Análise do Problema de Planejamento de Redes Telefônicas de Alimentação

Frederico Rodrigues Borges da Cruz Juliana Antunes Almeida Geraldo Robson Mateus

UFMG – ICEx – Departamento de Ciência da Computação Caixa Postal 702 – CEP: 30161-970 – Belo Horizonte – MG BRASIL

Resumo

O problema de planejamento de redes telefônicas de alimentação consiste da minimização dos custos de investimentos para ligar grupos de assinantes a uma central telefônica. A importância desse problema é notável, porém a sua computação é muito custosa. Trata-se de um problema \mathcal{NP} -difícil, conforme demonstrado nesse trabalho. São apresentadas sua formulação matemática e uma heurística baseada em relaxação Lagrangeana para sua resolução.

Palavras Chaves: Problemas Combinatórios, Heurística, Relaxação Lagrangeana, Otimização em Redes, Redes de Telecomunicação.

Analysis of the Telefone Switching Center Network Planning Problem

Abstract

The switching center network planning problem consists of minimizing investment cost for conecting subscriber groups to a telephone center. It is noticed the importance of the problem, but its computation is expensive. It is a \mathcal{NP} -hard problem as it is demonstrated in this paper. We present a mathematical formulation and heuristics based on Lagrangean relaxation for its solution.

Keywords: Combinatorial Problems, Heuristics, Lagrangean Relaxation, Network Optimization, Telecommunication Networks.

1 Introdução

A complexidade do sistema de telefonia brasileiro e a necessidade de disponibilizar serviços a baixo custo nos leva à utilização de modelos computacionais em busca de soluções.

A estratégia adotada para os problemas de telefonia é a de dividir para conquistar, ou seja, a sua decomposição em problemas de menor complexidade. A fig. 1 ilustra a estrutura hierárquica de um sistema telefônico [15], [11], [10].

Para uma melhor compreensão, são apresentados os principais elementos que compõem cada parte do sistema telefônico [9] [10]:

- Um Sistema Telefônico é constituído por vários Sistemas Urbanos que se interligam através da Rede Interurbana ("○⇒" indica que os elementos do ramo esquerdo da árvore são nós da rede explicitada pelo ramo direito).
- 2. Cada Sistema Urbano é constituído por, pelo menos, uma Área de Comutação ou zonas de filiação, interligadas através de uma Rede de Troncos. No mesmo nível, a Rede Interurbana é composta por um conjunto de Estações Interurbanas ligadas através de Rotas de Trans-

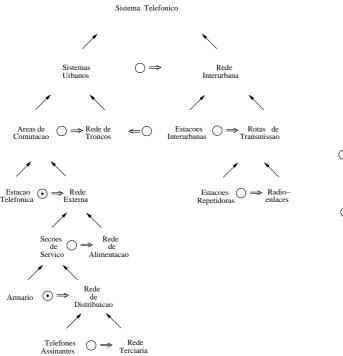


Figura 1: Redes de um sistema telefônico.

missão. Cada estação interurbana é **nó** de uma **rede** de troncos urbana.

- 3. Cada Área de Comutação abrange uma Estação Telefônica e uma Rede Externa ("⊙ ⇒" indica que o elemento do ramo esquerdo é nó raiz da rede (árvore) explicitada à direita).
- 4. A Rede Externa cobre diversas Seções de Serviço ligadas através da Rede de Alimentação (rede primária).
- 5. Cada Seção de Serviço possui um ponto de controle, armário, que é **nó raiz** da Rede de Distribuição (rede secundária).
- 6. A Rede de Distribuição constitui uma conexão entre os Assinantes, eventualmente via Rede Terciária.

A rede de alimentação, foco de atenção desse trabalho, é a que predomina no sistema atual de telefonia, tanto na parte de dimensionamento quanto no aspecto financeiro [9]. Será abordado o problema de topologia e dimensionamento da rede de alimentação de uma central [11], fig. 2.

Na primeira parte desse trabalho, será definido, formalmente, o problema de planejamento de redes telefônicas de alimentação. Será mostrado se tratar de um problema \mathcal{NP} -difícil. Logo a seguir, será mostrado o modelo matemático do problema, fundamental para o entendimento da heurística basea-

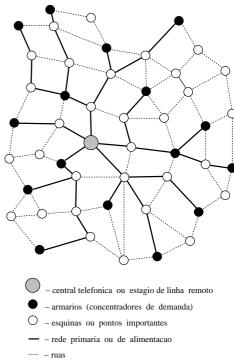


Figura 2: Rede de alimentação

da na técnica de relaxação Lagrangeana, explicada na seção seguinte.

