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Abstract—

Many subject areas, including disease and criminality mapping, medical diagnosis, industrial

control, and finance share the interest in multiple change point identification problems. Algorithms based on the
product partition model (PPM) are proposed to solve this important problem applied to time series of Poisson
data. In order to attack the PPM, a Gibbs sampling scheme, simple and easy to implement, is derived. The
algorithms are applied to the analysis of time series and the results show that the method is quite effective and

makes it possible useful inferences.
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1 Introduction

The identification of multiple change points is a
problem encountered in many subject areas, in-
cluding disease and criminality mapping, medical
diagnosis, industrial control, and finance. Given a
time series, as the one seen in Figure 1, the prob-
lem is to know whether or not change points oc-
curred in the mean. Certainly, this is not a brand
new problem and some possible tools have al-
ready been considered to tackle it, either Bayesian
(Barry and Hartigan, 1993; Loschi et al., 1999;
Loschi and Cruz, 2002) and non-Bayesian ap-
proaches (Hawkins, 2001; Stauffer, 2001). In par-
ticular, this paper is concerned about a Bayesian
approach to the multiple change point identifi-
cation problem in time series of Poisson data,
more specifically, the well-known Product Parti-
tion Model (PPM).

The PPM was introduced by Hartigan (1990),
as a generalization of several models (Smith, 1975;
Menzefricke, 1981; Hsu, 1982). One of the ad-
vantages of using the PPM is that the number of
change points in the series is a random variable
and not a fix number, as considered in thresh-
old models (Chen and Lee, 1995). Later, the
PPM was considered for the identification of mul-
tiple change points in normal means (Barry and
Hartigan, 1992; Barry and Hartigan, 1993; Crow-
ley, 1997). As a direct result of previous stud-
ies (Loschi, 1998), Loschi et al. (1999) extended
Barry and Hartigan’s (1993) ideas, to make it pos-
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sible the identification of multiple change points in
the means and variances of normal data. Loschi
et al. (1999) obtained the product estimates by
means of a recursive algorithm by Yao (1984) and
proposed a Gibbs sampling scheme to obtain the
posterior distributions for the number of change
points as well as for the instants when the changes
have occurred.

unobservable mean
simulated series

X(t)

0 10 20 30 40 50

Figure 1. A Change-point Series

More recently, Loschi, Cruz, Iglesias and
Arellano-Valle (2002) extended the PPM even fur-
ther to include a prior specification for the prob-
ability p of having a change instead of having it
fix, and also proposed a Gibbs sampling scheme
to obtain the posterior relevances involved in the
computation of the product estimates. As an-
other contribution on the subject, Loschi and
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Cruz (2002) asserted the adequacy of some prior
distribution for the PPM applied to normal data
and provided a comprehensive Monte Carlo simu-
lation study to show the efficacy of different imple-
mentations for the PPM (Loschi, Cruz, Iglesias,
Arellano-Valle and MacGregor Smith, 2002).

The aim of this paper is to extend the appli-
cation of the PPM to the identification of multiple
change points in the mean 6 of Poisson data, as-
suming a gamma prior distribution to the param-
eter § and a beta prior distribution to the proba-
bility p of having a change.

The paper is organized as follows. Section 2
reviews the parametric approach to the PPM,
presents inferential solutions to identify change
points for Poisson random variables and details
a Gibbs sampling scheme to implement the PPM.
In Section 3, some computational results are pre-
sented and discussed. Section 4 closes the paper
with final remarks and future topics for investiga-
tion.

2 Product Partition Model

In the parametric approach to the PPM (Barry
and Hartigan, 1993), it is considered that the
sequence of random variables Xi,...,X,, con-
ditionally in 6y,...,60,, has conditional marginal
densities f1(X1]61),. .-, fn(Xn|0n). It is assumed
that given a partition p = {ip,...,ip} of the set
Iru{o}, for I = {1,...,n} and b € I, such
that 0 = 49 < 43 < -+ < 4 = n, one has
that 0; = 0;,_,;,) for every i, < i < ip, for
r = 1,...,b, and that 6;;,],---,0,_,) are in-
dependent, with 6;;) having (block) prior density
;4 (0), where 6 € Op;; and Oy is the param-
eter space corresponding to the common param-
eter, say, O[;;) = 0iy1 = --- = 6;, which indexes
the conditional density of X;;; = (X1, -+, X;)".
Denote by c(;;, 4,5 € T U {0}, i < j, the prior co-
hesion associated with the block [ij] which is in-
terpreted as the transition probability of having a
change in j, given that a change takes place in 1.

