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Abstract: This paper addresses a new multicommodity problem of network loca-
tion, topological design and dimensioning integrated in the same model. The general-
1zed multi-level network optimization problem is defined and one possible mathematical
programming formulation is presented. A branch-and-bound algorithm based on La-
grangean relaxation is proposed to solve this general model.
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1. INTRODUCTION

This paper addresses a multicommodity prob-
lem of network location, topological design and di-
mensioning integrated in the same model. A multi-
level network is depicted in Figure 1. The multi-
level problem shown includes m sets of candidate
supply nodes, m sets of demand nodes, and m sets
of Steiner or transshipment nodes. The arcs have
the following cost parameters: a fixed cost of using
the arc and per-unit flow costs. None of the can-
didate supply nodes can create flows except those
from the first level. However, they are able to trans-
form flows one level down. Each time a first-level
candidate supply node is chosen to provide flow or
a non-first-level candidate supply node is chosen to
transform flow, a fixed cost must be charged. The
objective is to determine a minimum-total-cost sub-
set of supply nodes and arcs with flows from the
supply nodes to all of demand nodes.

Modern telecommunication, transportation, and
electric power distribution systems, to cite just a
few, are good practical examples of multi-level net-
works. The design problems arising in such contexts
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have reached a high degree of complexity and each
time an improvement is sought out a large number
of resources are usually required to be allocated.
Because these resources are scarce the application
of optimization techniques and computer aids be-
come crucial justifying the research in new method-
ologies that make possible efficient and accurate al-
gorithms.

The study of multi-level networks is also impor-
tant in theoretical terms because they can be viewed
as a generalization of several important network op-
timization problems such as topological network de-
sign problems, fixed-charge problems, or uncapac-
itated location problems. A selective bibliography
about topological network design problems in gen-
eral can be found, e.g. in [21]. Many network op-
timization problems oriented to telecommunication
applications have been studied including topologi-
cal network design problems [13, 3], topological de-
sign and dimensioning problems [18, 5], and rout-
ing problems [1]. The fixed-charge network flow
problem [22] which is a special case that represents
an important class of mixed-integer programming
problems was studied in [17] and [7]. The Steiner
problems in graphs [19] is probably the subprob-
lem most studied. Although it is a classical model,
recent new results are being discovered for the prob-
lem [15]. The uncapacitated location problem [9] is
another relevant subproblem. The solution of this
problem has many implications in the real world
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Figure 1: A Multi-level Network

and recent advances continue to be made [11].

Little research has been done on the multi-level
network optimization problem. Multi-level networks
have appeared in some recent works but they do not
consider the integration of location, design, and di-
mensioning aspects in the same model [8, 3, 2] nor
do they provide the mathematical formulation and
bounds for the general problem [20], as done here.
However, a similar model was studied in [6].

This paper is organized as follows. In section
2, a mathematical programming formulation of the
multi-level network optimization problem is pro-
posed. In section 3, a branch-and-bound algorithm
based on Lagrangean relaxation is proposed. Sec-
tion 4 concludes this paper with final remarks.

2. MATHEMATICAL FORMULATION

Let D = (N, A) be a multi-weighted digraph,
where N is the set of nodes and A the set of arcs.
The multi-level network optimization problem with
m levels is defined on D.

The set of nodes are partitioned into the fol-
lowing subsets: (i) demand nodes D', (ii) Steiner
or transshipment nodes 7", and (iii) uncapacitated
candidate supply nodes R!, where [ = 1,2,..., m.
The demand nodes i € D' require a non-negative
amount of [-th level flow, d; > 0. The supply nodes
i € R' are only able to provide I-th level flow, l‘i]
Since there is also demand for I’-th level flow, other

supply nodes 7 € RY must be opened at fixed cost f;
whose function is to convert the supposed available
(I = 1)-th level flow to the required ’-th level flow.
The location of the supply nodes is not known in
advance and the solution of this uncapacitated lo-
cation problem is also provided by the model.

