly repeats over
different topologies while it is also heavily dependent upon the arrival rate. Analytical and simulation results are

provided to demonstrate the accuracy of the approach.

Key Words—

1 Introduction

Queueing networks with finite capacity and state
dependent services are appropriate tools to model
many application problems including those in
telecommunications, transportation, manufactur-
ing, and service industries. Often times, finite ca-
pacities in the queues and state dependent service
rates further increase the complexity of solutions
for these systems. In other cases, these assump-
tions may be relaxed. This paper, however, fo-
cuses on applications for which it is fundamental
to take into account finite capacities and state de-
pendent services.

In this paper, M/G/C/C state dependent
queueing networks are of particular interest,
i.e., following Kendall’s notation, queues with
Markovian arrivals, General state dependent ser-
vices, C parallel servers, and the total capacity
C including the servers. M/G/C/C state de-
pendent queueing network models, see Figure 1,
have been used successfully in the past to model
vehicular networks (Jain and MacGregor Smith,
1997), pedestrian traffic networks (Mitchell and
MacGregor Smith, 2001; Cruz and MacGregor
Smith, 2002), and accumulation conveyor systems
(Thumsi and MacGregor Smith, 1998).

1.1 Motivation

The use of queueing theory for the analysis of con-
gestion in complex systems has a long and sto-
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Figure 1. Queueing Network in a Generic Topology

ried existence. In the past, queueing networks
have been important tools in the study of traffic
light synchronization, in the analysis of vehicles
at intersections (Newell, 1965), and in the eval-
uation of traffic flow by using a simplified deter-
ministic approach (May and Keller, 1967). Nowa-
days, probably boosted by the increasing speed
and reduced costs of modern computer systems,
more sophisticated models have been developed,
e.g., those models including state dependent ser-
vices. These models have been used in applica-
tions such as pedestrian/vehicular network traffic
analysis (Cheah and MacGregor Smith, 1994; Jain
and MacGregor Smith, 1997; Cruz and Mac-
Gregor Smith, 2002) and synthesis (MacGregor
Smith, 1994; MacGregor Smith, 1996; Mitchell
and MacGregor Smith, 2001).

The main reason of this paper is to push for-
ward in the development of algorithms for optimal
capacity allocation in M/G/C/C state dependent
queueing networks, for a fixed network topology.
In particular, the interest lies in pedestrian net-
work applications, configured as series, merge, and
split topologies as illustrated in Figure 1. While
the focus is on pedestrian networks, extensions to
other networks with state dependent service rates
should be obvious.
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Figure 2. Average Walking Speed
1.2 Outline

Section 2 presents the analytical stochastic model
used to describe pedestrian circulation networks.
Section 3 gives an overview of the buffer alloca-
tion problem and presents the mathematical pro-
gramming formulation of the service and capacity
allocation (SCA) problem. Computational exper-
iments with the algorithm proposed are presented
in Section 4. Finally, Section 5 closes the paper
with a summary and concluding remarks.

2 Flow Modeling

2.1 Congestion Models

A corridor, a pedestrian way, or a traffic link con-
necting locations a to b may be considered as a
service mechanism for its occupants since it pro-
vides the service of moving from point a to point
b. The number of servers in parallel, C', equals
the nodal capacity which also represents the total
number of pedestrians allowed simultaneously in
the system, that is:

C=|5xLxW|,

in which L is the nodal length and W is its width.
Notice that 5 ped/m? represents the maximum
pedestrian density (Tregenza, 1976).

In accordance to Tregenza’s empirical stud-
ies, the average speed that a pedestrian crosses a
traffic link depends on several factors but mainly
this speed is a function of the number of occu-
pants therein, as seen in Figure 2. Based on
these remarks, linear and exponential congestion
models were developed (Yuhaski and MacGregor
Smith, 1989) for the average pedestrian walking
speed in traffic links, v(n):
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()=V10+é_n, (1)
and
v(n) = Viexp [_("; 1)1 7 2)
in which
A2
8 a—1 b-1

T I(Vi/Valr T (Vi V)

V1 is the average walking speed for lone occupant,
assumed 1.5 m/s, V, is the average walking speed
in m/s when crowd density is 2 ped/m?, a = 2LW,
V4 is the average walking speed when crowd den-
sity is 4 ped/m2, and b= 4LW.