2 Definição e Complexidade do Problema

O problema de planejamento de redes telefônicas de alimentação, P, fig. 2, pode ser, formalmente, definido como um problema de otimização combinatória sobre um grafo não-direcionado G = (N, A), onde N é o conjunto de nós e A, o conjunto de arcos.

O conjunto N é particionado no conjunto S, de nós de Steiner (nós brancos), no conjunto T, de nós terminais (nós pretos), e no conjunto R, que possui apenas o nó r (nó raiz). Cada nó $t \in T$ possui uma demanda d_t . Os nós $s \in S$ não possuem demanda. O nó r possui uma capacidade igual ao somatório das demandas d_t . A cada arco $(i,j) \in A$, um custo fixo, f_{ij} , é associado à sua escolha, ou seja, é o custo de utilização para aquele arco (custo da infra-estrutura). O outro custo associado ao arco $(i,j) \in A$ é o variável, c_{ij} , que depende do fluxo que passa por ele. Essas duas componentes, f_{ij} e c_{ij} , definem, para cada arco (i,j), uma estrutura não-linear de custo, fig. 3.

O objetivo é encontrar um conjunto de arcos $A' \subseteq A$ que conecte a raiz r (central telefônica) a todos os nós terminais e atenda às demandas, no menor custo possível.

Colocando-se a questão como um problema de

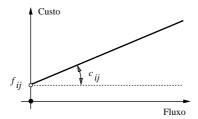


Figura 3: Estrutura do custo no arco (i, j).

decisão, P', tem-se: dado um número real K'>0, existe um subgrafo de G, G'=(N,A'), onde $A'\subseteq A$, tal que

a) G' contém um caminho C_t , ligando o nó r ao nó t, para todo $t \in T$ e

b)
$$\sum_{(i,j)\in A'} f_{ij} + \sum_{t\in T} \left(d_t \sum_{(i,j)\in C_t} c_{ij} \right) \le K'$$
?

Lema 1 O problema P' pertence à classe \mathcal{NP} .

Prova: P' pode ser resolvido, em tempo polinomial, $O(|N|^2)$, pelo seguinte algoritmo não-determinístico:

```
algoritmo
```

```
/*determina solução */
A' \leftarrow \emptyset
B \leftarrow N
para \forall t \in T faça
     C_t \leftarrow \emptyset
     repita
           j \leftarrow \mathbf{escolha}(k \in B)
           B \leftarrow B - \{j\}
           se (i,j) \in A então
                 C_t \leftarrow C_t \cup \{(i,j)\}
                 A' \leftarrow A' \cup \{(i,j)\}
           senão
                 falha
           fim se
           i \leftarrow j
     até j = t
fim para
                       /*testa solução */
CustoFixo \leftarrow 0
para \forall (i,j) \in A' faça
     CustoFixo = CustoFixo + f_{ij}
fim para
CustoVar \leftarrow 0
para \forall t \in T faça
     CustoVar_t = 0
     para \forall (i,j) \in C_t faça
           CustoVar_t = CustoVar_t + d_t * c_{ij}
     fim para
     CustoVar = CustoVar + CustoVar_t
fim para
```

```
se (CustoFixo + CustoVar) ≤ K' então
sucesso
senão
falha
fim se
fim algoritmo
```

Lema 2 O problema P' é \mathcal{NP} -difícil.

Prova: Seja um problema genérico de Steiner, P'', no grafo não-direcionado G'' = (N'', A''), com pesos $w_{ij} > 0$ nas arestas e uma constante K'' > 0, o qual é \mathcal{NP} -completo [8]. Seja o problema P', definido no grafo não-direcionado G' = (N'', A'), derivado de G'', com custos fixos nos arcos $f_{ij} = w_{ij}$, custos variáveis $c_{ij} = \alpha w_{ij}$, demanda unitária nos nós terminais, exceto um arbitrário, que é escolhido como raiz, demanda nula nos nós de Steiner e uma constante K'. Se $\alpha \geq 0$ for suficientemente pequeno, satisfazendo:

$$|N''| \sum_{(i,j)\in A''} \alpha w_{ij} < \min_{\begin{subarray}{c} \forall (i,j)\in A''\\ \forall (k,l)\in A''\\ (i,j)\neq (k,l) \end{subarray}} |w_{ij} - w_{kl}|,$$

o custo variável total é desprezível. Seja K' definido como se seque:

$$K' = K'' + |N''| \sum_{(i,j) \in A''} \alpha w_{ij}.$$

Definindo P' dessa forma, P' admite a mesma árvore solução ótima que P''. Logo, P' possui resposta sim, se e somente se, P'' também possuir. Como a transformação apresentada pode ser feita em tempo polinomial, segue que P'' é polinomialmente redutível a P', i.e., $P'' \propto P'$.