The arcs (i,j) € A have a non-negative fixed
cost associated with their use, fll] > 0, and a non-
negative per unit cost, ci»]» > 0, for each flow level.
Thus, considering that the arbitrary arc (4, j) sup-
ports positive [-th level flow, then its total cost is a
nonlinear function, ci»]»xﬁ»]» + Zl] Although this is an
additional complicating factor in the problem reso-
lution, the resulting model is able to represent the
important economy of scale effect of the arcs.

The objective 1s to minimize the total fixed and
variable costs of the chosen facilities ensuring the
imposed demand requirements.

2.1. NOTATION

The following notation is used in the mathemati-
cal programming formulation of multi-level network
optimization problem:

Rl
Dl

- set of [-th level candidate supply nodes;
- set of [-th level demand nodes;
d; - demand on node i € D for I-th level flow;

T! - set of I-th level transshipment nodes, de-
fined as follows: 7' = N \ (R'U D' U RI*1)
forl=1,2,...,(m—=1),and T™ = N\(R™ U

D™y,

;- non-negative per unit cost on arc (4,j) € A
for I-th level flow;

zt. - I-th level flow through arc (7, §) € A;

1

;; - non-negative fixed cost for using the arc

(7,7) € A to support [-th level flow;

- boolean variable which assumes the value
1 or 0 depending on whether or not the arc
(,7) is being used to support [-th level flow;

1
Yi;

fi - non-negative allocation cost for using the
candidate supply node i € R';

z; - boolean variable which is set to 1 or 0 de-
pending on whether or not the node i € R' is
being selected to provide I-th level flow;

M? - I-th level flow capacity on arcs but relaxed
in this paper, r.e. M =3"7_, Y iepr dis

- [-th level flow supplying capacity on candi-
date supply nodes also relaxed, i.e. s' = M*;

§+(i) - set {j(i.j) € A};
6=(i) - set {jl(4,) € A}.

1

9]



2.2. MODEL (M)

The mathematical programming formulation to
describe the multi-level network optimization prob-
lem is presented below, as a flow-based mixed inte-
ger programming model:

(M):
min 1S (et sl + 3 hm | )
=1 |(i,j)€EA i€ R!
s.t.:
. 1
Z Ti — Z =
JESH(D) JEST ()
» . ieR,
_ Z Tig — Z T ;v 1=2,3,...,m, (2)
JEST(4) e
l l ieT,
Z L5 — Z zy; =0, v 1=1,2,...,m, (3)
JESH(D) JEST()
l l ie D,
Z Ty — Z Tji = —di, ¥ 1=1,2,...,m, (4)
JESH(D) JEST ()
l L i€ R,
Z Ty — Z Ty <8 zi, v 1=1,2,...,m (5)
JESH(D) JEST (D)
l L 1,7) € A,
T, < My, V 1(:12)m (6)
1,7) € A,
T 2 0, v l(=1,2),...,-m, (7)
1,5) € A,
yfj (S {07 1}7 v 1(:1 2) m (8)
ic R
z €{0,1}, V ;—612 7- (9)

The objective function (1) minimizes the follow-
ing three terms: (i) the total flows’ variable cost, (ii)
the total fixed cost associated with using the arcs
(the overhead cost), and (iii) the total cost resulting
from the use of the supplying nodes.

Constraints (2) ensure the network flow conser-
vation between adjacent levels at each candidate
supply node, constraints (3), and (4) are the usual
network flow conservation equalities at each Steiner
or transshipment node and at each demand node.
Constraints (5) ensure there is no flow transforma-
tion in a candidate supply node if it is not selected,
and constraints (6) express the fact the flow through
an arc must be zero if this arc is not included in the
design.