Yuhaski and MacGregor Smith (1989) point
out that the exponential model may be adjusted
based on 3 points averaged over the 6 curves in
Figure 2. Thus, we assumed V, = 0.64 m/s and
Vi = 0.25 m/s. Other possibilities also exist, e.g.
non-linear regression or piece-wise linear approx-
imations, but the results would not differ signifi-
cantly. In fact, Cruz et al. (2001) have asserted the
accuracy of these parameters by using a discrete-
event digital simulation model. Additionally, it is
worthwhile mentioning that Cheah and MacGre-
gor Smith (1994) successfully extend the exponen-
tial model to represent bi-directional and multi-
directional pedestrian flows by using slightly dif-
ferent values for V, and V}.

2.2 Analytical Model for a Corridor

It is appropriate to describe single corridors as
an M/G/C/C state dependent model because the
corridor is of finite capacity and of a very gen-
eral service mechanism. The limiting probabilities
for the number of pedestrians in an pure Marko-
vian M/M/C/C queueing model have been de-
veloped before by Yuhaski and MacGregor Smith
(1989). Later, Cheah and MacGregor Smith
(1994) showed the stochastic equivalence between
M/G/C/C and M/M/C/C systems. Thus, the
probabilities for the number of pedestrians in a
corridor, modeled as an M/G/C/C state depen-
dent system, can be written as follows:

B
Mﬂm~f@wm}m’ ®)

forn=1,2,...,C, in which

o .
o AE(t)]*
Dy = 1+i221{i!f(i).--f<2)f(1)}’

pn) = {
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A is the arrival rate in ped/s, E(t!) is the service
time for lone occupant in seconds, and f(n) is the
service rate v(n)/Vi. From Eq. (3), one can derive
all performance measures of interest:

9 = )\(1 —p(C)),
C
E(g) = ) _np(n), )
n=1

E(t) = E(q)/9,
in which p(C) is the blocking probability, 6 is the
throughput in ped/s, E(q) is the expected number
of customers in the systems (also known as work-
in-process, WIP), and E(t) is the expected service
(delay) time in seconds.

2.3 Generalized Expansion Method

For the analysis of a complex topology such as
that presented in Figure 1, one might want to use
some approximation technique since it seems un-
likely that an exact method would be available.
The Generalized Expansion Method (GEM) pro-
posed by Kerbache and MacGregor Smith (1987)
has been successful in similar problems. The GEM
is a combination of repeated trials and node-by-
node decomposition approximation methods, with
a key characteristic that an artificial holding node
is added preceding each finite queue in the net-
work in order to register blocked customer that
attempt to enter the finite node when it is at ca-
pacity. By adding holding nodes, the queueing
network is ‘expanded’ into an equivalent Jackson
network, in which each node can then be decom-
posed and analyzed separately. Details on how the
GEM can be adapted to M/G/C/C state depen-
dent queueing networks will not be given here but
may be found in the work of Cruz and MacGregor
Smith (2002).

3 Problem Formulation and Algorithm

3.1 Mathematical Programming Formulation

Assume that the topology of the network is known
beforehand and is defined as a graph G(N, A), in
which N is the finite set of nodes (corridors) and
A is the finite set of arcs (connections between
pair of nodes). The service and capacity alloca-
tion (SCA) problem is concerned with how much
capacity must be provided in the nodes so that the
blocking probability is below a specific threshold.
In other words, the SCA problem is to find the
smallest integers C; > 0 for which p;(C) < ¢,
for all 7+ € N. Note that the service rate depends
on the capacity vector C, either under the linear
model, Eq. (1), or the exponential model, Eq. (2).
For simplicity, only the exponential model is used
in this paper.

The mathematical programming formulation
proposed for the SCA problem is the following;:
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(SCA):
z=min ) fiCi, (5)
YV iEN
s.t.
pz(C) SE; ViENa (6)
C; €{0,1,...}, VieN, (7

that minimizes the overall allocation cost >, f;Cj,
constrained to provide a minimum blocking prob-
ability p;(C) for all nodes.

In spite of the linearity of its objective func-
tion, the SCA problem has inherent complica-
tions. From a practical point of view, one serious
aspect to deal with is the intractability of the ex-
pressions for p;(C) in closed form for any given
topology. In a topology such as the one seen in
Figure 1, the blocking probability at the ith node
depends on all upstream incoming flows and also
on the blocking probabilities of all downstream
nodes.

In Figure 3, we can see how complex are the
blocking probabilities, as a function of capacities
C} and C, even in a simple 2-node tandem config-
uration, assumed that the capacity of each node is
a function of the width only (remaining unchanged
the length). Notice that the ‘flat’ part of the
curves corresponds roughly to the feasible regions,
i.e., points for which p; (C) < € and p2(C) < e.