In this case, two observations X; and Xj,
i # j, are considered in the same block if they
are identically distributed. Thus, (X1,...,Xn,p)
follows the PPM if:

i) the prior distribution of p is the following
product distribution:

b
Hj:l Clij_1i4]

b
Zc Hj:l Clij_14;5]

P(p:{’io,...,ib})z ) (1)

in which C is the set of all possible partitions
of the set I into b contiguous blocks with
endpoints i1, .. ., p, satisfying the condition
0=ip<i1 <---<ip=n,forall be I
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ii) conditionally on p = {ig,...,%p}, the se-
quence Xi,...,X, has the joint density
given by:

b

f(X1,..., Xnlp) = H f[ij_lij](x[ij_lij]): (2)

j=1

in which fi;;(X[;;) is the joint density of

the random vector Xp;; = (Xig1,...,X;)’,
given by:
Frin(Xign) = Frin(Xp|0)msn (0)d6. (3)

Orij]

Assuming the PPM, the posterior expectation
(or the product estimate) of 8, is given by:

k—1 n
=0 j=k
for k =1,...,n, in which the posterior relevance

for the block [ij] is given by:
. _ A0y Al 5
T T Ay (5)

in which Crij] C[z'j] f[,J](X[z]]) and )‘[U] =
Zﬂizlcﬁ.k_l i» and the summation is over all
partitions of {i + 1,...,j} in b blocks with end-
points 9,41, ...,%, satisfying the condition i =
p<t1 < <ip=1].

Other parameter considered is the number of
blocks B (or the number of change points, B —
1) in p. If the PPM is assumed, the posterior
distribution of B is given by:

P(B=b|Xy,...,Xp) < 3 M icf; ;1. (6)
C

The posterior distribution of p has the same
form of the prior distribution given in (1), consid-
ering the posterior cohesions cf; ;.

2.1 Poisson Case

For the Poisson case, it is assumed that, given
01,...,6n, Xi,...,X, are such that Xi|0,~
P(6r), for k = 1,...,n, and that they are in-
dependent. It is also assumed that the common
parameter [;;, related to the block [ij], has the
conjugate gamma prior distribution denoted by:

Orij) ~ G (Tl[m +1, TO[U])’

where 7g;;; > 0 and 7135 > —1, and whose den-
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sity function is given by:

iz +l
0[#4] T1lis)
T(ripy +1) ~ L)

exp(_TO[ij]a[ij])-

f(9[ij]|7'0[ij];T1[ij]) = X

Consequently, the random vector X;;; follows
a distribution with density function given by

iq NG
FXpg) = ( I1 X_k') x W]]H) §

k=i+1
(7—0[1_7] )Tl[” 1+ % ( 1 )Zi=i+1xk
Tolid) Tolid]

(7)

in which

Totig) = Tolig) +J = 4,
7-1*[1'3‘] =T[ij) + Ei::i+1Xk +1,

foralli=0,....n—1,and j=i+1,...,n
Given X, the distribution of 6[2] is the
gamma distribution with parameters 7'0[”] and

[“] , that is

0[,.]-]|X[,.j]~g( 11is]7 7o [m)

Consequently, the blocks estimates are given
by

- Tf .

bi) = B0 | Xpii) = 2 8)
ij]

and, from equations (4) and (8), it follows that
the product estimates are given by

k—1 n
ek:E(‘gk'Xl:' eru]ew]’
=0 j=k
for k =1,...,n. The posterior relevances r[ 4 can

be obtained from Eq. (5), taking into considera-
tion the density given in Eq. (7).

