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Abstract: Given a directed network, the uncapacitated fixed-charge network flow
problem is that of finding a minimum-cost arc combination that provides flows from
the supply nodes to the demand nodes. Associated with all arcs there are two costs in-
volved, the fixed charge of using the arc and the variable cost depending on the amount
of flow the arc actually carries. This generic model has applications for problems of dis-
tribution, transportation, communication, and routing. The purpose of this paper is to
present an improved branching strategy to solve the problem using branch-and-bound
algorithms.
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1. INTRODUCTION

The uncapacitated fixed-charge network flow
(UFNF) problem represents an important class of
mixed-integer programming problems. The prob-
lems are defined on a digraph D = (N, A4), where N
is the set of nodes and A is the set of arcs. One of
the costs involved is the fixed cost of using an arc
to send flow and the other is a variable cost depen-
dent on the amount of flow sent through the arc.
The objective is to determine a minimum cost arc
combination that provides flows from certain sup-
ply nodes to a collection of demand nodes, possibly
using intermediate Steiner or transshipment nodes.
A single-supply-node instance of the problem is de-
picted in Figure 1.

This is an AP-hard optimization problem [6]
generalizing among others the Steiner problem in
graphs [13]. This generic model has applications for
problems of distribution, transportation and com-

munication. It i1s also useful for certain routing O - supply node
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problems where the network is already in existence.
Besides being an important model by itself, several
special cases of the UFNF problem are of substan-
tial interest. A simple way to obtain special cases
i1s to restrict the network structure, e.g. as in the
transportation problem.

One example of an application closely related to
the UFNF problem is in the field of distribution sys-
tems, e.g. the problem of designing offshore natural-
gas pipeline systems [22]. The central separation
plant is located on land and typically serves multi-
ple offshore under-water gas wells. The problem is
how to transport gas from the offshore wells to the
separation plant at minimum cost. An important
characteristic of gas pipelines systems is that the
construction cost consists of fixed components that
are independent of the amount of flow and variable
components which are proportional to the amount
of flow.

Another application in communication network
design is treated in detail by [17]. The switching
center network problem described there consists of
looking for a topology on the urban street network
that minimizes the total cost of cables and sub-
terranean piping infrastructure necessary to link a
telephone center and its subscribers. Again, the
fixed cost — represented by the subterranean in-
frastructure — and the flow-dependent cost — rep-
resented by the cables — occur simultaneously for
each arc. Actually, the network depicted in Figure 1
was taken from this application, which is an illus-
tration of a local switching center network problem.
The dotted arcs represent important streets and the
bold ones represent the topological solution. The
supply node represents a local switching center, the
demand nodes represent groups of subscribers, and
the Steiner nodes represent the street intersections.
More details on this problem may be found in [17].

Finally, even considering those cases where the
network topology is known in advance, important
routing problems emerge. Suppose, for example,
that one specific node in the network has to send
messages at minimum cost addressed to a specific
collection of other nodes in the network. The UFNF
model is applicable since it 1s a reasonable assump-
tion that an initial set up cost is associated with
each link selected independent of the flow as well as
a variable cost dependent on how much information
has to be sent.

Some experimental work concerning exact and
approximate solutions for the UFNF problems and
their special cases have been done previously. In
[22], an analysis of offshore natural-gas systems was
done with the cost model being simplified including
only fixed costs. In [17], the model studied was even
more complex than the UFNF problem, presenting
some additional features. However, only heuristic
procedures and local optimization techniques were

considered. The special case without Steiner nodes
was treated by [16] and by [19]. Tn the former, an
exact branch-and-bound algorithm combined with
Benders cuts was studied, and in the latter, a set
of heuristic procedures based on Lagrangean relax-
ation techniques was developed. In [2, 5], some spe-
cial cases were solved using a branch-and-bound al-
gorithm with fractional cutting-planes. Previously,
we have studied ADD and DROP heuristic ap-
proaches [7, 20] as well as simplified branch-and-
bound algorithms [8, 9] to solve the general UFNF
problems and these algorithms have performed well
in practice.

The branch-and-bound approach is known to be
inefficient because of its combinatorial explosive be-
havior and 1t is often only acceptable for small prob-
lem instances. The use of improved branching tech-
niques 1is justified because they may speed-up the
algorithm consequently enlarging the size of man-
ageable instances. Keeping in mind the importance
of the UFNF problems and the necessity of solving
large instances generated by real word problems,
we are proposing procedures designed to improve
the effectiveness of branch-and-bound algorithms in
conventional computer systems. However, we are
aware that there always will be cases where an ex-
act approach may be impossible no matter what
systems or algorithms are utilized.