3.2 Proposed Algorithm

Many of the approaches already described in the
literature on buffer allocation could perhaps be
adapted to solve the SCA problem as well. The
reader is encouraged to check the new material
by MacGregor Smith et al. (2000), for a recent
overview on some of the newest advances on this
topic. The algorithm proposed here is inspired
by those approaches and is shown in Figure 4 in
pseudo-code.

Figure 4-a show the main algorithm that im-
plements a variation of the derivative free coor-
dinate search method. All settings are read and
an initial feasible solution is found which is to set
a large enough capacity to all nodes, in order to
make sure that no queue will be blocked at all and
that the constraints will be satisfied. For conve-
nience, the initial feasible capacity is in the form
2M gince it will help the local search algorithm, to
be described as follows.

The local search is presented in Figure 4-b.
First, a recursive labeling step is applied in or-
der to ensure that no node is locally optimized
unless all of its predecessor nodes were already
optimized. This is necessary because the GEM
tends to underestimate the blocking probabilities
in situations in which there is a severe bottleneck
in the final nodes of the network, as observed by
Cruz and MacGregor Smith (2002).
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algorithm
read G(N, A)
read routing probabilities p;;, V (i,5) € A
read arrivel rates \; and ¢;, Vi € N
/* find initial feasible vector C */
for Vi € N do
COPt oM
end for
/* search optimum solution */
iter < 0
repeat
iter < iter + 1
/* optimizes i-th queue */
for Vi€ N do
OptQueue(z,C3"P)
end for
/* update best solution */
if g(Cs"P) < g(C°Pt) then
Copt « Csup
unmark all nodes
else
exit
end if
end repeat
write COP*
end algorithm

a) network optimization
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b) node 2
Figure 3. Blocking Probabilities p;(C) in a 2-Nodes Tandem Configuration

algorithm OptQueue(,C5"P)
/* recursive labeling step */
for V (j,i) € A do
if node j is unmarked then
OptQueue(j,C5uP)
mark node j
end if
end for
/* isolate optimum */
J< M
inf su .
Cit  CJP 2
while p;(C5"P) £ &;,Vi € N
j—Jj+1
o gi
end while
/* narrow interval */
Ccan — Csup
while (C5"P — Cinf) > 1
csan (Ot + CJ'P) /2
if p;(C@") < ¢;,Vi € N then
C'SUP « (can.
i i )
else
inf .
C™ + Cany
end if
end while
end algorithm

b) single queue optimization

Figure 4. SCA Problem Resolution Algorithm

Then, the single queue optimization algo-
rithm isolates the optimum by coming up with an
interval in which the inferior limit capacity Ci™
is infeasible and the superior limit capacity C;"P
is feasible. The next step is to reduce the initial
interval up to that point they differ by the unity.
Then, the superior limit is the smallest capacity
that complains with the blocking probability re-
quirements for the ith queue.

4 Computational Experiments

The proposed algorithms were coded in C++,
a flexible and efficient programming language.
All computational experiments were carried out
on a PC, CPU Pentium II 400 MHz, 64 MB
RAM, Windows NT 4.0 operating system. Sev-
eral topologies were of interest, series, merges, and
splits. Experiments were done for 3 and 5 node
networks. Arrival rates of 1, 2, and 4 ped/sec
were considered. Additionally, the discrete-event

digital simulation model developed by Cruz et al.
(2001) was run to confirm the accuracy of the so-
lutions generated. All simulations were run for
22,000 seconds, with a burn-in period of 2,000 sec-
onds, and 30 replications were performed in order
to compute 95% confidence intervals.

For simplicity, we used only the exponential
model, Eq. (2), and only networks of nodes of
identical lengths. All nodes were assumed 8 me-
ters in length. The widths are the decision vari-
ables. A threshold blocking probability of 0.1%
(0.001) and a unitary allocation cost f; were used,
for all nodes. For each network considered, sim-
ulations were performed for the optimal solution
and around the optimal, with slight perturbations
on the capacity of one of the queues. The cpu
times expended are provided only for the simula-
tions. The algorithms for analysis and optimiza-
tion spent less than 10 seconds in the worst case.