3. SOLUTION METHODOLOGY

The multi-level network optimization problem is
NP-hard since it generalizes other N'P-hard opti-
mization problems such as the Steiner problem in

algorithm Solve(M)

/* bounding */
compute lower bound I
compute upper bound U and update Uggst
GAP — U=L
/* branching */
if . > UggsT then
write ‘Infeasible node reached.’
else if GAP < ¢ then
write ‘Optimum reached.’
else if P has a free decision variable then
choose free decision variable
create new problem fizing it to 1
Solve(New_M)
create new problem fizing it to 0
Solve(New_M)
end if
end if
end if

end algorithm

Figure 2: Recursive Branch-and-bound Algorithm

graphs [12] or the uncapacitated location problem
[9]. The only known exact approach to solve an
NP-hard problem is through the complete enumer-
ation of all solutions. Branch-and-bound is a well-
known technique largely applied. Although the al-
gorithm is exponential, 1t is acceptable for small
sized problem instances. Figure 2 presents a tem-
plate of a recursive version of the branch-and-bound
algorithm using depth-first search’.

Three statements shall be clarified in the branch-
and-bound algorithm presented in Figure 2: the
computation of (i) lower bounds, (ii) upper bounds,
and (iii) the strategy of choosing the branching vari-
ables.

3.1. LOWER BOUND COMPUTATION

A well-known technique to derive lower bounds
is Lagrangean relaxation [10] which is usually cou-
pled with a subgradient optimization procedure [16].
There are many ways to derive a Lagrangean relax-
ation for model (M). The relaxation we propose
divides the problem into a shortest paths problem
and subset selection problems.

Let us drop constraints (5) using the dual vari-
ables v; > 0 and constraints (6) using the dual vari-
ables wfj > 0. Then, the Lagrangean function be-
low follows:

. 1 2 myN __
L(x,y,z;v,w w' ..., w")=

1Tn opposition to breadth-first search.
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which results in the following Lagrangean relax-
ation:

(LRv,wl,W'2 ..... wm)1

(2), (3), (4), (7), (8), (9)-
Supposing that L(v,w! w2 ... .w™) = L(x*,
v, z*;v,wl w2 ... w™), the subgradient vector
of the function I at point (v, w!, w? ..., w™) is:

(12)
=1,2,....om

Once feasible values for the Lagrangean multi-

pliers v, w!, w2 ..., and w™ are given, the compu-
Lw? ..., w™) is re-

tation of the function L(v,w' w2
duced to solve easy? subproblems:

Lv,w! w? ... w") =

wm) +
’”) (13)
LW, La(v,whiw?
2

w™), and Lz(v,w! w?, w™™) are optimal solu-
tions of the subproblems shown below.

Ll(v7W17W27
La(v, w! w2, .

Ls(v, w! w?

where Li(v,w! w2,

3.1.1. SUBPROBLEM (1)
The subproblem () is:
(L1):
m) _

2Tn such context, easy is used in reference to polynomially
solvable problems.

Lq(v, w! w?

algorithm
/* ol is the minimum per unit cost to bring */
/* I-th level flow from set R! to node i € N; */
/* function SH(4, j, ) returns the shortest */
/* path length from 7 to j using costs C'Z]; */
L1 <0
for all j € R! do
if j € J then
a}) —0
else
a}) — +00
end if
end for
for / — 1 to m do
for all j € D' do
0} — min [o7" 4 SH(4, j,1)]
i€R!
Il — L1+ 0! +d;
end for
ifl #m do
for all j € R*! do
if j € J then
0} — min [o7" 4+ SH(4, j,1)]
i€R!
else
0} — +00
end if
end for
end if

end for
end algorithm

Figure 3: Algorithm for Solving Problem (1)

mlnz Z C’Z] ij> (14)
=1 (i,j)eA
s.t.:
(2), (3), (4), (7),
where

ety +wl ig R, j¢R,
o — chy+wh + v i€ R, j¢&R,
v cli] +w§]_v]7 'igRlv jER17
cli]—|—wf]—|—vi—v], -iERl, jERl.

(15)

The optimum of (L) is easily reached using
a shortest paths algorithm. The problem can be
solved level by level. The optimum for the first level
is to connect nodes in D! to nodes in R! using the
shortest paths. For the second level, the optimum
is to connect nodes in D? also to nodes in R! via
shortest paths but using one node of R?, and so on,
for the other levels, as shown in the algorithm seen
in Figure 3.