The outline of this paper is as follows. In Sec-
tion 2, the mathematical programming formulation
of the UFNF problem will be presented. In Sec-
tion 3, we shall discuss the solution methods we
are proposing. All proposed algorithms were im-
plemented and our experimental results using this
implementation are reported in Section 4. Section 5
closes this work with final remarks, open questions,
and the presentation of some possible extensions.

2. PROBLEM FORMULATION

A natural generalization of the UFNF problem
is the capacitated fixed-charge network flow (CFNF)
problem. Although the CFNF problem is very dif-
ficult to be solved, it can be represented by a sur-
prisingly compact mathematical programming for-
mulation [21]:

(M):

min Z (cijzij + fijuij) (1)

(27]>€A

s.t.:

Z Tij — Z l’ji:bia v iENa (2)
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Yi; € {0,1}, V (Za]) € A, (5)



where D = (N, A) is a digraph, N is the set of
nodes, A is the set of arcs, 6%(i) = {j|(4,) € A},
5= (1) = {jl(4,7) € A}, by > 0 (< 0) is the supply
(demand) at node i, f;; is the fixed cost of having
flow on arc (i,j), ¢;; is the variable cost per unit
of flow on arc (4, ), and u;; is the capacity of arc
(7,7). Tt is noticeable that the only difference be-
tween the CFNF problem and the linear minimum-
cost network flow (MCNF) problem is that, in the
former, if the flow is positive, i.e. x;; > 0, then its
cost is ¢;j2;5 + fij. The capacity constraints (3)
ensure that characteristic. That simple difference
transforms the polynomially solvable MCNF prob-
lem into the A"P-hard CFNF problem.

As pointed out by [21], a necessary condition for
feasibility, assumed throughout this work, is that
> ien bi = 0. Additionally, it is assumed that all
problems are single-supply-node. The fixed cost f;;
must be non-negative for all arcs (i, j), since other-
wise one could set y;; to 1 and eliminate it from the
problem. On the other hand, the variable cost ¢;;
is unrestricted. However, to ensure that the objec-
tive function is bounded from below, it is assumed
that there are no negative-cost directed cycles with
respect to ¢;;.

An important simplification we are considering
here concerns the capacity constraints. If the u;;
is sufficiently large, say wu;; > %ZieN |b;], the ca-
pacity constraints only force the inclusion of the
fixed cost in the objective function when the flow is
positive. The problems under such assumption are
called uncapacitated and these are the only prob-
lems treated in this work.

3. SOLUTION METHOD

The branch-and-bound algorithm is a well-
known procedure to solve N"P-hard problems, com-
putationally inefficient because of its exponential
worst-case time complexity, O(2l41), but acceptable
in practice for small sized problem instances. Ba-
sically, three statements are present in branch-and-
bound algorithms: computation of lower and upper
bounds and a strategy of choosing the branching
variables.

3.1. COMPUTATION OF BOUNDS

The use of a linear programming (LP) relaxation
is an obvious way to get lower bounds. Unfortu-
nately, the LP bounds would be very poor because
the fixed costs are badly represented by the LP re-
laxation. As noted by [11], in such cases, we can sig-
nificantly improve the lower bounds in comparison
to the linear relaxation lower bounds using the La-
grangean relaxation technique usually couple with
a subgradient optimization algorithm [15]. Besides,
the use of the Lagrangean relaxation has been ex-

tensively applied to important subproblems of the
UFNF problem [14, 12].

Dropping the capacity constraints (3) by means
of dual variables w;; > 0, an easily solvable re-
laxed problem results and the computation of the
lower bounds is reduced to solve two polynomial
subproblems: (i) a MCNF problem in x and (ii) a
set-selection problem in y. The subproblem in x is
solvable by an O(|N||A|) procedure making use of a
shortest simple paths algorithm for arbitrary costs
[3] since as our initial assumption there are no neg-
ative cost circuits'. The problem in y is solvable by
an O(|A]) algorithm.

A simple and efficient way of computing upper
bounds for model (M) is to take advantage of the
relaxed problem solution. The flows obtained after
solving the problem in x are feasible because they
satisfy the demand requirements. The only addi-
tional work necessary to be done is to compute the
cost of these flows using the original costs ¢;; and
adding to the total flows’ cost the overhead costs
fij for each arc supporting flows.

3.2. BRANCHING STRATEGY

The simplest way is to choose the first free arc,
Figure 2.

procedure Choose_First_Free_Arc
/* search new eligible free arc */
for all (i,5) € A do
if (i,7) is still unfived by the branch-
and-bound algorithm then
return (7, j)
end if
end for
return FAIL
end procedure

Figure 2: “Naive” Branching Strategy

However, the branching strategy i1s fundamen-
tal in the performance of branch-and-bound algo-
rithms. The use of clever choices coupled with the
use of good lower and upper bounds can reduce
significantly the number of nodes explicitly exam-
ined in the branch-and-bound search tree with con-
sequent reduction in the overall processing time.
The optimal solutions of UFNF problems have a
very important property that can be very helpful
as stated by the following Theorem:

Theorem 1 Ifthe UFNF problem has an optimum
solution then there 1s an optimum positive flow arc
set such that at most one arc enters into each node.