Table 1 shows the results obtained for tandem
(series) topologies. Notice that for series topolo-
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Table 1. Tandem (series) Topologies

XIV - Congresso Brasileiro de Automatica

max p(C)
simulation
A C (ped) W (m) GEM average 95% CI cpu (mm:ss)
1.0 41 — 44 — 45 1.04 -+ 1.11 — 1.14 0.0024 0.0021 [0.0013;0.0029 0:55
42 — 45 — 46 1.06 -+ 1.14 — 1.16 0.0010* 0.0014 [-0.0001;0.0028 1:47
43 — 46 — 47 1.09 =+ 1.16 — 1.19 0.0004 0.0004 [0.0001 ;0.0006 2:01
41 — 44 — 45 — 46 — 47 1.04 - 1.11 - 1.14 -+ 1.16 — 1.19 0.0024 0.0021 [0.0013;0.0029 6:22
42 — 45 — 46 — 47 — 48 1.06 — 1.14 — 1.16 — 1.19 — 1.21  0.0010™ 0.0024 [-0.0003;0.0051 3:56
43 — 46 — 47 — 48 — 49 1.09 -+ 1.16 -+ 1.19 — 1.21 — 1.24 0.0004 0.0004 [0.0001 ;0.0006 3:06
2.0 78 —+78 =81 1.96 — 1.96 — 2.04 0.0022 0.0128 [0.0017;0.0240 5:16
79 —- 79 — 82 1.99 — 1.99 — 2.06 0.0010™ 0.0029 [-0.0002;0.0059 4:59
80 — 80 — 83 2.01 — 2.01 — 2.09 0.0004 0.0095 [-0.0042;0.0231 5:01
78 - 78 — 81 — 82 — 82 1.96 — 1.96 — 2.04 — 2.06 — 2.06 0.0023 0.0128 [0.0017;0.0240 10:19
79 —+ 79 — 82 — 83 — 83 1.99 — 1.99 — 2.06 — 2.09 — 2.09 0.0010" 0.0029 [-0.0002;0.0059 9:36
80 — 83 — 83 — 84 — 84 2.01 — 2.01 — 2.09 — 2.11 — 2.11  0.0004 0.0095 [-0.0042;0.0231 9:53
4.0 150 — 151 — 154 3.76 — 3.79 — 3.86 0.0021 0.0000 [0.0000 ;0.0000 16:49
151 — 152 — 155 3.79 — 3.81 —+ 3.89 0.0010* 0.0000 [0.0000 ;0.0000 17:04
152 — 153 — 156 3.81 — 3.84 —+ 3.91 0.0005 0.0000 [0.0000;0.0000 16:46
150 — 151 — 154 — 156 — 157 3.76 — 3.79 — 3.86 — 3.91 — 3.94 0.0021 0.0000 [0.0000 ;0.0000 41:42
151 — 152 — 155 — 157 — 158 3.79 — 3.81 — 3.89 — 3.94 — 3.96 0.0010" 0.0000 [0.0000 ;0.0000 40:24
152 — 153 — 156 — 158 —+ 159 3.81 — 3.84 — 3.91 — 3.96 — 3.99 0.0005 0.0000 [0.0000;0.0000 40:55

* optimization algorithm best solution

gies, nodes tend to be wider at the end of topology.
The effect of blocking at end nodes is amplified
back at the upstream nodes so that some extra
space must be allocated in order to avoid the ef-
fect and to meet the performance requested. Ad-
ditionally, it is remarkable that this progressive
increasing allocation pattern repeats over longer
networks.

Table 2 shows the results obtained for split
and merge topologies. For split topologies, unbal-
anced splitting probabilities of 0.6 and 0.4 were
considered, and, as a consequence, unbalanced al-
locations were obtained for the nodes following
the splitting node. For merges, the arrival rates
at the two front nodes were balanced and, as ex-
pected, balanced capacity were allocated there. In
all 5-node networks, a similar effect as in the series
topologies (i.e., a progressively increasing capac-
ity allocation) was observed in the tandem links.
Finally, one can surprisingly see a ‘economy-of-
scale’ effect since neither the capacity at the node
after merging equals the sum of capacities of nodes
just before merging in the merge topologies, nor
the sum of capacities of nodes that follow a split
equals the capacity of the node before splitting.

5 Concluding Remarks

A methodology based on M/G/C/C state-
dependent queueing systems, suitable for analysis
and synthesis of systems subject to congestion ef-
fects, in particular, pedestrian networks, was pre-
sented. The importance of the model was stressed
and a short review of recent results on the area
was presented. In detail, the application of the
model to pedestrian network planning was dis-
cussed. Computational results were provided to
demonstrate the effectiveness of the approach.
Many research questions remain. The algo-
rithm must be tested under different topologies
and blocking probabilities, as well as under heav-
ier and lighter arrival rates. Another possibility
is to extend the congestion model to modeling ve-

hicular networks. These are only some possible
directions for future research in the area.
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