The shortest simple paths algorithm for arbi-
trary costs is O(|N||A|) if there are no negative
cost circuits [4]. Thus, from the Theorem 1 be-
low, the algorithm for solving problem (L) pre-
sented in Figure 3 efficiently implemented has worst
case time complexity O(m|N||A|) which translates
to O(m|N|?) in dense networks.

Theorem 1 The problem (L1) on the digraph D =
(N, A) with weights as defined in Equation (15) does
not have negative cost circuits.

Proof (by construction): Let C' be an arbitrary
circuit in the I-th level, A(C") C A be the set of arcs
in that circuit and N(C') C N be the set of nodes in
the circuit. From Equation (15), the per unil cost
associated with circuit C' must be non-negative:

Y. G o= D et Y, wh+
(@,)€A(CH) (@,)€A(CT) (@,)€A(C)
Z v; — Z U]'
iEN(CH)NR! JEN(CHNR!
= Do+ Y
(@,)€A(C) (@,)€A(C)
> 0.
|
3.1.2. SUBPROBLEM (IL,)

The subproblem (L2) is a subset selection prob-
lem:

(L2):
Lo(v,wh w? ... w™m) =
minz Z ( Z'l]' — ngMl) ygjv (16)
I=1 (i,j)€A
s.t.:
iv j S A7
oy v TOEL )

which can be solved by an algorithm with time com-
plexity O(m|A[), or O(m|N|?) for dense networks.

3.1.3. SUBPROBLEM (Ls)

Similarly, the problem (L3) is also a subset se-
lection problem:

(Ls):
La(v,whw? ... w™m) =
mmzz —vs 2, (18)
=1 {eR!
s.t.:
. i
sefoy, v S (19)

solvable by an O(|N|) algorithm.

3.2. UPPER BOUND COMPUTATION

The objective here is to propose a heuristic pro-
cedure to get feasible solutions quickly. The princi-
pal characteristics of heuristic procedures are flexi-
bility and computational simplicity.

There are many possibilities of computing an
upper bound for model (M). The method proposed
here takes advantage of the problem (L;) optimal
solution. Actually, this solution may be turned into
a feasible solution for model (M) if it is ensured
feasibility of the previously dropped constraints (5)
and (6). Using the same arcs used in the optimal so-
lution of problem (L) and computing the overhead
costs?, an upper bound is reached.

3.3. BRANCHING VARIABLE CHOICE

It is an inglorious task to choose branching vari-
ables because it i1s common that one strategy works
very well in some instances and poorly for others.
The objective is to minimize the number of nodes
visited in the branch-and-bound tree. We decided
in favor of simplicity. The branching variable will be
that one for which one get the maximum expected
increment in the lower bound. So, from Eq. (10),
the branching variable will be:

zp, i maxA,, > maxA, |
7
yf i otherwise,
where
A, = vk E l‘k] E J: — slz* ,

JEsH (k) jes= (k)

if the decision variable z; 1s free in the current
branch-and-bound tree node and A,, = 0, other-
wise. Additionally,

* *
Az _|w (l‘i] —Mlyf]»)

if the decision variable yl is free in the current

branch-and-bound tree node and A, L= = 0, other-
wise. Values A, and A, 1 are computed using the
latest vectors x*, y*, *, v, wl, w?,..., and w™

obtained.

The method above seems to be a more effective
branching strategy than simply to choose the first
free variable encountered and is an O(m|A|) proce-
dure (or O(m|N|?) in dense networks).

4. SUMMARY AND CONCLUSIONS

The multi-level network optimization problem
integrating location, topological design, and dimen-
sioning in the same model was defined and its im-

3Setup cost of arcs, filj7 and supply nodes, f;.



portance was discussed. A useful mathematical pro-
gramming formulation was proposed and then a
branch-and-bound algorithm was developed.

Some questions remains open such as how effec-

tive the bounds actually are and how large the in-
stances solvable in a reasonable amount of time are.
Future work might include the investigation of these
questions as well as the study of enhanced models

that incorporate connectivity constraints which are

very important issues in the emerging emphasis on
topological robustness and reliability [14, 2].
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