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Abstract

This paper deals with the bootstrap as an alternative method to construct

confidence intervals for the hyperparameters of structural models. The bootstrap

procedure considered is the classical nonparametric bootstrap in the residuals of

the fitted model using a well-known approach. The performance of this procedure is

empirically obtained through Monte Carlo simulations implemented in Ox. Asymp-

totic and percentile bootstrap confidence intervals for the hyperparameters are built

and compared by means of the coverage percentages. The results are similar but

the bootstrap procedure is better for small sample sizes. The methods are applied

to a real time series and confidence intervals are built for the hyperparameters.

Keywords: state space models, asymptotic confidence intervals, nonparametric

bootstrap.

1 Introduction

One way of modeling a time series is through its decomposition in non-observable com-

ponents, using structural models (Harvey, 1989). This technique, in spite of its simplicity

†Corresponding author: Prof. Glaura C. Franco. E-mail: glauraf@ufmg.br. Phone: (+55 31) 3499
5949. Fax: (+55 31) 3499 5929.
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due to the direct interpretation of the components, was initially undertaken due to com-

putational difficulties involved in the implementation of the Kalman filter. Nowadays,

the models can be adjusted either using new softwares developed specially to fit struc-

tural models, such as STAMP (Koopman et al., 1995) or by means of some subroutines

available in R (R Development Core Team, 2005) or Ox (Doornik, 1999).

Parameter estimation, in many of the structural models, can be performed by simply

estimating the variance of the errors of the non-observable components, named hyperpa-

rameters. Inference about these quantities can be done using the asymptotic distribution

of the hyperparameters, in which the calculation of the asymptotic variance can be per-

formed in an analytic or computational way (Harvey, 1989). More details about the use

of structural models can be found in Harvey (2001), Harvey et al. (2004) and Durbin &

Koopman (2001).

Some attention has also been given in applying the nonparametric bootstrap method-

ology in time series data. The most common alternative to perform the bootstrap in

discrete time series is to resample the residuals of the fitted model, which are generally

uncorrelated if there is not order misspecification (Efron & Tibshirani, 1993). Recently,

different bootstrap procedures in time series data have been one of the main research focus

in the area (for instance, see Silva et al., 2006, and references therein). Some references

to the use of bootstrap in structural models include Stoffer & Wall (1991), Franco et al.

(1999), Franco & Souza (2002), Davis & Yam (2003), Pfeffermann & Tiller (2004) and

Olsson & Rydén (2005). However, there is still not many works on the use of bootstrap

procedures in the estimation and test of the hyperparameters of structural models, and

this is the main motivation of this paper.

The main objective of this work is to test, empirically, the efficiency of the bootstrap

proposed by Stoffer & Wall (1991) in order to make inferences about the hyperparameters

of structural models, extending the work of Franco & Souza (2002) and considering,

besides the local level model (LLM) and the local linear trend model (LLT), a wide class

of structural models, named the basic structural model (BSM). In addition, percentile

bootstrap confidence intervals are built and compared to the asymptotic intervals by

means of the coverage percentage and width of the intervals. Additionally, this work

will enable future developments of inference procedures, such as the hypothesis tests to
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verify the significance of the hyperparameters. An application to a real time series is also

presented, as an illustration of the methodology.

This paper is organized as follows. Section 2 presents the structural models considered

in this work, as well as the bootstrap technique. Section 3 presents some Monte Carlo

simulations and the confidence intervals for the hyperparameters. Section 4 applies the

methodology to a real time series and Section 5 concludes the work.

2 Structural Models and Bootstrap

In this section, the structural models considered in this work and the construction of the

bootstrap series are described in some details.

2.1 Structural Models

Decomposition models, also known as structural models, are often used to model and

predict a time series. This kind of modeling assumes that the characteristic movements

of a time series can be decomposed in four components:

1. trend (µt): refers to the general direction a series takes over a large time interval;

2. seasonal component (γt): refers to a similar pattern a series seems to follow during

successive period of times, resulting from periodic events that occur annually;

3. cyclical component (ψt): refers to the oscillations occurring on a long turn;

4. random component or error (ǫt): refers to the sporadic movings of a series, due to

casual events.