2.2 A @Gibbs Sampling Scheme Applied to the
PPM

An extraordinary array of problems in Bayesian
inference have been solved by Markov chain Monte
Carlo (MCMC) methods since the seminal paper
by Gelfand and Smith (1990) illustrated how eas-
ily a variety of intractable problems could be ap-
proximately solved. This ease of use led to an
explosion of research and complex Bayesian mod-
els without analytical solution are know tractable
by MCMC methods. Recent research results and
overviews of the research in this area includes the
papers by Besag et al. (1995), Robert (1995), and

MacEachern and Peruggia (2000), to cite few. In
particular, the purpose is to use Gibbs sampling
(Geman and Geman, 1984) as a posterior distri-
bution generation scheme.

In order to estimate the posterior distribu-
tions of B and p, and the posterior relevance of
each block [ij], the method proposed by Loschi,
Cruz, Iglesias and Arellano-Valle (2002) is de-
scribed. Let us assume the auxiliary random
quantity U; which reflects whether or not a change
point occurred at the time 4, that is

o [0 06 # 6,
e 1, if 6; = oi-l—l;

fori=1,...,n—1.

At the kth step, the vector UF =
(UF,...,UF_,) is generated by using the Gibbs
sampling as follows. Considering a beta prior
distribution for the probability p of change, p ~
B(a, B), it is sufficient to consider the ratio given
by the following expression, in order to generate
the vectors U*’s:

R, = - JeuXjey)
f[zr ( [zr]).f[ry] (X[ry])

Fn+p-b+1DI'b+a—-2)

X

To+ta-UTm+s-5 ° 10
where
maxi if there is UF =0,
o= s.t.: 0<¢<r, |for some
- Uk =0, ie{l,...,r—1},
0, otherwise,
and
min ¢ if there is a Uik_1 =0,
_ s.t.: r <i<n, |for some
¥y= Ukl=0, |ie{r+1,...,n—1},
n, otherwise,

since the rth element at the kth step, U¥, is gen-
erated from the conditional distribution

UFlUE, ... UF_ UM L UL X, X,

forr =1,...,n—1, starting from an initial vector
U’ = (UP,...,U2_)).

Notice that, in the Poisson case, ff;;(X;1) is
the distribution given in Eq. (7). Consequently,
the criterion for the values U¥ becomes

Uk — 1, if R, > (1 —u)/u,
T 71 0, otherwise,

in whichr =1,...,n—1, and u ~ U(0,1).
Notice that the posterior relevance of the

block [ij], for i < j, used in Eq. (4) to es-

timate 6 can be obtained by considering the
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proportion of samples that presents Uik = 0,
Uk, =...= Uffl =1, and U]’-c = 0. The ran-
dom quantity p is perfectly identified by consid-
ering a vector of these random quantities. Con-
sequently, one can estimate the posterior proba-
bility for each particular partition in b contiguous
blocks, p = {ig,%1,..-,%p}. Also notice that it is
possible to use the above procedure to estimate
the posterior distribution of B (or the posterior
distribution of the number of change points, B—1)
by considering that

n—1
BF=1+> (1-Up).
i=1

Figure 2 shows the complete algorithm in pseudo-
code.

algorithm
read all prior specifications
read Xi,...,X,

for k£ = 1 to SAMPLES do
generate Uk

end for

for all ¢,j € {0,...,n} such that { < j do
Tfij] < proportion of samples such that

k [ J— . o - k _
Uk =0,Uk, = =UF_ =1,UF =0
end for

for all i,j € {0,...,n} such that i < j do

o) < Tolij] +7 — 1

J
T;[ij] — T35 + Z X +1

k=i+1
end for
for k =1 ton do
k-1 n
E(0%] X1, Xn) 3 > 110
i=0 j=k
end for
write E(61),...,E(0n)
write B¥

end algorithm

Figure 2. PPM Gibbs Sampling Algorithm

3 Computational Experiments

Because of its computationally intensive nature,
the algorithm presented in Figure 2 was coded in
C++. All tests were performed on a PC, Pen-
tium processor 400 MHz, 256 MB RAM, taking
less than one minute of CPU time. In order to
estimate the posterior relevances r[*;j] and the pos-
terior distribution of B (or the number of change
points, B — 1), 4,600 samples of 0-1 values were
generated with the dimension of the time series,
starting from a sequence of zeros. The initial 100
iterations were discharged for burn-in and a lag
of one was selected. Discussion about the number
of iterations to be discharged, as well as the lag
to be taken, can be easily found in the literature
(see, for instance, Gamerman, 1997).
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3.1 Prior Specifications