INote that the shortest simple path problem with nega-
tive cost circuits is A’P-hard [3].



Proof (by contradiction): Let us suppose that
Theorem 1 1s not satisfied by any optimal solution
and that node m has two entering arcs say (k, m)
and (I,m). There must be a set of arcs forming a
directed path without cycles from the supply node
to node m passing through node k, 1.e. using arc
(k,m), called Py. There is also a directed path with-
out cycles using arc (I,m), called P. Without loss
of generality, let us suppose that

D @S Y, e
(1,7 )€ P (1,j)€P,

Thus, disabling arc (I, m) and transferring ils flow,
Tim, from path P; to path Py there will be at least
the following reduction in the objective function:

E Ci]' —

(i,j)EP

Z ¢j | iy + fim > 0.

(i,j)EPx

The resulting solution is at least as good as the origi-
nal and satisfies Theorem 1 contradicting our initial
assumpiion. |

Thus, a possibly much better way is to choose
the first free arc found that does not violate Theo-
rem 1, Figure 3.

procedure Choose_No_Cycling_Arc
/* compute set of reached nodes T */
T —10
for all i € N such that b; > 0 do
T —TuU{i}
end for
for all (i,5) € A do
if (i,7) s already fized to 1 by the
branch-and-bound algorithm then
T —TU{i} U}
end if
end for
/* search new eligible free arc */
for all (i,5) € A do
if (i,7) is still unfived by the branch-
and-bound algorithm and ¢ € T and
j ¢ T then
return (4, j)
end if
end for
return FATIL
end procedure

Figure 3: Improved Branching Strategy

The last for all in the Choose_No_Cycling_Arc
procedure is the most expensive operation finishing
after O(|A]) iterations in the worst case. Tts internal
if can be made O(1) resulting in an O(|A|) overall
worst-case time complexity, surprisingly the same
as in the Choose_First_Free_Arc procedure.

4. EXPERIMENTAL RESULTS

A preliminary version of the algorithm coded in
the C' programming language was developed and
is available upon request. All tests presented were
performed using a DECstation 3100 running the op-
erating system ULTRIX V4.2A (Rev. 47).

All test problems came from Euclidean graphs
randomly generated using a procedure similar to
one presented in [1] that has been extensively ap-
plied for creating testing instances [23, 4].

Each test problem was generated as follows. A
total of |N| nodes were allocated in a 100 x 100
square using a uniform probability distribution. The
extremities 7 and j of | N|—1 edges were defined also
by a uniform distribution ensuring the existence
of an undirected spanning tree’. Then extremities
of additional edges were randomly generated until
|A|/2 edges were present. In order to convert the
above undirected test problems into directed ones,
each edge was replaced by 2 opposite arcs. The arc
weights €2;; were defined as the Euclidean distance
between the respective extremities.

For all graphs, the nodes were randomly picked
up only once and put either in the supply candidate
node set S either in the demand node set D creat-
ing sets with the required cardinality. All demands
were considered unitary. The cardinality of set S
was also considered unitary. Graphs with 16 and
32 nodes were used. As much as possible, sparse
and dense networks were tested for each number of
nodes. For each combination of nodes and arcs, dif-
ferent number of demand nodes were tested. The
costs f;; and ¢;; were derived from the weights €;;
using the constant factors 1 and 10.

Table 1 presents the results of all computational
experiments. The results presented for the first
node of the branch-and-bound search tree are the
best upper bound, the gap, and the CPU time spent
in seconds. The total number of branch-and-bound
nodes explored and the CPU time in seconds spent
after the first node are presented for both branch-
ing strategies. All CPU times reported are the clock
time excluding all I/O operations and considering
only a single process running on the machine.

For each graph, three instances with different
J;—Z ratios were considered. The problems with ra-
tio 1 : 10 (fi; = Qi; and ¢;; = 10Q;;) form a class
approaching the MCNF problem which is polyno-
mially solvable. On the other hand, the problems
with ratio 10 : 1 (fi; = 10Q;; and ¢;; = €Q;;) form a
class of almost Steiner problems which is A"P-hard.
However, both cases are still N"P-hard.

From the column GAP in Table 1, it may be seen
that although offering poor lower bounds, mainly
in those problems closer to Steiner problems, the

2Such procedure guarantees a connected network and
therefore a feasible solution for the problem.