Thus, a very general model to a univariate time series can be written as:

yt = µt + γt + ψt + ǫt, (1)

in which ǫt ∼ N (0, σ2
ǫ ), independent.

The structural models considered in this work are the local level model (LLM), the

local linear trend model (LLT), and the basic structural model (BSM). For example, the

3



BSM is defined by dropping ψt from Eq. (1) and using the following equations to model

the non-observable components

µt = µt−1 + βt−1 + ηt, ηt ∼ N (0, σ2
η), (2)

βt = βt−1 + ξt, ξt ∼ N (0, σ2
ξ ), (3)

γt = −γt−1 − . . .− γt−s+1 + ωt, ωt ∼ N (0, σ2
ω), (4)

in which ǫt, ηt, ξt, and ωt are white noise disturbances mutually non-correlated and s

is the size of the seasonal component. The seasonal component γt is calculated here

performing a stochastic modeling using the dummy approach
∑s−1

j=0 γt−j = ωt. The LLT

is obtained by dropping Eq. (4) and the components γt and ψt from Eq. (1). The LLM

is obtained by dropping Eq. (3) and Eq. (4), the component βt−1 from Eq. (2), and the

components γt and ψt from Eq. (1). More details about structural models can be found

in Harvey (1989).

The hyperparameter vector ψ =
(
σ2
ǫ , σ

2
η, σ

2
ξ , σ

2
ω

)
can be estimated maximizing the

likelihood function

L(ψ) = (y1, . . . , yn | ψ) =
n∏

t=1

f (yt | Y t−1,ψ) ,

in which Y t−1 = (y1, y2, . . . , yt−1) and n is the size of the series.

One way of calculating the predictive distribution f (yt | Y t−1,ψ) is by means of

the Kalman filter (Kalman, 1960). The Kalman filter is a recursive procedure which

decomposes the series in its non-observable components through recursive equations that

update sequentially the state vector, once the model is in the state space form. The state

of the process condenses all the necessary information from the past to predict the future.

A general representation for the state space form is given by

yt = z′tαt + ǫt (5)

αt = T tαt−1 +Rtηt, t = 1, ..., n (6)

in which αt is a p × 1 unobservable state vector, the disturbances ǫt and ηt are serially

uncorrelated, with zero means and variances given by ht and Qt, respectively, and zt,
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T t and Rt are the system matrices. It is straightforward to write the LLM, LLT and

SBM models in the state space form and to implement the Kalman filter. For details see

Harvey (1989).

Given that the model is in the state space form, the likelihood function can be written

in the following way

f(yt|Y t−1,ψ) = (2π)−1/2|Ft|−1/2 exp
{
(−1/2)(yt − ỹt|t−1)

′F−1
t (yt − ỹt|t−1)

}
,

in which ỹt|t−1 is the one-step-ahead prediction and Ft is the variance of the one-step-

ahead prediction error, given by νt = yt − ỹt|t−1. The values ỹt|t−1 , Ft and νt can be

obtained through the Kalman filter.

As the likelihood function is nonlinear, the estimation should be done via numerical

methods. The maximization method used here is the BFGS, taking advantage of Ox

(Doornik, 1999), which has a fair built-in implementation of this well-known optimization

algorithm.

Harvey (1989) states that, under some regularity conditions, the maximum likelihood

estimator, ψ̂, is asymptotically normal with mean ψ and covariance matrix aV ar(ψ) =

n−1IA−1(ψ), in which

IA(ψ) = lim
n→∞

n−1I(ψ),

and I(ψ) is the information matrix.

Asymptotic Confidence Intervals

In order to calculate the variances of the hyperparameters, Harvey (1989) proposes a

numerical approximation to calculate the derivatives of νt and Ft, which are extremely

useful in calculating the Fisher information matrix, whose form is given by

Iij(ψ) =
1

2

∑

t

{
tr

[
F−1
t

∂Ft
∂ψi

F−1
t

∂Ft
∂ψj

]}
+ E

{
∑

t

(
∂νt
∂ψi

)′

F−1
t

∂νt
∂ψj

}
,

in which i, j = 1, . . . , k, t = 1, . . . , n, and k is the number of hyperparameters to be

estimated.