Teorema 1 P' é \mathcal{NP} -completo.

Prova: Imediata, dos Lemas 1 e 2.

3 Modelo Matemático

Uma vez descrito o problema de planejamento, será apresentado o seu modelo matemático. O entendimento desta formulação é essencial, uma vez que a heurística Lagrangeana proposta é calcada no modelo.

A seguinte notação será usada na formulação matemática do problema de planejamento de redes telefônicas de alimentação:

A - Conjunto de arcos; c_{ij} - Custo variável no arco (i, j); d_t - Demanda no nó t;

 f_{ij} - Custo fixo no arco (i, j);

r - Nó raiz;

S - Conjunto de nós de Steiner;

T - Conjunto de nós terminais;

 x_{ij} - Fluxo através do arco (i, j);

 y_{ij} - Variável que assume valor 1, se arco (i, j) for escolhido e assume valor 0, caso contrário.

O problema de planejamento, P, é formulado como um problema de programação inteira mista [12], [16], [14]:

$$\min \sum_{(i,j)\in A} (c_{ij} x_{ij} + f_{ij} y_{ij})$$
 (1)

sujeito a:

$$-\sum_{(r,k)\in A} x_{rk} = -\sum_{t\in T} d_t \tag{2}$$

$$\sum_{(i,j)\in A} x_{ij} - \sum_{(j,k)\in A} x_{jk} = 0, \ \forall j \in S$$
 (3)

$$\sum_{(i,t)\in A} x_{it} - \sum_{(t,k)\in A} x_{tk} = d_t, \forall t \in T$$

$$\tag{4}$$

$$x_{ij} \leq M y_{ij}, \forall (i,j) \in A \quad (5)$$

$$x_{ij} \geq 0, \forall (i,j) \in A$$
 (6)

$$y_{ij} \in \{0,1\}, \forall (i,j) \in A \quad (7)$$

A função objetivo (1) minimiza os custos fixos e variáveis. A restrição (2) garante que a capacidade do nó raiz é igual à soma das demandas dos nós terminais. As restrições (3) garantem a conservação dos fluxos para cada nó intermediário (nós de Steiner) e as (4) impõem os requisitos de demanda. As restrições (5) impõem a condição de um fluxo ser nulo, se o arco não for escolhido para o projeto (M é um número suficientemente grande).

4 Heurística Lagrangeana

A heurística Lagrangeana proposta para a resolução de P baseia-se na técnica de relaxação Lagrangeana empregada, com grande sucesso, na resolução de problemas combinatórios [6], [5].

4.1 Relaxação Lagrangeana

A idéia básica desta técnica consiste em relaxar a restrição complicante para a solução do problema. Seja o seguinte problema genérico de otimização, PO, onde a restrição (9) tem uma estrutura especial:

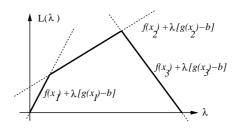


Figura 4: Função $L(\lambda)$

$$z = \min_{\mathbf{s.a.}} f(x) \tag{8}$$

$$g(x) < b \tag{9}$$

$$x \in X \subseteq R^n \tag{10}$$

A relaxação Lagrangeana do problema, PR_{λ} , relativa à restrição (9) e a um vetor não negativo λ , com dimensão apropriada, é dada por

$$L(\lambda) = \min \left[f(x) + \lambda(g(x) - b) \right]$$
 (11)

$$x \in X \subseteq R^n \tag{12}$$

$$\lambda > 0 \tag{13}$$

onde λ é o vetor que contém os multiplicadores Lagrangeanos.

Esse problema é côncavo, pois a função $L(\lambda)$, (11), como o mínimo de uma coleção de funções lineares, é côncava, ver fig. 4. Notar que $L(\lambda)$ não é diferenciável em todos os pontos do domínio.