In order to verify the accuracy of the approach,
the computational experiments were conducted
considering the artificial (simulated) time series
shown in Figure 1. The time-series observations
are assumed to be conditionally independent and
distributed according to the Poisson distribution
P(05). We considered the natural conjugate
prior distribution for the parameters 6[;;}, which is
in this case a gamma distribution. These assump-
tions are not too restrictive, since the Poisson dis-
tribution is appropriated for many practical appli-
cations. Additionally, the gamma distribution is
rich enough to describe the uncertainty about the
parameters under many practical circumstances.

For the present case, it seems reasonable to
consider that

(11)

About this subjective choice, the gamma, dis-
tribution considered, G(1,1), plotted in Figure 3,
concentrates its mass in a low value and it is also
as flat as our uncertainty about this parameter.
Other similar settings for 7q[;;; and 7y;; where
considered but the results (not shown) do not dif-
fer quite much.

{TO[ij] = 10,

o
-
— G(O0+1,1)
G(1+1,1)
e A - G(3+L,1)
——- G(7+1,1)
=Tt G(15+1,1)
©
T S
5
=
A
o
N
d D NG —_
o | e
© T T T T T T
0 2 4 6 8 10

theta

Figure 3. Probability Density G(71,70)

The truncated geometric distribution with pa-
rameter p, p € (0,1), is considered as prior cohe-
sions since it is assumed that past change points
are non-informative about future change points.
Thus, one last decision that has to be made con-
cerns the probability p of having a changing point.
It is assumed that p ~ B(2, 8), plotted in Figure 4,
since a small number of changes is expected in the
simulated series.

3.2 Numerical Results

For the sake of conciseness, only results for the
artificial (simulated) time series presented in Fig-
ure 1 are shown. Another simulations were carried
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Figure 4. Probability Density B(a, §)

with similar simulated series and the results (not
shown) do not differ significantly. The main ad-
vantage of such an analysis is that one can control
for errors in the method since the actual (unob-
servable) mean is known. In Figure 5, the poste-
rior estimates for the expected 6 are presented.
Note the close agreement among unobservable
mean and posterior estimates. The method cer-
tainly is not able to immediately fell the border
between observations 25th and 26th but after only
10 observations the estimates picks it up.

* *
unobservable mean
© simulated series EOE
——~ product estimates
-
< | * * *x wk *
° = =
S * *x *
Vs
-
wd £ % ok *x AT *
4
&}i"_,-*«*u‘<*xuﬁ/;1 * K *
PR * Kkk * *
o A
T T T T T T T
0 10 20 30 40 50

Figure 5. Posterior Estimates

However, much more information are avail-
able through the method and also possible it is
to study the posterior distribution of the num-
ber of blocks. The results are shown in Figure 6.
Here, we can see that certainly the most probable
number of blocks is just 2, with the probability
of 32%. As expected, the posterior distribution
of the number of blocks concentrates its mass on
small values.

Another important information that we can
easily drawn is the most probable partition which
is shown in Figure 7. The method identify the

Number of Blocks

Figure 6. Posterior Distribution of B

27th observation as a change point, just one ob-
servation away from the ‘real’ point, the 26th.

—  time series
partition (prob=0.105778)

X(t)

e ok ok ok ko kAo ok kK ok K K]

Figure 7. Most Probable Partition

4 Conclusions and Final Remarks

The problem of identifying multiple change point
in Poisson data was considered under the product
partition model (PPM), a Bayesian framework.
The PPM was described and its importance to
change point problems was stressed, particularly
to analyze time series. A Gibbs sampling scheme
was proposed to implement the PPM and to avoid
its computational difficulties. Coded and tested,
the algorithms proposed proved to be an efficient
and useful tool for time series analysis of Poisson
data. In the simulated time series in which it was
applied, the method worked quite satisfactory.
Some open research questions remain. How
long would the treatable series be? How well does
the methodology fit for other subject areas? These
and other similar questions are interesting and rel-
evant topics for future research in this area.
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