The derivatives of νt and Ft can be calculated through the following procedure:
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1. for i = 1, . . . , k, a small quantity, δi, is added to ψi;

2. the Kalman filter is run with the new value of the hyperparameter, but keeping

fixed the values of the other hyperparameters;

3. a new prediction error vector, ν
(i)
t , and its covariance matrix, F

(i)
t , are obtained;

4. the expressions δ−1
i [ν

(i)
t − νt] and δ−1

i [F
(i)
t − Ft] are then numerical approximations

to the required derivatives.

The choice of this small quantity, δ, to be presented in Section 4, will be performed

by a Monte Carlo study.

A 100(1 − κ)% asymptotic confidence interval for ψ is then given by

ψ̂ ± zκ/2
√
aVar(ψ),

in which zκ/2 is the κ/2 percentile of the Normal distribution.

2.2 Bootstrap

The bootstrap is a resample method (Efron, 1979), used mainly to make inferences about

the parameters of a given model. This is done by taking resamples (with replacement)

of the original data and trying to approximate the distribution of a function of the

observations by the empirical distribution of the data.

In this work, the bootstrap is done in the residuals of the fitted model, following the

work of Stoffer & Wall (1991). Using the Kalman filter, the innovations, νt, and their

variances, Ft, are obtained recursively. As they are a function of the hyperparameters ψ,

the notation νt(ψ) and Ft(ψ) will be used. First the hyperparameters should be estimated

and the innovations, νt(ψ̂), calculated. Next, the innovations should be re-scaled as

et(ψ̂) =
νt(ψ̂) − νt(ψ̂)√

Ft(ψ̂)
,

in which νt(ψ̂) =
Pn

j=1
νj(

cψ)

n
.

The bootstrap innovations, e∗t (ψ̂), are obtained by resampling et(ψ̂), with replace-

ment.
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Let the vector St be defined as

St =

[
at
yt−1

]
,

in which at is a linear estimator for the state vector αt, with variance V t. Then

St+1 =

[
T t 0

zt 0

]
St +

[
T tV tz

′
tF

−1
t

√
Ft√

Ft

]
et. (7)

The bootstrap series y∗t can be calculated solving Eq. (7) by substituting et by e∗t and

using the estimated values Ft(ψ̂), at(ψ̂) and V t(ψ̂) obtained from the Kalman filter.

Bootstrap Confidence Intervals

The percentile bootstrap confidence interval (Efron & Tibshirani, 1986) will be used in

this work to build intervals for the hyperparameters. In practice, after estimating the

hyperparameter values for each one of the B bootstrap series, the values are ordered and

the 100κ-th value is taken as the inferior limit and the 100(1-κ)-th as the superior limit

of the interval. Thus, the percentile bootstrap interval is given by

[
ψ̂

(κ)
; ψ̂

(1−κ)
]
.

3 Simulation Results

All the algorithms described were implemented in Ox and are available from the authors

upon request. The estimates were compared through their means and mean square errors

(MSE) and the confidence intervals were compared by means of the coverage percentage.

The nominal level was fixed at 95%. The performance of the bootstrap procedure was

investigated by carrying out a series of simulations in the LLM, LLT and SBM. Series sizes

of n = {50, 100, 200}, bootstrap resamples of B = 1000 , and Monte Carlo replications of

MC = 500 were considered. The hyperparameter values were fixed at σ2
ε = 1.0, σ2

η = 0.5,

for the LLM, σ2
ε = 1.0, σ2

η = 0.5 and σ2
ξ = 0.1, for the LLT, and σ2

ε = 1.0, σ2
η = 0.5,

σ2
ξ = 0.03, and σ2

ω = 0.1, for the SBM. These choices were based on earlier studies

(from Ribeiro, 2006, not shown). The burn-in used was equal to 100 and the number of

iterations in the BFGS algorithm equal to 50.

7



3.1 Determining δ

In order to calculate the Fisher information matrix and to build the asymptotic intervals,

a Monte Carlo study was performed with the aim of defining δ, which was varied from

10−6 to 102, in powers of 10, for a sample size of 100. For each value of δ, 1000 Monte

Carlo simulations were performed. The asymptotic intervals for the hyperparameter of

each series were calculated and the inferior and superior limits were averaged for the

intervals obtained in the simulations. Figures 1, 2 and 3 show the results of the Monte

Carlo simulation for the asymptotic intervals in the LLM, LLT, and BSM, respectively.