Denotando o valor da solução ótima do problema P por Z(P), a seguinte relação se verifica:

$$Z(PR_{\lambda}) \le Z(PO)$$
 (14)

Consequentemente, a relaxação Lagrangeana de PO, PR_{λ} , constitui um limite inferior para a solução ótima de PO. Para uma dada relaxação, o melhor limite inferior possível é:

$$\max_{\lambda} \{ Z(PR_{\lambda}) \} \tag{15}$$

O vetor λ que garante essa maximização é o conjunto ótimo de multiplicadores de Lagrange λ^* . Para se calcular o vetor λ^* , utiliza-se o método dos subgradientes, que contorna o problema da não-diferenciabilidade da função $L(\lambda)$, fig. 4. O método utiliza um dado vetor inicial λ^0 e gera uma sequência λ^k , pela regra:

$$\lambda^{k+1} = \lambda^k + t^k \gamma^k \tag{16}$$

onde:

 t^k - escalar não-negativo, denominado tamanho do passo;

 x^k - uma solução ótima de PR_{λ^k} ;

$$\gamma^k = g(x^k) - b$$
 - vetor de subgradientes de $L(\lambda^k).$

Para uma descrição detalhada do procedimento e de sua teoria, ver [7], [6], [5]. O tamanho do passo comumente utilizado, que garante a convergência do método, devido a [17], é:

$$t^{k} = C^{k} \frac{\bar{Z}(PO) - Z(PR_{\lambda^{k}})}{\|\gamma^{k}\|^{2}}$$

$$(17)$$

onde:

 C^k - escalar no intervalo (0, 2];

 $\bar{Z}(PO)$ - um limite superior para o problema

A vantagem do método é o pequeno esforço computacional e sua principal desvantagem é não haver garantias de crescimento monótono dos limites inferiores para a solução ótima do problema.

Resolução de P 4.2

Algumas heurísticas já foram propostas para resolução do problema de planejamento de redes telefônicas [12], [3]. O modelo tratado em [12] é um pouco mais geral que o tratado em [3] e também neste trabalho, mas é essencialmente o mesmo. Tais heurísticas são fortemente inspiradas em algoritmos de caminhos mínimos. Isso é justificável, pois o seu uso para redes de Steiner tem se mostrado eficiente, na prática, [2], [13], [18], [12].

Várias são as possibilidades de se derivar uma heurística baseada em relaxação Lagrangeana para P. A heurística Lagrangeana apresentada neste trabalho, subdivide o problema em dois subproblemas de complexidade polinomial a saber:

- um problema de fluxos de custo mínimo com fonte única:
- um problema de ordenação e seleção.

A restrição relaxada é a (5) e a função objetivo, (1), passa a ser:

$$\min_{v \ge 0} \left[\sum_{(i,j) \in A} c_{ij} x_{ij} + \sum_{(i,j) \in A} f_{ij} y_{ij} + \sum_{(i,j) \in A} (x_{ij} - M y_{ij}) v_{ij} \right]$$
(18)

Com isso, é possível decompor o problema relaxado em dois subproblemas polinomiais e independentes:

• P1:

$$\min_{v \ge 0} \sum_{(i,j) \in A} (c_{ij} + v_{ij}) x_{ij} \tag{19}$$

$$-\sum_{(r,k)\in A} x_{rk} = -\sum_{t\in T} d_t \tag{20}$$

$$\sum_{(i,j)\in A} x_{ij} - \sum_{(j,k)\in A} x_{jk} = 0, \forall j \in S$$
 (21)

$$\sum_{(i,t)\in A} x_{it} - \sum_{(t,k)\in A} x_{tk} = d_t, \forall t \in T$$

$$x_{ij} \geq 0, \forall (i,j) \in A,$$
(22)

$$x_{ij} > 0, \forall (i,j) \in A,$$
 (23)

• P2:

$$\min_{v \ge 0} \sum_{(i,j) \in A} (f_{ij} - M v_{ij}) y_{ij} \tag{24}$$

sujeito a:

$$y_{ij} \in \{0, 1\}, \forall (i, j) \in A.$$
 (25)

O subproblema P1 consiste da resolução de um problema de fluxos a custo mínimo com fonte única. P1 pode ser resolvido via caminhos mínimos cuja complexidade é $O(|N|^2)$, [1], [4]. A solução é uma árvore, AR_1 . O subproblema P2 é um problema de ordenação onde os arcos serão selecionados em ordem crescente dos custos. Utilizando-se um método de ordenação eficiente, a complexidade dessa operação é $O(|A|\log|A|)$ [19].

Fazendo-se o procedimento descrito acima e utilizando-se o método de subgradientes, o algoritmo. em alto nível, para o problema P é mostrado a seguir:

```
algoritmo
```

```
inicialize v_{ij} (com 0, por exemplo)
Iter \leftarrow 0
repita
      calcule limite inferior L_i
      calcule limite superior L_s
      calcule subgradientes \gamma
     se ((L_s - L_i) > \varepsilon) e (\gamma \neq 0)) então
           calcule tamanho do passo
           atualize v_{ij} e u_{ij}^t
           atualize v_{ij}
           Iter \leftarrow Iter + 1
           Parar \leftarrow falso
     senão
           Parar \leftarrow verdadeiro
até Parar ou (Iter = Max)
escreva L<sub>s</sub> e L<sub>i</sub>
```

fim algoritmo

O limite superior para a solução ótima é dado pela árvore AR_1 . O inferior vem de (11).