Table 1: Effect of The Branch-and-Bound Strategy

Branch-and-Bound

First Node Choose_First_Free_Arc Choose_No_Cycling_Arc

IN| 14] D] éﬂj gﬂj SOL®  GAP* CPU Nodes CPU Nodes CPU
16 30 4 1 10 1.0000 1.50 0.20 299 24.00 29 2.40
1 1 1.0000 12.00 0.20 299 24.00 29 2.40

10 1 1.0000 44.00 0.22 299 26.00 29 2.50

8 1 10 1.0000 2.10 0.21 817 69.00 43 3.70

1 1 1.0000 19.00 0.21 817 69.00 43 3.80

10 1 1.0000 94.00 0.22 817 75.00 43 4.00

15 1 10 1.0000 1.90 0.23 4,817 440.00 31 2.90

1 1 1.0000 18.00 0.24 4,817 440.00 31 2.90

10 1 1.0000 110.00 0.24 4,817 480.00 31 3.20

60 4 1 10 1.0000 3.40 0.52 4,143 750.00 189 45.00
1 1 1.0000 24.00 0.53 6,475 1,200.00 245 61.00

10 1 1.0000 68.00 0.56 3,389 790.00 375 110.00

8 1 10 1.0000 3.50 0.55 ** ** 3,181 740.00

1 1 1.0000 25.00 0.52 H* H* 4,063 980.00

10 1 1.0000 110.00 0.57 H* H* 11,689 3,100.00

32 62 4 1 10 1.0000 4.20 0.64 196,427 48,000.00 1,923 510.00
1 1 1.0000 34.00 0.64 H* H* 1,923 510.00

10 1 1.0000 120.00 0.68 H* H* 1,923 540.00

8 1 10 1.0000 3.70 0.65 ** ** 3,635 960.00

1 1 1.0000 33.00 0.63 H* H* 3,635 960.00

10 1 1.0000 170.00 0.67 H* H* 3,635 1,000.00

16 1 10 1.0000 2.70 0.68 ** ** 2,071 610.00

1 1 1.0000 26.00 0.67 H* H* 2,071 610.00

10 1 1.0000 170.00 0.71 H* H* 2,071 640.00

31 1 10 1.0000 2.20 0.74 ** ** 63 21.00

1 1 1.0000 22.00 0.74 H* H* 63 21.00

10 1 1.0000 170.00 0.78 H* H* 63 22.00

124 4 1 10 1.0000 5.40 2.10 ** ** 379 330.00
1 1 1.0024 44.00 2.00 H* H* 4,663 4,200.00

10 1 1.0011  120.00 2.20 H* H* 16,817 17,000.00

** Not available (time overflow).

Lagrangean relaxation is a very good heuristic for
solving the UFNF problem. Only in two cases the
optimum was not reached at the first branch-and-
bound node (see the column SOL in Table 1). Of
course, the larger and more dense the instances are,
the less likely the optimum will be reached in the
first branch-and-bound node.

The results presented also shown how the branch-
and-bound strategy affects the processing time. The
Choose_No_Cycling_Arc procedure had a much bet-
ter performance. The procedure reduces the num-
ber of combinations since it disregards all infeasi-
ble solutions involving cycles. The worst-case time
complexity of the branch-and-bound algorithm un-
der such procedure does not change and it is still
O(2|A|). However, 1t is reasonable to expect in prac-
tice that the time complexity be lower than this be-
cause the problems usually have many arcs forming
cycles.

5. FINAL REMARKS

The UFNF problem is a challenging intractable
problem (A P-hard) with many applications for the
real word. The generic model also encompasses

1501, = best upper bound
- E)ptimal solution 1 )
best upper bound)—(best lower bound
best lower bound *100%

YGAP =

many other special cases with remarkable impor-
tance in practice. A formulation for the problem
was presented and an algorithm to solve 1t to op-
timality was discussed. New criteria for choosing
branching variables based on an optimum solution
property was introduced. The algorithms were im-
plemented performing very well in practice as the
computational experiments have shown.

Some open questions remains. Would it be pos-
sible to reduce even more the number of explored
nodes using a more complex strategy to choose a
free non-cycling arc perhaps taking advantage of the
Lagrangean relaxation lower bounds? Future work
may include investigations of this question. It may
also include the development of reduction tests that
eliminate arcs and/or nodes from the original prob-
lem in a preprocessing stage, similar to those tests
presented in [18] and [10] for the Steiner problem in
graphs. It 1s also of interest to investigate how the
techniques proposed here can be adapted for solv-
ing some special cases of the UFNF problem (e.g.
the fixed-charge transportation problem [2] and the
uncapacitated facility location problem [12]) taking
advantage of their particular network structure.
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