It can be observed that the range of the intervals tends to increase as δ increases. For

values of δ up to 0,0001 there is not a substantial alteration in the range of the intervals.

Therefore this value was selected for the calculation of the asymptotic interval.

Figure 1: Monte Carlo study to determine δ in the LLM.

3.2 Comparing the Asymptotic and Bootstrap Intervals

Table 1 presents the maximum likelihood estimates (MLE) and the MSE for the Monte

Carlo and bootstrap replications, as well as the coverage percentages of the asymptotic

and bootstrap intervals for the LLM. It can be observed that the MLE’s are always

very close to the fixed value of the hyperparameter (the distance is in order of 10−3).

The bootstrap procedure seems to approximate satisfactorily the values of the estimates

obtained from the Monte Carlo replications, and they become closer as n increases. The

coverage of the intervals also tends to the nominal value of 95%, as the sample size

increases. It should be noted that the coverage of the bootstrap intervals is better than
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Figure 2: Monte Carlo study to determine δ in the LLT.

Figure 3: Monte Carlo study to determine δ in the BSM.
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the asymptotic interval for σ2
η, for any size of the series, while for σ2

ε , they are practically

the same. One of the disadvantages of the asymptotic interval is that it can lead to

negative values for the inferior limit (for example, see σ2
η and n = 50).

Tables 2 and 3 present the maximum likelihood estimates (MLE) and the MSE for

the Monte Carlo and bootstrap replications, and also the coverage percentages of the

asymptotic and bootstrap intervals for the LLT and SBM, respectively. The results

are quite the same as the ones obtained for the LLM. For the SBM (see Table 3), the

superiority of the bootstrap confidence interval is more evident, as it is seen that, even

for sizes as small as 50, the coverage percentages are closer to the 95% nominal level,

varying in the range 93% to 97% (except for σ2
ω).

4 Application to the APCI Series

In this section, the methodology described in the previous sections is applied to a series

of inflation index in Belo Horizonte, Brazil. The series is the Ample Price to Consumer

Index (APCI), calculated by IPEAD∗. This index measures the evolution of the incomes

in families spending from 1 to 40 minimum salaries per month. The APCI series is

composed of 105 monthly observations in the period January, 1997 to October, 2005.

Figure 4: Plot of the APCI series.

∗Fundação Instituto de Pesquisas Econômicas, Administrativas e Contábeis de Minas Gerais - Brazil
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Table 1: MLE, confidence intervals, and coverage for the LLM.

MLE Confidence Intervals Coverage

Monte Carlo Bootstrap Asymptotic Bootstrap Asymptotic Bootstrap

n ψ (MSE) (MSE) (range) (range)

50 σ2
η = 0.5 0.509 0.566 [-0.012;1.030] [0.107;1.276] 0.84 0.90

(0.090) (0.109) (1.042) (1.169)

σ2
ε = 1.0 1.008 0.976 [0.389;1.628] [0.359;1.653] 0.91 0.90

(0.118) (0.127) (1.239) (1.294)

100 σ2
η = 0.5 0.495 0.525 [0.132;0.859] [0.197;0.975] 0.88 0.90

(0.042) (0.048) (0.727) (0.778)

σ2
ε = 1.0 1.010 0.990 [0.571;1.448] [0.556;1.461] 0.93 0.93

(0.056) (0.059) (0.877) (0.905)

200 σ2
η = 0.5 0.504 0.515 [0.243;0.765] [0.277;0.808] 0.93 0.94

(0.016) (0.017) (0.522) (0.531)

σ2
ε = 1.0 1.000 0.992 [0.690;1.310] [0.689;1.319] 0.93 0.94

(0.026) (0.027) (0.620) (0.630)

500 σ2
η = 0.5 0.496 0.502 [0.333;0.659] [0.348;0.674] 0.95 0.95

(0.007) (0.007) (0.326) (0.326)

σ2
ε = 1.0 0.999 0.995 [0.803;1.194] [0.804;1.195] 0.94 0.95

(0.010) (0.011) (0.391) (0.391)

Obs.: See in bold the closest percentages to the nominal level of 95%.