5 Conclusões

Foram apresentados os principais elementos componentes do sistema telefônico, para a abordagem do problema de planejamento de redes telefônicas de alimentação. O problema de decisão associado foi provado ser \mathcal{NP} -completo. Apresentouse o modelo matemático que descreve o problema de otimização. Para a resolução desse modelo, foi apresentada uma heurística baseada na técnica de relaxação Lagrangeana, explicada nesse trabalho, que subdividiu o problema de otimização em dois subproblemas polinomiais.

Como trabalho futuro, propõe-se a implementação da heurística, para verificação da sua eficiência computacional. Na verdade, atualmente a heurística já se encontra em implementação, esperando-se para breve os primeiros resultados práticos.

Referências

- [1] M.S. Bazaraa and J.J. Jarvis. Linear Programming and Networks Flows. John Wiley & Sons, New York, 1977.
- [2] J.E. Beasley. An algorithm for the Steiner problem in graphs. Networks, 14:147-159, 1984.
- [3] F.R.B. Cruz, H.P.L. Luna, and G.R. Mateus. Uma heurística para o problema de planejamento de redes telefônicas de alimentação. In E.P. Ferreira, editor, Anais do 9º Congresso Brasileiro de Automática, pages 443– 448, Vitória, ES, 1992. SBA.
- [4] E.W. Dijkstra. A note on two problems in connection with graphs. *Numerical Mathematics*, 1:269-271, 1959.
- [5] M.L. Fisher. The Lagrangean relaxation method for solving integer programming problems. *Management Science*, 27:1-18, 1981.
- [6] A.M. Geoffrion. Lagrangean relaxation and its uses in integer programming. Mathematical Programming Study, 2:82-114, 1974.
- [7] M. Held and R.M. Karp. The traveling salesman problem and minimum spanning trees: Part II. Mathematical Programming, 1:6-25, 1971.
- [8] R.M. Karp. Complexity of Computer Computation, pages 85-104. Miller, R.E. and Thatcher, J.W., Plenum Press, NY, 1972.

- [9] H.P.L. Luna and G.R. Mateus. Planejamento de redes de telecomunicações: visão geral e problemas de otimização. In XXII Simpósio Brasileiro de Pesquisa Operacional, pages 451– 458, Fortaleza, CE, 1989. SOBRAPO.
- [10] H.P.L. Luna and G.R. Mateus. Relatório final dos projetos de otimização de redes telefônicas. Relatório Técnico RT025/89, DCC-ICEx-UFMG, 1989.
- [11] H.P.L. Luna, G.R. Mateus, and L.C.M. Lage. Modelos de planejamento de redes telefônicas em Áreas multi-centrais. Relatório Técnico RT011/88, DCC-ICEx-UFMG, 1988.
- [12] H.P.L. Luna, N. Ziviani, and R.M.B. Cabral. The telephonic switching centre network problem: Formalization and computational experience. *Discrete Applied Mathematics*, 18:199– 210, 1987.
- [13] N. Maculan. O problema de Steiner em grafos orientados. In II Congresso Latino Americano de Pesquisa Operacional e Engenharia de Sistemas, pages 206-213, Buenos Aires, Argentina, 1984.
- [14] G.R. Mateus, F.R.B. Cruz, and H.P.L. Luna. Algorithm for hierarchical network design. (submitted to *Location Science*), 1993.
- [15] G.R. Mateus and H.P.L. Luna. Estudos de projetos desenvolvidos por convênios Unicamp/Telebrás. Relatório Técnico RT009/87, DCC-ICEx-UFMG, 1987.
- [16] G.R. Mateus and H.P.L. Luna. Combinatorial optimization in telephonic network planning. In Workshop on Practical Combinatorial Optimization, pages 40-54, Rio de Janeiro, Brasil, 1989. IFORS/ALIO.
- [17] B.T. Poljak. A general method of solving extremum problems. *Soviet Math.*, 8:593–597, 1967.
- [18] R.T. Wong. A dual ascent algorithm for the Steiner problem in directed graphs. *Mathematical Programming*, 28:271-287, 1984.
- [19] N. Ziviani. Projeto de Algoritmos Com Implementações em Pascal e C. Pioneira, São Paulo, Brasil, 1993.