Table 2: MLE, confidence intervals, and coverage for the LLT.

MLE Confidence Intervals Coverage

Monte Carlo Bootstrap Asymptotic Bootstrap Asymptotic Bootstrap

n ψ (MSE) (MSE) (range) (range)

50 σ2
η = 0.5 0.606 0.633 [-0.732;1.948] [0.001;2.098] 0.99 0.99

(0.450) (0.273) (2.680) (2.097)

σ2

ξ
= 0.1 0.095 0.104 [-0.055;0.246] [0.002;0.287] 0.77 0.88

(0.006) (0.006) (0.301) (0.285)

σ2
ε = 1.0 0.951 0.943 [0.140;1.760] [0.177;1.757] 0.91 0.95

(0.185) (0.156) (1.620) (1.580)

100 σ2
η = 0.50 0.555 0.582 [-0.379;1.489] [0.032;1.655] 0.96 0.98

(0.240) (0.213) (1.868) (1.623)

σ2

ξ
= 0.1 0.088 0.093 [-0.009;0.186] [0.015;0.201] 0.80 0.87

(0.003) (0.002) (0.195) (0.186)

σ2
ε = 1.0 0.980 0.967 [0.401;1.558] [0.337;1.536] 0.94 0.95

(0.090) (0.088) (1.157) (1.199)

200 σ2
η = 0.5 0.523 0.527 [-0.159;1.204] [0.046;1.294] 0.97 0.98

(0.120) (0.111) (1.363) (1.248)

σ2

ξ
= 0.1 0.100 0.103 [0.024;0.175] [0.037;0.185] 0.90 0.94

(0.001) (0.001) (0.151) (0.148)

σ2
ε = 1.0 0.982 0.980 [0.566;1.398] [0.553;1.390] 0.96 0.96

(0.045) (0.044) (0.832) (0.837)

500 σ2
η = 0.5 0.497 0.485 [0.065;0.929] [0.110;0.945] 0.93 0.93

(0.055) (0.054) (0.864) (0.835)

σ2

ξ
= 0.1 0.103 0.101 [0.053;0.149] [0.059;0.155] 0.95 0.94

(0.001) (0.001) (0.096) (0.096)

σ2
ε = 1.0 0.999 1.005 [0.734;1.265] [0.735;1.271] 0.94 0.94

(0.020) (0.020) (0.531) (0.536)

Obs.: See in bold the closest percentages to the nominal level of 95%.
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Table 3: MLE, confidence intervals, and coverage for the SBM.

MLE Confidence Intervals Coverage

Monte Carlo Bootstrap Asymptotic Bootstrap Asymptotic Bootstrap

n ψ (MSE) (MSE) (range) (range)

50 σ2
η = 0.5 0.547 0.506 [-0.428;1.520] [0.000;1.793] 0.96 0.95

(0.241) (0.165) (1.948) (1.793)

σ2

ξ
= 0.03 0.030 0.038 [-0.031;0.090] [0.000;0.119] 0.74 0.93

(0.001) (0.001) (0.121) (0.119)

σ2
ω = 0.1 0.108 0.095 [-0.073;0.289] [0.001;0.298] 0.83 0.88

(0.010) (0.007) (0.362) (0.297)

σ2
ε = 1.0 0.932 1.083 [0.029;1.834] [0.122;2.157] 0.89 0.97

(0.283) (0.291) (1.805) (2.035)

100 σ2
η = 0.5 0.505 0.485 [-0.179;1.190] [0.023;1.385] 0.94 0.94

(0.138) (0.127) (1.369) (1.362)

σ2

ξ
= 0.03 0.0029 0.033 [-0.010;0.068] [0.002;0.081] 0.79 0.89

(0.000) (0.000) (0.078) (0.079)

σ2
ω = 0.1 0.103 0.097 [-0.007;0.214] [0.013;0.226] 0.86 0.90

(0.004) (0.003) (0.221) (0.213)

σ2
ε = 1.0 0.982 1.064 [0.336;1.627] [0.304;1.810] 0.91 0.94

(0.136) (0.162) (1.291) (1.506)

200 σ2
η = 0.5 0.499 0.466 [-0.004;1.002] [0.059;1.105] 0.92 0.92

(0.071) (0.077) (1.006) (1.046)

σ2

ξ
= 0.03 0.031 0.035 [0.002;0.061] [0.009;0.070] 0.87 0.93

(0.000) (0.000) (0.059) (0.061)

σ2
ω = 0.1 0.102 0.099 [0.027;0.177] [0.035;0.184] 0.93 0.94

(0.002) (0.001) (0.150) (0.149)

σ2
ε = 1.0 1.001 1.058 [0.531;1.471] [0.505;1.582] 0.93 0.95

(0.059) (0.077) (0.940) (1.077)

500 σ2
η = 0.5 0.501 0.476 [0.183;0.818] [0.168;0.833] 0.93 0.93

(0.029) (0.032) (0.635) (0.665)

σ2

ξ
= 0.03 0.030 0.032 [0.012;0.048] [0.015;0.052] 0.91 0.92

(0.000) (0.000) (0.036) (0.037)

σ2
ω = 0.1 0.100 0.099 [0.055;0.146] [0.057;0.148] 0.91 0.92

(0.001) (0.001) (0.091) (0.091)

σ2
ε = 1.0 0.993 1.022 [0.694;1.292] [0.696;1.348] 0.95 0.94

(0.024) (0.029) (0.598) (0.652)

Obs.: See in bold the closest percentages to the nominal level of 95%.

It can be seen from Figure 4 that the series does not seem to have seasonal nor trend

components. Therefore, the most probable model to be fit to this series is the LLM. Even

thus, the LLT will be fit, in order to check if the confidence intervals built can confirm

that the variance of the trend component is close to zero.

Table 4 shows the fit of the LLT. It can be noticed that the hyperparameter σ2
ξ related

to the trend component and the respective bootstrap and asymptotic confidence intervals

are approximately zero, as it was expected. This can indicate that this component should

not be considered in the model.

Table 5 presents the fit of the LLM and the respective bootstrap and asymptotic 95%
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confidence intervals. In this case, the maximum likelihood estimates are not that close to

zero, as well as the confidence intervals. This can indicate the presence of the stochastic

level component σ2
η, suggesting that the series can follow a LLM. It can be also observed

that the bootstrap and asymptotic intervals are very similar.

Table 4: Fit of the LLT to the APCI series.

95% confidence intervals

ψ MLE Asymptotic Bootstrap

σ2
η 0.050 [0.000;0.107] [0.003;0.105]

σ2

ξ
0.000 [0.000;0.000] [0.000;0.001]

σ2
ε 0.198 [0.123;0.274] [0.113;0.287]

Table 5: Fit of the LLM to the APCI series.

95% confidence intervals

ψ MLE Asymptotic Bootstrap

σ2
η 0.042 [0.005;0.088] [0.010;0.090]

σ2
ε 0.206 [0.132;0.280] [0.123;0.305]

5 Conclusions and Final Remarks

This work presents an empirical study of the performance of the bootstrap applied to

some structural models, in particular, the local level model (LLM), the local linear trend

model (LLT) and the basic structural model (BSM). The approached used was the non-

parametric bootstrap in the residuals of the fitted model, which was showed to mimic

well the behavior of the hyperparameters of the structural models analyzed, possessing

mean and mean square error very close to the Monte Carlo results.

Besides, bootstrap and asymptotic confidence intervals for the hyperparameters were

built and compared with respect to the width of the intervals and coverage percentages.

It was noticed that the bootstrap intervals were closer to the 95% nominal level than

the asymptotic intervals, regardless the size of the series. It should be stressed that the

asymptotic intervals can present boundary problems, that is, when the hyperparameter

lies on the boundary of the parameter space, as this is one of the regularity conditions

needed to calculate the asymptotic distribution. Empirically, it can be seen that the lower

limit can be negative, and this should not be expected, as in this case the hyperparameters
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are the variances of the errors. On the other hand, the computational time for the

bootstrap is approximately five times the computational time for the asymptotic interval.

The methodology was also applied to a real series of inflation index in Belo Horizonte,

Brazil. The bootstrap and asymptotic intervals were constructed and they led to the

conclusion that the series follows a LLM.

Future research includes the construction of hypothesis tests to verify the significance

of the components in the structural model.
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